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Abstract: Farmland trees are a vital part of the local economy as trees are used by farmers for
fuelwood as well as food, fodder, medicines, fibre, and building materials. As a result, mapping
tree species is important for ecological, socio-economic, and natural resource management. The
study evaluates very high-resolution remotely sensed WorldView-2 (WV-2) imagery for tree species
classification in the agroforestry landscape of the Kano Close-Settled Zone (KCSZ), Northern Nigeria.
Individual tree crowns extracted by geographic object-based image analysis (GEOBIA) were used to
remotely identify nine dominant tree species (Faidherbia albida, Anogeissus leiocarpus, Azadirachta indica,
Diospyros mespiliformis, Mangifera indica, Parkia biglobosa, Piliostigma reticulatum, Tamarindus indica, and
Vitellaria paradoxa) at the object level. For every tree object in the reference datasets, eight original
spectral bands of the WV-2 image, their spectral statistics (minimum, maximum, mean, standard
deviation, etc.), spatial, textural, and color-space (hue, saturation), and different spectral vegetation
indices (VI) were used as predictor variables for the classification of tree species. Nine different
machine learning methods were used for object-level tree species classification. These were Extra
Gradient Boost (XGB), Gaussian Naïve Bayes (GNB), Gradient Boosting (GB), K-nearest neighbours
(KNN), Light Gradient Boosting Machine (LGBM), Logistic Regression (LR), Multi-layered Perceptron
(MLP), Random Forest (RF), and Support Vector Machines (SVM). The two top-performing models in
terms of highest accuracies for individual tree species classification were found to be SVM (overall
accuracy = 82.1% and Cohen’s kappa = 0.79) and MLP (overall accuracy = 81.7% and Cohen’s kappa
= 0.79) with the lowest numbers of misclassified trees compared to other machine learning methods.

Keywords: agroforestry; machine learning; Sudano-Sahelian; tree species mapping; WorldView-2

1. Introduction

In the semi-arid Sudano-Sahelian ecological zone of West Africa, trees maintained by
farmers on their farmed plots are an important element of the local livelihood [1]. Farmers
use trees for fuelwood for their own use as well as for sale to supplement farm incomes.
Wood fuel in Kano has traditionally been derived from trees grown and maintained by
farmers in the farmed parklands surrounding the city. The ‘parkland’ landscape is defined
by the large variety of trees grown and maintained on farmland, which are used for a
very wide variety of purposes, including fuel wood, timber for building materials, food,
fodder, fibre, and medicines [1,2]. Additionally, the large areal extent of farmed parkland
landscapes in the Sudano-Sahelian ecological zone makes them an important component of
the global climate system, as they store and sequester large amounts of carbon in the woody
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biomass and soils [3,4]. Higher demand for fuelwood due to high population growth
combined with predictions of higher temperatures and decreased rainfall pose a serious
challenge to tree stocks. Therefore, spatial, and quantitative assessments of tree species are
especially urgent since climate change and intensified land use in recent decades have put
increasing pressure on tree cover.

In addition to pixel-based approaches to classifying tree species, object-based image
analysis is effective for classifying objects at multiple scales. This means that tree crowns of
different sizes can be delineated separately, from individual tree crowns to large clusters of
tree crowns. Numerous studies have found high accuracy and low error for the classification
of tree species using GEOBIA compared to pixel-based approaches [5,6]. Over the last
few years, there has been enormous development in remote sensing with the launch of
high-spatial-resolution commercial satellites. The use of traditional statistical analysis of
single pixels is not appropriate for high resolution satellite images, as the pixel under
consideration and its neighbouring pixels may differ spectrally but belong to the same land
cover class [7]. This high spectral variability within the same land cover class creates a “salt-
and-pepper” effect during classification. As human beings normally recognise patterns
in a landscape by their spatial relationship to neighbourhood objects, it is useful to use
spatial and contextual information for the characterisation of land use classes, along with
spectral information [8]. Spatial relationships between adjacent pixels in the form of texture
provide important information for identification of individual objects, which are building
blocks of the original features of interest [9]. In this way, homogeneous objects based on
spatially connected groups of pixels with similar spectral characteristics can be identified.
Image segmentation is the process by which homogeneous image objects are created
by aggregating groups of pixels with regard to spectral and spatial characteristics. The
term ‘homogeneous’ implies that within-object variance is low compared to that between
objects, and those identified objects also contain additional information about geometry
(size and shape), contextual, and textural aspects besides spectral information [10]. These
homogeneous objects reflect real-world objects of interest [7].

Many studies have used high-spatial-resolution satellite images for tree crown delin-
eation [5,11,12]. Bunting and Lucas [5] extracted and classified different tree crown species
in Australian mixed forests using the Compact Airborne Spectrographic Imager (CASI)
hyperspectral data through GEOBIA. Rasmussen et al. [12] used QuickBird imagery for
extracting tree crowns in Northern Senegal, and Karlson et al. [11] used WorldView-2 data
for tree cover extraction in Burkina Faso using GEOBIA. In an agroforestry landscape, there
is a variety of deciduous trees with varying crown sizes and ages; therefore, GEOBIA is
well suited for such tree crown cover mapping. Remote sensing has been successfully used
for tree species mapping using airborne hyperspectral systems [13,14], but the high cost
and small footprint of these airborne systems restrict their usage for large areas. Therefore,
there has been a growing interest in the use of very high resolution space-based satel-
lite remote sensing images for the identification of tree species [6,13,15–17] because they
provide timely, repetitive, and large area coverage from local to global scales. Karlson
et al. [15] investigated the capability of multi-seasonal WorldView-2 imagery to map five
dominant tree species at the object level in central Burkina Faso using the Random Forest
(RF) classifier.

There have been many studies using satellite data with different machine learning
methods for tree species classification from satellite data, including Support Vector Ma-
chine (SVM) [6,18], K-nearest neighbours (KNN) [19–21], Random Forest (RF) [6,22,23],
Logistic Regression (LR) [20,24], Extra Gradient Boosting (XGBoost) [25–27], Multi-Layered
Perceptron (MLP) [28–30], Light Gradient Boosting (LightGBM) [25], Gaussian Naïve Bayes
(GNB) [31], Gradient Boosting (GB) [32]. However, most studies are based on very few
species, and the accuracy levels achieved are generally not above 80%. For example,
Karlson et al. [15] tested five (only four native) tree species with one machine-learning
classifier, Random Forest. Producer accuracy in the dry season was below 80%, except
for the distinctive species M. indica, which has dark green shiny leaves, and a non-native
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Eucalyptus species, which has a very distinctive compact crown and blue-green leaves.
Lelong et al. [16] examined two machine learning algorithms, SVM and RF, but achieved
a relatively low kappa index of 0.71 for identifying four tree species in Senegal. Most
previous studies have also combined different sensing systems, such as optical satellite
images combined with Lidar or airborne images, or combined multiple dates. To the best
of our knowledge, no study has compared different machine-learning methods for tree
species classification. Moreover, our study uses only a single sensor.

The objective of the study is to test and evaluate a cost-effective method for detailed
tree species classification in the agroforestry landscape of West Africa, using Kano, Nigeria,
as a case study. WorldView-2 imagery is used, as a single image covers a large area at a
high level of detail, and airborne or UAV imagery is not generally available in a devel-
oping country environment. An evaluation of nine different machine learning methods
is performed to suggest the best-performing and most cost-effective method for detailed
classification of tree species over large areas. This will enable effective rural afforestation
programmes, which need an accurate inventory of existing tree stocks, and contribute to a
sustainable rural economy where farm trees have multiple and diverse uses.

2. Materials and Methods
2.1. Study Area

The Sudan zone of West Africa is densely populated, with rural population densities
of 300–500 persons per km2 surrounding Kano, Nigeria’s second city and the largest city in
savanna Africa. Kano has some of the highest rural population densities in the world. The
number of persons per km2 almost doubled from 169 in 1991 [33] to 308 in 2006 [34]. The
‘Kano Close-Settled Zone’ (KCSZ) of Northern Nigeria [35] surrounding the city describes
the densely populated agricultural region influenced by the proximity of Kano and serving
as its hinterland in terms of interdependency of products and trade, goods, and services.

The study was conducted over an area of 100 km2 in the intensively farmed parklands
surrounding Kano, extending westwards from Kano city at 11.97◦ N, 8.39◦ E (Figure 1).
The study site is typical of the Northern Sudan zone of West Africa, where over 80% of
the land is cultivated in the April–September rainy season. The main crops are the cereals:
maize (Guinea corn), millet, and sorghum, which are grown for subsistence, along with a
few field crops of root vegetables, beans, and a few vegetables. The mean annual rainfall
of 750 mm at Kano supports a natural vegetation of tree savanna, with flat-topped trees
browsed by savanna fauna and livestock when the grassy ground cover dries during the
winter dry season [36,37]. A wide variety of tree species on farmland is necessary because
each species provides a particular product, ranging from food, fodder, medicine, building
materials, and fencing to wood fuel. Although most species can be burned for cooking and
heating, the different burning properties of species also have different purposes. The large
tree numbers, with up to 25 trees per hectare in the study area [36], make field surveys of
large areas impossible. However, due to the importance of trees in the local economy and
culture, species inventories are highly desirable in order to understand trends in the face of
external climatic and economic threats.

2.2. WorldView-2 Satellite Data

This study used a cloud-free WorldView-2 image from February 2, 2014. WV-2 has
eight multispectral bands at 2 m and a panchromatic band at 0.5 m resolution (Table 1).
The image covers an area of 100 km2. For this study, pan-sharpened images at 0.5 m
resolution were produced using the Hyperspherical Colour Space (HCS) method [38] by
fusing multispectral bands at 2 m with the panchromatic band at 0.5 m.
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Figure 1. (a) Location of study area; (b) WV-2 image of study area with location of the sampled sites
in the field; (c) zoomed-in view of a pansharpened WV-2 image.

Table 1. Specifications of the WorldView-2 satellite image.

Image Parameters Bands (µm)

Acquisition date 2 February 2014 Coastal Blue (0.40–0.45)
Acquisition time 10:24:00 Blue (0.45–0.51)
Off-nadir angle 26.06 Green (0.51–0.58)

Mean sun azimuth 139.50 Yellow (0.58–0.62)
Mean sun elevation 60.40 Red (0.63–0.69)

Cloud cover (%) 0 Red Edge (0.705–0.745)
Map projection UTM WGS 84 NIR 1 (0.77–0.89)

Location:
NIR 2 (0.86–1.04) Pan (0.45–0.80)NW (Lat, Long) (12.01, 8.34)

SE (Lat, Long) (11.92, 8.43)

2.3. Reference Field Inventory Data

Fieldwork conducted in the study area during the 2015–16 dry season provides the
basis for the identification of individual tree species. A fallow agricultural field with
different tree species in the study area is shown in Figure 2. Field data collected included the
enumeration of 210 trees (for trees >5 cm in diameter), the height of trees, the measurement
of Diameter at Breast Height (DBH), as well as species identification. Nine of the most
common tree species sampled in the west area were Faidherbia albida, Anogeissus leiocarpus,
Azadirachta indica, Diospyros mespiliformis, Mangifera indica, Parkia biglobosa, Piliostigma
reticulatum, Tamarindus indica, and Vitellaria paradoxa (Table 2). Every individual tree was
manually located on a colour print of a Worldview-2 (WV-2) pansharpened image of
0.5 m resolution. Clusters of tree crowns were not included. From this, a GIS-based point
shapefile of field tree locations was generated for further analysis.
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Figure 2. A fallow agricultural field with different tree species in the Kano Close Settled Zone,
Northern Nigeria, during the dry season (January 2016).

Table 2. Dominant agroforestry tree species, number of tree species in the sample, and their crown
dimensions.

Scientific Name Common Name Number Min (m2) Max (m2) Mean (m2) Stdev (m2)

Faidherbia albida Gawo 15 17.75 172.8 73.5 51.5
Anogeissus leiocarpus Marke 24 2.625 267.2 33.3 51.5

Mangifera indica Mango 11 30.6 230.4 92.8 50.6
Azadirachta indica Neem 70 6.4 131.3 54.7 30.5

Parkia biglobosa African locust bean 19 13.125 464.6 99.3 105.2
Tamarindus indica Tsamiya 16 11.5 158 66.9 43.7
Vitellaria paradoxa Kadanya 13 8.75 85.4 43.9 21.7

Piliostigma reticulatum Kalgo 25 4.25 116.1 34.8 26.9
Diospyros mespiliformis African ebony 17 8.37 107.7 45.1 30.5

2.4. Tree Crown Delineation Using GEOBIA

In this study, tree crown areas were extracted from WV-2 data using Geographic
Object-Based Image Analysis (GEOBIA) (Figure 3) by modifying the method of Bunting
and Lucas [5], which they proposed for tree crown delineation in Australian mixed-species
forests. For accuracy assessment of tree crown area delineated through GEOBIA using
WV-2 data, an independent reference tree crown area measured during a field survey
was compared with satellite image-based tree crown area by a linear regression line. A
significant value of R2 = 0.88 was found [37].

Individual tree crowns extracted by GEOBIA were overlaid onto the WV-2 image,
and mean spectral values of the eight bands were extracted for a species-specific spectral
library. Different vegetation indices based on different combinations of the novel bands of
WV-2 were used as predictors in combination with the original spectral bands. Previous
studies have shown improvements in the accuracy of tree species discrimination by using
vegetation indices [15,39,40]. For every tree object in the reference datasets, the predictor
variables for classification were the eight original spectral bands of the WorldView-2 image,
their spectral statistics (minimum, maximum, mean, standard deviation, etc.), spatial,
textural, color-space (hue, saturation), and different spectral vegetation indices (Table 3).
The selection of appropriate feature variables plays a vital role in obtaining excellent
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classification results. In order to screen the computed variables in our proposed algorithm,
we used Principal Component Analysis (PCA) which reduces the dimension of the feature
vector by mapping the original high-dimensional data onto a compact low-dimensional
space. Similar to [41,42], we investigated the impact of PCA to reduce the dimensionality
of our features by preserving the maximum variance in the data. However, we observed
that reducing the dimensions of the proposed features would result in dropping some
important information, hence a decline in the recognition accuracy. Therefore, we used all
the computed features in the classification.
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Figure 3. A subset of the WorldView-2 imagery (dry season) acquired over KCSZ is shown as a
false-colour RGB composite consisting of NIR 1, red, and green bands, and tree crowns extracted
using GEOBIA.

Table 3. Vegetation indices-based predictor used for tree species classification.

Vegetation Indices Formula Source

Normalised Difference Vegetation Index
NIR− Red
NIR + Red [43]

Visible Atmospherically Resistant Index
G− Red

G + Red− B [44]

Normalised Difference Vegetation Index–Red Edge
RE− Red
RE + Red [45]

Anthocyanin Reflectance Index
1
G
− 1

Red [46]

Modified Anthocyanin Reflectance Index

(
1
G
− 1

Red

)
∗NIR [47]

Chlorophyll Index Green
NIR2

G
− 1 [48]

Chlorophyll Index Red Edge
NIR2

RE
− 1 [49]
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Table 3. Cont.

Vegetation Indices Formula Source

Normalised Difference NIR/Red
NIR2− Red
NIR2 + Red [50]

Pigment Specific Simple Ratio
NIR1
Red [51]

Chlorophyll Vegetation Index

(
Red
G2

)
∗NIR2 [44]

Green Difference Vegetation Index
NIR2−G
NIR2 + G [52]

Enhanced Vegetation Index
2.5 ∗ (NIR2− Red)

(NIR2 + 6 ∗ Red− 7.5 ∗Coastal Blue) + 1 [53]

Enhanced Vegetation Index 2
2.4 ∗ (NIR2− Red)

NIR2 + Red + 1 [54]

Enhanced Vegetation Index 2-2
2.5 ∗ (NIR2− Red)

NIR2 + 2.4 ∗ Red + 1 [53]

Green Atmospherically Resistant Vegetation Index
NIR2− (Green− (Coastal Blue− Red))
NIR2− (Green + (Coastal Blue− Red) [55]

Green Optimised Soil Adjusted Vegetation Index
NIR2−Green

NIR2 + Green + 0.16 [56]

Infrared Percentage Vegetation Index
2 ∗NIR2

NIR2 + Red
∗
((

Red−Green
Red + Green

)
+ 1
)

[57]

Blue-Wide Dynamic Range Vegetation Index
0.1 ∗NIR2−Coastal Blue
0.1 ∗NIR2 + Coastal Blue [58]

Optimised Soil-Adjusted Vegetation Index
(1 + 0.16)(NIR1− Red)

NIR1 + Red + 0.16 [59]

Modified Soil-Adjusted Vegetation Index
2 ∗NIR2 + 1−

√
(2 ∗NIR2 + 1)2 − (NIR2− Red)

2 [47]

Discriminant Normalised Vegetation Index
Coastal Blue− Blue√

Coastal Blue + Coastal Blue
[60]

Modified Normalised Difference Vegetation Index
NIR1− Red

NIR1 + Red− 2 ∗Coastal Blue [47]

Plant Pigment Ratio
G−Coastal Blue
G + Coastal Blue [61]

Structure Intensive Pigment Index
NIR1−Coastal Blue

NIR1 + Red [62]

Modified Simple Ratio
NIR1
Red [60]

Photosynthetic Vigour Ratio
G− Red
G + Red [61]

2.5. Preprocessing

As all the predictor features were numeric and scaled differently, some features with
higher values could have dominated the results of the machine learning algorithms. So,
scaling was applied to bring all the values to a single scale. Standard scaling was applied,
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which considers the data to be normally distributed for each feature and then scales it using
the following formula:

Xnew =
x− µ

σ

such that the distribution of values becomes centered at 0 and its standard deviation
becomes 1. Finally, each feature’s scaling is performed independently by calculating the
mean (µ) and standard deviation (σ). After standard scaling, the standard deviations of
predictors become one, which allows the min-max scalar to perform better.

The label encoding technique is applied to convert reference data of tree species
names to a numeric format, which is a more readable format for the machines. In this
process, each tree species in the label data is assigned a value from zero onwards. As
the reference tree species data were few in quantity and imbalanced in the frequency of
each species, as well as the high occurrence of certain tree species, this could cause wrong
predictions and overfitting of machine learning models. Therefore, Synthetic Minority
Over-sampling Technique (SMOTE) was used to up-sample the data and add more data
points for scarce classes [63,64]. In SMOTE, synthetic data for the minority class were
generated from its nearest neighbours using Euclidean distance. Each label in the data was
sampled according to its occurrence in the original data. On the basis of features, newly
generated data is similar to the original data. As a result of resampling, the number of data
points increased from 210 to 325 (Figure S1). Individual tree species with low frequencies
increased after applying SMOTE sampling, as shown in Supplementary Table S1. Due to
the difference in frequency of tree species, the stratified k-fold cross-validation technique
was used to handle the imbalanced distribution of classes in training and testing. Because
of the limited reference dataset (n = 325), we performed successive random stratified 4-fold
cross-validation, which randomly divides the reference dataset into 4 folds or groups
having equal proportions of different tree species. The first fold (80 trees, or 25% of the trees
in each class) is treated as a validation set, and the model is trained on the remaining 75%
of trees of different species. The process is repeated 4 times, considering a different fold
each time for the validation dataset, and the final accuracies are derived using summed
values. Validation of tree species classification employed the producer, user, and overall
accuracies and Cohen’s kappa coefficient K and F1 scores as measures for the different
machine learning methods.

2.6. Machine Learning Methods

The study is designed to provide a comparison of machine learning classification
algorithms to assess which performs best for classifying tree species in the agroforestry
landscape of the Sudan zone of West Africa. Machine learning tasks were performed in
Python using libraries such as scikit-learn, geopandas, rasterio, earthpy, etc., that are known
for the processing of geographic data, and Jupyter notebooks.

2.6.1. Support Vector Machine (SVM)

Support Vector Machine (SVM) [65] is suitable for regression, classification, and outlier
detection problems. The SVM takes an n-dimensional space, where n refers to the number
of features, and a data point is plotted so that the combined features give out the coordinate.
Further, classification is done by finding a hyperplane that segregates the classes. It is
also known as a large margin classifier. For tree species classification, SVM is among the
best-performing models [6,18]; therefore, it was chosen for this study. As parameters of the
implementation are provided by sklearn, its default Radial Basis kernel function is used in
this study, and the value of regularisation, C, is set to 100, as the best results were obtained
from this combination through tuning.

2.6.2. K-Nearest Neighbours (KNN)

The K-Neighbour Classifier (KNN) [66] is a supervised machine learning technique
for both regression and classification challenges. It is advantageous in terms of easy
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implementation, but its performance is degraded when data size increases. It works on the
simple rule of identifying the k-data points nearest to the test data and assigning this test
point to the cluster to which most of its neighbours belong. KNN is one of the algorithms
widely used for tree classification [19–21]. In our case, we have used grid search to select the
optimal k-value, which is 3. Apart from that, the weights parameter was set to ‘uniform’,
and the metric for distance computation was set to Minkowski.

2.6.3. Random Forest (RF)

The RF [67] is an ensemble machine learning technique that combines regression and
classification models with bagging. It comprises several combined decision trees, giving
each tree a class prediction. In the end, the results from all trees are combined, and the class
with the greatest vote count is given as the final prediction. The RF classifier has been used
with and compared with various machine learning algorithms for tree classification [6,22,23].
As for the parametric values, the number of trees was set to 100, the criterion to measure
the split quality was ‘gini’, max_depth was set to none, and max_features to be considered
was set to ‘sqrt’, because tuning showed these values worked best for our dataset.

2.6.4. Logistic Regression (LR)

LR is a predictive analysis algorithm [68] that uses a sigmoid as a cost function and is
based on the simple concept of probabilities to classify data into various categories, either
binary or multi-class, by using some extensions. Due to its simple implementation, this
algorithm has been used for tree species classification [20,24]. We have used ‘l2’ as a penalty,
tolerance for stopping criteria as, 1× 10−4 the inverse of regularisation strength C as 1.0,
and the solver as ‘lbfgs’ for optimisation. The selection of these values was based on results
obtained through grid-search.

2.6.5. Extra Gradient Boosting (XGBoost)

A member of the gradient boosting library, XGBoost is an optimised, portable, and
flexible machine learning algorithm built on the framework of Gradient Boosting. In
addition, tree-boosting in parallel is provided by XGBoost, which gives out accurate and
fast performance. The algorithm was introduced as a research project as a part of the
Distributed (Deep) Machine Learning Community [69]. Tree-ensemble techniques are
one of the best-performing models for tree classification [25–27]. In terms of the input
parameters, through grid-search, max_depth was set to 3, learning_rate to 0.1, number of
estimators to 100, and objective to ‘binary:logistic’, as they were shown to work the best.

2.6.6. Multi-Layer Perceptron (MLP)

MLP provides a way to map input and output in a non-linear way. It comprises one
or more hidden layers, apart from the input and output layers. Moreover, the neurons
must have an activation function to apply a threshold. In addition, these algorithms can be
categorised as feed-forward algorithms. MLP has been used for tree classification [28–30]
and has produced higher accuracy. For this particular dataset, the MLP classifier provided
by the sklearn library has been used, whereas, through hyperparameter tuning, the hid-
den_layer_sizes were selected to be (200,100), the activation_function was set to ‘relu’,
‘adam’ as a solver for weight optimisation, the strength of L2 regularisation, i.e., alpha, to
0.0001, and learning_rate to 0.001 as a constant.

2.6.7. Light Gradient Boosting (LightGBM)

Another method from the gradient-boosting family, LightGBM, increases decision tree
efficiency while minimising memory usage. Two characteristic techniques in this algorithm,
namely, Exclusive Feature Bundling (EFB) and gradient-based one-side sampling, boost
the training speed by 20 times [70]. As tree-based algorithms performed well for tree
classification [25], Ge et al. [71] made use of a variant of LightGBM for a similar study in
which they classified oolong tea using hyperspectral imaging data and were able to attain
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97.33% prediction accuracy. For this study, the parameter values for light GBM were set
to 0.1 for the learning rate, 150 for the number of estimators, and 20 for the subsample
binning.

2.6.8. Gaussian Naïve Bayes (GNB)

Gaussian Naïve Bayes is a simple probabilistic algorithm based on the Bayes principle.
It assumes that each class follows the normal or gaussian distribution and that there is
no dependence between dimensions. Although simple, this algorithm is found to work
effectively for sophisticated datasets and classification problems [31]. The parameters of
this model were selected through tuning because there were no prior probabilities of classes
available, such as 1e-9 for var_smoothing.

2.6.9. Gradient Boosting (GB)

The gradient boosting algorithm works on the tree-based boosting approach and
builds up an additive model, moving forward iteratively and optimising the loss functions,
which are log losses in the case of classification. Additionally, boosting techniques were
found to work well on tree species classification datasets [32]. For the implementation
provided by the sklearn library, the learning_rate was set to 0.1, the number of estimators
to 100, the max_depth of the tree was set to 3, and the loss function was chosen as log_loss.

3. Results
Machine Learning Model Comparison

Tree species classification was performed by using different machine learning meth-
ods and incorporating different predictors, including spectral, spatial, colour-based (hue,
saturation), and vegetation indices (Table 4). Initial classification using only spectral band
information gave very low accuracy.

Table 4. Overall tree species classification accuracy, kappa coefficient, and total misclassified trees by
using different machine learning methods.

Method Overall
Accuracy (OA) Kappa Number of Trees

Misclassified (%)

XGB 76.2 0.72 23.4
GNB 52.4 0.46 46.5
RF 77.60 0.74 21.8
GB 75.1 0.71 24.3
LR 77.3 0.74 22.2

KNN 67.2 0.63 32
SVM 82.1 0.79 17.5
MLP 81.7 0.79 17.8

LGBM 79.8 0.76 19.7

Figure 4 compares the accuracy of different machine learning methods by using spatial,
textural, and colour features only, spectral features only, and combining spectral, spatial,
textural, and colour features together. Results show that using all predictor variables
together gave the best overall result. Among the models, the highest accuracy values were
achieved by MLP and SVM, and logistic regression was the third-best method. Gaussian
Naive Bayes shows consistently low performance in all cases and appears to be the worst-
performing method. Overall, it is observed that the tree-based models perform best for
such datasets, along with the MLP.
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The confusion matrices (Tables 5 and 6) were derived using the random stratified
4-fold resampling cross-validation technique, which randomly divides the reference dataset
into 4 folds, where 25% of the reference data is treated as a validation set and the model
is trained on the remaining 75% of reference trees. By using different validation datasets
of about 80 trees each four times, the resulting confusion matrices are based on a total of
320 reference tree crowns. The results show that among the nine machine learning methods,
the MLP and SVM methods were the most accurate (OA = 81.7% for MLP and OA = 82.1
for SVM), with the least number of misclassified trees. The producers’ accuracy in Table 5
represents what percentage of each species were correctly classified, and the user’s accuracy
represents reliability, or the percentage of other species that were wrongly included in
a species class. The MLP and SVM classifiers gave similar results, showing very good
agreement between reference and classification for most of the tree species. The exceptions
were Parkia biglobosa and Piliostigma reticulatum, with low producer’s accuracy of 71.4%,
and 72.5%, respectively, meaning that only 71.4% and 72.5% of known trees of these species
were identified as such. This is in line with Karlson et al.’s findings in Burkina Faso [15],
which show low producer accuracy of 73% for P. biglobosa in the dry season, whereas higher
producer accuracy (81%) was observed for this species on wet season WV-2 imagery. The
three species Mangifera indica, Azadirachta indica, and Vitellaria paradoxa were well identified
by both classifiers, with producer’s accuracies of over 85%, along with Anogeissus leicarpus
for SVM. For the remaining 4/3 species for MLP/SVM, both classifiers had high producer
accuracy of at least 80%, representing the percentage of trees correctly classified as that
species. In terms of user accuracy, for both classifiers, Mangifera indica had the highest user
accuracy of 88.4%/92% for MLP/SVM, meaning that only 11.6%/8% of this species were
wrongly classified as other species, or 88.4%/92% of this species identified as M. indica
do belong to that category on the ground. This tree is distinctive in its solid crown and
dark green, shiny leaves (Figure S3). Significant confusion occurred between P. biglobosa
and A. indica, which resulted in lower user accuracy for both classifiers. In fact, 20% of
P. biglobosa trees were omitted from the class and wrongly classified mainly as A. indica and
P. reticulatum. These three species have similar-shaped, rounded crowns that are flat at the
base (Figure S3), and although P. biglobosa is generally a much larger tree, the younger of
this species may appear similar to these two generally smaller trees. Overall results show
that the species least identified by the two classifiers, MLP and SVM, were P. biglobosa,
followed by A. leiocarpus. Those species most commonly identified as other species were
A. indica and P. reticulatum.
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Table 7 compares results for all classifiers for all tree species. It indicates that the
poorest classifiers were GNB and KNN, in terms of both user and producer accuracy, which
were only able to recognise approximately half and two thirds of species, respectively. GNB
in particular wrongly allocated approximately half of all species to other classes. Another
five classifiers, XGB, RF, GB, LR, and LGBM, achieved above 70% accuracy, and SVM and
MLP achieved over 80% accuracy in tree species identification.

The species Anogeissus leiocarpus and Mangifera indica were mostly correctly classified
by the algorithms. The pale green leaves and bark of the former and the dark, shiny leaves
of the latter (Figure S3) may explain their distinctiveness on images. Those least correctly
classified were Faidherbia albida and Diospyros mespiliformis. For all species except F. albida,
P. biglobosa, and P. reticulatum, the highest F1 score is not less than 80%, indicating that six
out of the nine species were highly classified by one model or the other.

The SVM classifier can be considered robust, and we applied it to a set of trees
extracted from WV-2 imagery over the whole study area. Figure 5 shows a map of the
spatial distribution of tree species in a small portion of the KCZS.
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Table 5. MLP-based confusion matrix showing producer and user accuracy for nine dominant tree species. Row sums are equal to the number of sampled tree
species after applying SMOTE.

Reference
Classified

Producer’s
Accuracy (%)

User’s Accuracy
(%)

Faidherbia
albida

Anogeissus
leiocarpus

Mangifera
indica

Azadirachta
indica

Parkia
biglobosa

Tamarindus
indica

Vitellaria
paradoxa

Piliostigma
reticulatum

Diospyros
mespiliformis

Faidherbia albida 80 77.4 24 1 1 3 1 0 0 0 0

Anogeissus
leiocarpus 80 77.7 2 28 0 1 0 0 1 2 1

Mangifera indica 92 88.4 0 0 23 1 1 0 0 0 0

Azadirachta
indica 87.1 87.1 1 0 2 61 5 1 0 0 0

Parkia biglobosa 71.4 78.1 2 0 0 4 25 0 0 3 1

Tamarindus
indica 83.3 80.6 2 0 0 0 0 25 0 0 3

Vitellaria
paradoxa 90 85.7 0 0 0 0 0 1 18 0 1

Piliostigma
reticulatum 72.5 80.5 0 6 0 0 0 1 2 29 2

Diospyros
mespiliformis 81.2 76.4 0 1 0 0 0 3 0 2 26

Table 6. Support Vector Machine (SVM)-based confusion matrix showing producer and user accuracy for nine dominant tree species.

Reference
Classified

Producer’s
Accuracy (%)

User’s Accuracy
(%)

Faidherbia
albida

Anogeissus
leiocarpus

Mangifera
indica

Azadirachta
indica

Parkia
biglobosa

Tamarindus
indica

Vitellaria
paradoxa

Piliostigma
reticulatum

Diospyros
mespiliformis

Faidherbia albida 80 72.7 24 1 1 2 2 0 0 0 0

Anogeissus
leiocarpus 85.7 83.3 2 30 0 1 0 0 1 1 0

Mangifera indica 92 92 0 0 23 2 0 0 0 0 0

Azadirachta
indica 85.7 81 3 0 1 60 5 0 0 0 1

Parkia biglobosa 71.4 78.1 1 0 0 7 25 0 0 2 0

Tamarindus
indica 83.3 89.2 2 0 0 0 0 25 0 0 3

Vitellaria
paradoxa 90 85.7 0 0 0 0 0 1 18 1 0

Piliostigma
reticulatum 72.5 82.8 1 4 0 2 0 0 1 29 3

Diospyros
mespiliformis 81.2 78.7 0 1 0 0 0 2 1 2 26
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Table 7. Species-wise user, producer accuracy, and F1-score by different learning methods.

Models Accuracy Faidherbia
albida

Anogeissus
leiocarpus

Mangifera
indica

Azadirachta
indica

Parkia
biglobosa

Tamarindus
indica

Vitellaria
paradoxa

P.
retculatum

Diospyros
mespiliformis Mean

XGB Producer
Accuracy 56.6 88.5 80 81.4 74.2 76.6 85 77.5 59.3 75.4

User
Accuracy 73.9 79.4 76.9 80.2 68.4 82.1 80.9 73.8 65.5 75.6

F1-score 0.64 0.83 0.78 0.8 0.71 0.79 0.82 0.75 0.62 0.74

GNB Producer
Accuracy 10 68.5 88 62.8 37.1 73.3 65 45 21.8 52.3

User
Accuracy 10.7 53.3 88 78.5 36.1 52.3 86.6 40 28 52.6

F1-score 0.1 0.6 0.88 0.69 0.36 0.61 0.74 0.42 0.24 0.51

RF Producer
Accuracy 60 88.5 80 87.1 71.4 83.3 75 75 65.6 76.2

User
Accuracy 69.2 86.1 83.3 81.3 78.1 80.6 71.4 68.1 75 77

F1-score 0.64 0.87 0.81 0.84 0.74 0.81 0.73 0.71 0.7 0.76

GB Producer
Accuracy 63.3 80 72 88.5 71.4 63.3 70 80 65.6 72.6

User
Accuracy 63.3 87.5 90 75.6 67.5 90.4 82.3 69.5 65.6 76.8

F1-score 0.63 0.83 0.8 0.81 0.69 0.74 0.75 0.74 0.65 0.73

LR Producer
Accuracy 66.6 74.2 92 77.1 77.1 86.6 85 75 68.7 78

User
Accuracy 64.5 72.2 88.4 88.5 69.2 74.2 85 75 75.8 76.9

F1-score 0.65 0.73 0.9 0.82 0.72 0.8 0.85 0.75 0.72 0.77

KNN Producer
Accuracy 70 68.5 92 70 68.5 73.3 80 37.5 59.3 68.7

User
Accuracy 51.2 64.8 67.6 87.5 64.8 66.6 72.7 68.1 54.2 66.3

F1-score 0.59 0.66 0.77 0.77 0.66 0.69 0.76 0.48 0.56 0.66
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Table 7. Cont.

Models Accuracy Faidherbia
albida

Anogeissus
leiocarpus

Mangifera
indica

Azadirachta
indica

Parkia
biglobosa

Tamarindus
indica

Vitellaria
paradoxa

P.
retculatum

Diospyros
mespiliformis Mean

SVM Producer
Accuracy 80 85.7 92 85.7 71.4 83.3 90 72.5 81.2 82.4

User
Accuracy 72.7 83.3 92 81 78.1 89.2 85.7 82.8 78.7 82.6

F1-score 0.76 0.84 0.92 0.83 0.74 0.86 0.87 0.77 0.8 0.82

MLP Producer
Accuracy 80 80 92 87.1 71.4 83.3 90 72.5 81.2 81.9

User
Accuracy 77.4 77.7 88.4 87.1 78.1 80.6 85.7 80.5 76.4 81.3

F1-score 0.78 0.78 0.9 0.87 0.74 0.81 0.87 0.76 0.78 0.81

LGBM Producer
Accuracy 76.6 85.7 88 82.8 74.2 76.6 85 72.5 78.1 79.9

User
Accuracy 76.6 81 81.4 81.6 74.2 79.3 89.4 76.3 80.6 80

F1-score 0.76 0.83 0.84 0.82 0.74 0.77 0.87 0.74 0.79 0.79
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4. Discussion

Previous research has shown that remote sensing based tree species mapping in
tropical dryland ecosystems is possible with the help of machine learning methods. The
accuracy obtained by this study exceeds that of most other studies, uses only a single date
remote sensing image (WorldView-2), and examines a larger number of different species
than previous studies. The study identified SVM and MLP as the most accurate machine
learning methods, with an OA of 82% and K = 0.79 that were substantially higher than
the other methods tested. A study in Senegal by Lelong et al. [16] examined two machine
learning methods, SVM and RF, and found SVM to have higher accuracy. Additionally,
similar to our study, they found SVM to be superior to RF for a small number and unequal
distribution of samples. The accuracies achieved by our study compare well with other
similar studies, such as Lelong et al. [16], whose results were based on only four species
and had a highest kappa index of 0.71, and Karlson et al. [11], whose results were limited
to only four indigenous tree species and used a single machine learning method, Random
Forest. They achieved accuracies of OA = 78% and K = 0.74 for dry season imagery. While
our results are significantly better than these, Karlson et al. [11] did obtain accuracies
comparable to ours (with an OA of 83% and K = 0.76) when multi-seasonal imagery was
used, but for only four different tree species.

The current study demonstrates that accurate species identification can be achieved
with machine learning methods for a range of species in agroforestry landscapes. The tree
species studied here are among the most important species in the West African agroforestry
landscape. Parkia biglobosa, which is used for soup stock as well as fibre, and Faidherbia
albida, used for dry-season fodder, have been shown in a recent study by Usman et al. [72]
to be fast declining.

The sample data for some species were limited (Table 2) in this study. However, the
SMOTE sampling was used to increase the frequency of individual tree species with low
frequencies (Supplementary Table S1), thereby avoiding overfitting of machine learning
models. For example, four tree species—Mangifera indica, Vitellaria paradoxa, Faidherbia
albida, and Tamarindus indica—have tree counts less than 30 trees. After applying SMOTE,
the tree counts for those species substantially increased (Supplementary Table S1), which
avoided wrong predictions and overfitting of machine learning models. In previous studies,
e.g., Lelong et al. [16] had less than 30 field samples for three out of six species sampled,
and Karlson et al. [11] had less than 10 field samples for three out of five native species
sampled. In our study, out of nine species that we sampled, the average number of field
samples was 24, although the method of compensation (SMOTE) we used increased the
overall number from 210 to 325, as mentioned in Supplementary Figure S1. Nonethless,
that study was restricted in scope as it used field measurement to obtain data over limited
areas, compared with the over 100 km2 covered by the single WV2 image used in this study.

The other species studied here, including Azadirachta indica, Piliostigma reticulatum,
Anogessus leiocarpus, and Diospiros mespiliformis, were shown by Usman et al.’s [36] study
to be actively regenerating. These four important fuelwood species were identified by
MPL with 87/72/80/81% accuracy by MLP, and 86/72/86/81% accuracy, respectively, by
the SVM classifier. The huge dependence on wood as fuel in Nigeria, where the latest
available figures (National Bureau of Statistics, 2011) suggest that 95% of the energy used
for cooking is from wood, may explain the increased abundance of these species. The
Vitellaria paradoxum, or shea butter, tree provides emollients and fats for a wide range of
modern food, medicinal, and cosmetic products. This species was identified with 90%
accuracy by the two best classifiers, MLP and SVM. Such trends need to be documented
accurately over large areas in order to understand and manage possible threats to the local
economy, as well as identify opportunities for growth.

WorldView-2 and WorldView-3, with their unique spectral band configurations includ-
ing red edge, near infrared, and shortwave infrared bands at very high spatial resolution,
have proved to be capable of mapping tree species in the West African agroforestry land-
scape [15,16]. As other recent very high resolution sensors such as WV3 and Pleiades have
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similar spectral bands, spatial resolution, and swath width to the WV2 images used in this
study, little advantage is expected from using them. This study has demonstrated that a
single image, along with a robust machine-learning tool such as MLP or SVM, can provide
highly accurate tree species inventories over large areas.

5. Conclusions

The comprehensive examination of methods for tree species classification presented
here can assist state and rural authorities in undertaking rapid and cost-effective rural
surveys of the agroforestry landscape in Nigeria. This will permit a better understanding
of the pressures currently facing Nigeria’s dryland ecosystems. Violent outbreaks in recent
years among migrant pastoralists stemming from land shortages are related to trends in tree
species, as declines in Faidherbia albida, traditionally used as dry-season fodder, are removed
from farmland to counter predation by cattle. Rural households are susceptible to climatic
fluctuations and trends as well as the current massive growth in the rural population.
Land fragmentation due to traditional inheritance customs requires more farmland trees
to supply additional households with wood fuel, as farmers indicate that they rarely buy
wood. The disappearance of non-fuelwood species in recent decades is of concern due to
their importance in the local household economy.

This study demonstrates two machine-based learning models that provide over 80%
accuracy and can be applied to a single date of WorldView-2 imagery, to identify the
most common farmland tree species in West African farmed parkland. Rural afforestation
programmes would benefit from accurate inventories of current stocks of tree species and
their regional variations.

Due to the longevity of trees, it is unlikely that such tree species inventories as de-
scribed by this study would need to be repeated on a regular basis. More important would
be to extend the survey to wider areas and repeat it perhaps once per decade. However,
because a farmed parkland landscape with the same tree species exists throughout the
semi-arid zone of West Africa and, to a lesser extent, southern Africa, the findings should
have broader applicability.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijgi12040142/s1, Figure S1: Actual tree species frequency based
on reference dataset and tree species frequency after applying SMOTE; Figure S2: Mean spectral
reflectance curve of the nine major tree species; Figure S3: Visual appearance of dominant tree species.
Table S1: Comparison of actual tree species count before and after applying SMOTE sampling.
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