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Abstract: Reasonable urban commercial planning must clarify the location and scope of urban
commercial districts (UCDs). However, existing studies typically detect spurious UCDs owing to
the bias in a single data source while ignoring the continuity and ambiguity of commercial district
boundaries. Therefore, in this study, we designed a two-stage approach for detecting UCDs. First,
points of interest and population heat data were fused through hotspot and overlay analyses to detect
core commercial areas. The boundaries of the UCDs were then identified by considering adjacent
blocks using adjusted cosine similarity and region-growing algorithms. Finally, an experiment was
conducted in Xiamen, revealing concentrated businesses on Xiamen Island and sparse businesses
outside Xiamen Island. An experimental comparison with other strategies confirmed the improved
modeling ability of this approach for the edge ambiguity of UCDs. This framework provides tools for
urban commercial planning and helps recognize urban commercial patterns in a timely manner.

Keywords: urban commercial districts; region-growing algorithms; POIs; population heat data

1. Introduction

Urban commercial districts (UCDs) refer to the concentrated areas of commercial
buildings that provide products and services to the surrounding area [1–3]. With the rapid
growth of the urban economy, the urban form is moving from monocentric to polycentric [4],
such that multiple UCDs have gradually appeared in cities. The spatial layout of multiple
UCDs determines the connectivity and development of urban economic networks. For
example, the cooperation of neighboring UCDs can promote economic benefits, while
the layout of UCDs also affects the traffic flow within the city by forming traffic flows
from residential areas to UCDs and from UCDs to UCDs. For reasonable urban planning,
pinpointing the distribution of UCDs within a city is essential [2].

However, UCDs may shift and renew with economic development needs [5], i.e., their
location and scope may change, which poses a challenge to urban planning. Many studies
have attempted to identify UCDs [2,6,7]. Initially, these studies collected information on
residents’ perceptions of commercial districts through questionnaires to determine the
geographical boundaries of UCDs [8,9]. However, rapid urbanization has accelerated the
creation, variation, and extinction of UCDs. Frequently conducting city-wide large-scale
surveys is difficult and costly. Subsequently, the rise of geographical big data (such as points
of interests (POIs), Open Street Map (OSM), and travel data) has yielded new insights
into UCD recognition [7,10,11]. Kernel density estimation and clustering methods can
be used to identify high-density areas based on the spatial distribution of geographical
data as UCDs. A threshold is usually set to delineate high-density areas of population or
commercial POIs. Areas with high population density, facility density, and road network
connectivity are usually considered UCDs [12]. However, single POI data or human activity
data are limited in their ability to portray the function of an area. Specifically, the depression
of commercial districts may be hidden by high-density POIs because POIs are not real-
time. Areas with a high population density, such as residential estates, may be identified
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as commercial districts when only using population data. Additionally, this method of
identifying commercial areas using high-density thresholds ignores the ambiguity of UCD
boundaries, which stems from differences in the development of commercial districts. A
high-density threshold would focus excessively on the central commercial district at the
expense of the secondary commercial districts, but a low-density threshold would limit
the spatial extent of the central commercial district. Additionally, most existing studies are
based on regular grid statistics to synthesize multi-source data [10,13], which are easy to
collect, but separate from daily activity spaces. This separation increases the information
error in urban planning. For example, two areas with different functions may belong to the
same grid.

To address these questions, this study proposes a method for detecting UCDs by
combining POIs and population heat data at the block scale. Its main contributions are
as follows: (1) The combination of POIs and population heat data fused the functional
characteristics of blocks in human activity and physical spaces, which avoided spurious
UCDs as represented by a single data source. As there was a gap between commercial
facilities and commercial activities, some areas with a high density of unused commercial
facilities were identified as UCDs when only using POI data. (2) Considering that blocks
formed by road division are basic spatial units where people live [14], we conducted
our study based on the block scale; the features of adjacent blocks were weighted and
aggregated to smooth the occurrence of functional characteristics caused by irregular block
shapes. The extreme block size may affect the judgment of the blocks’ commercial function.
For example, a block with an area that is excessively small may present a localized high-
density commercial function characteristic, whereas a block with an area that is excessively
large may present a low density. This smoothing ensured the functional continuity of
the UCDs. (3) Region-growing algorithms were introduced to identify the boundaries of
UCDs by measuring the similarity of attributes between adjacent blocks. This adjacency
comparison allowed for different UCDs to grow individually; UCDs with different levels
of development and spatial extents could be detected. The results under different growth
threshold settings provided data support for the fuzzy boundary perception of UCDs.

The remainder of this article is organized as follows. Section 2 introduces related
studies and Section 3 describes the method proposed in this study. Section 4 presents the
specific study area and data. Section 5 analyzes and discusses the results. Section 6 presents
our conclusions and future work.

2. Related Work
2.1. Concept of Commercial Districts

Many concepts are related to urban commercial structures, such as central business
districts (CBDs), central activity zones (CAZs) [12], and UCDs. The CBD is derived from
the “concentric circle theory” proposed by Burgess [15]: land use in a city is a concentric
circle structure around the CBD. Proudfoot’s study [16] first analyzed commercial districts
in cities, where commercial districts no longer referred to the city center, but the gathering
districts of businesses. CBDs are distinguished by their size and function, typically having a
higher commercial function and larger size [2]. However, rapid economic development has
narrowed the gap between these two concepts, with more than 30 cities in China attempting
to establish CBDs in 2003 [17]. “CBD” has gradually become widely used to indicate the
gathering of business buildings, which is similar to the concept of the UCD, rather than
being confined to the city center [12]. Compared to these two concepts, a CAZ is more
functional, with the addition of leisure and sports [12]. It is an extension and renewal of
the CBD in response to the growing needs of residents. UCDs provide the more basic
components of the urban commercial structure and a basis for the development of CAZs.

2.2. Data Used for UCD Detection

Initially, scholars identified UCDs through field research or economic census, using
the experiential perceptions of residents and the physical environment to determine the
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commercial structure. For example, Lamb [18] conducted field research in 40 villages and
identified the components of their commercial structures. Lüscher and Weibel [8] examined
urban centers by collecting questionnaires from citizens. Ye et al. [19] compared the existing
situation with commercial planning through a survey of buildings in Changsha. Zhang [20]
used economic census data to analyze the distribution characteristics of commercial outlets
in Beijing. However, the economic census and field research requires significant manpower
and time, which hinders our understanding of commercial structures promptly. The rise
of geographical big data(such as commercial building areas and human activity data)
provides an opportunity to address this challenge. The area of commercial buildings [21],
the density of commercial facilities [22,23], and the density of origins and destinations for
floating vehicles [24] were used to characterize commercial districts. Geographical big data
provides more timely feedback on changes in urban space than questionnaire data and is
also more readily available, but these studies ignore the bias from the single source data.
For example, POI data can reflect the spatial distribution of urban facilities but it is difficult
to reflect dynamic attributes in real-time [25].

2.3. Geographical Units of UCD Detection

The spatial grid is usually established as the smallest unit for urban analysis, due to its
high regularity and easy delineation. He [26] evaluated the ecological health of land use and
its spatial differentiation pattern in Yibin City based on a kilometer grid. Hu [27] quantified
the functional areas of Guangzhou city at the scale of 250 m grid by POI data. Similarly,
the spatial grid is widely used for UCD detection. Chen [23] gridded the commercial
facilities in the urban space and then used the kernel density estimation method to identify
the agglomeration centers of commercial facilities. And the density of the starting and
ending points of the floating vehicles in the 500 m grid was used to identify the extent
of the commercial centers [24]. However, it is difficult to determine the right size of the
spatial grid. An overly large grid ignores the complexity of the city, while a grid that is too
small can lead to over-analysis [28]. And the rigid fragmentation of natural geographic
space by the regular grid is also inconsistent with the continuity of living space [29], which
may lead to the fragmentation of continuous commercial areas. Considering the close
connection between road networks and urban development [30], blocks surrounded by
roads are also often used as the basic unit of urban analysis, showing adaptive sizes with
the distribution of urban functions compared to a grid of fixed area sizes. For example,
Wang [31] identified block-scale commercial areas in Beijing by calculating the amount
of commercial activity, which ensures consistency in commercial distribution and traffic
structure. However, existing studies of block-scale urban commercial district analysis are
limited, which hinders the development of urban commercial facility planning.

2.4. UCD Detection Methods

UCDs are often identified by detecting the high concentration of commercial activi-
ties [7]. Murphy and Vance [21] proposed the Central Business Height Index (CBHI) and
Central Business Intensity Index (CBII) to delineate CBDs based on the building area of
commercial activities. The intensity of commercial facilities has been calculated by Carol
to identify CBDs [22]. Chen et al. [23] applied kernel density estimation and Getis–Ord
(Gi*) spatial statistics to identify retail gathering areas using POIs. However, detecting
the boundaries of these commercial areas is difficult owing to the functional ambiguity of
the boundaries [32]. Boundaries are essential to the planning of commercial areas because
they define the geospatial scope of policy implementation [12]. Thus, some studies have
proposed methods for identifying the boundaries of commercial districts. Wang et al. [11]
constructed a fuzzy affiliation function based on the point density of stores to determine the
affiliation between a location and commercial districts. A Standard Deviational Ellipse was
built into the high-value aggregation areas of check-in data to analyze the direction and
extent of commercial districts [33]. Convex hulls of POIs have also been built to identify
the scope of trade areas in Zhao’s research [34]. These methods provide references for



ISPRS Int. J. Geo-Inf. 2023, 12, 96 4 of 16

commercial district planning, but they are mostly based on a single data source, which
can be susceptible to bias. These methods identify boundaries by setting a global param-
eter threshold that ignores the diversity of commercial areas in the city. Specifically, the
intensity of commercial functions in each commercial area decreases from the center to the
edge according to the distance decay effect [35], but there are variations in the density of
commercial facilities at the edge of large and small commercial areas.

3. Study Area and Data
3.1. Study Area Description

Xiamen, an important port and scenic tourist city located on the southeast coast of
China, was one of the earliest areas in China to open to the world. In October 1980, the
State Council approved the establishment of the Xiamen Special Economic Zone (SEZ).
Since then, Xiamen’s economy has continued to grow; many commercial centers have
recently emerged. However, the unbalanced development of commercial space has become
increasingly prominent, such as the contradiction between the excess commercial space
on Xiamen Island and the shortage of commercial space outside Xiamen island [36,37].
Thus, we selected Xiamen as the study area to analyze the urban commercial structure. Our
results can offer more useful suggestions for urban commercial planning. Figure 1 shows a
map of Xiamen.
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3.2. Research Data

In this study, we collected the road network of Xiamen to construct the blocks. Blocks
are the basic form of urban organization in which people conduct their daily activities [38].
POIs and population heat data were collected to describe the commercial functions of the
blocks. Figure 2 shows all datasets.
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POIs record the spatial attribute information of a city, which is widely used to char-
acterize urban functions [39,40]. In this study, 244 764 POIs in Xiamen city in September
2020 were obtained using the Gaode Open Platform (lbs.amap.com). Each POI contains
attributes including name, address, coordinates, and category. However, there is a discrep-
ancy between the POI categories and those perceived by residents. According to [41], we
re-aggregated the commercial-related categories into POIs, resulting in 105,434 POIs to
characterize the commercial functions of regions.

Baidu Map Huiyan (https://huiyan.baidu.com/, accessed on 2 November 2020) is
a spatio-temporal big data service based on Baidu Map, which provides population heat
data, i.e., the positioning data generated when terminals using Baidu services call Baidu
location services, which can reflect the population activities and distribution in the region.
Population heat data in Xiamen City from 1–2 November 2020 were obtained from Baidu
Maps Huiyan (https://huiyan.baidu.com, accessed on 2 November 2020), which recorded
the number of people per 200 m2 per hour in Xiamen city.

Open Street Map (OSM) is an open-source platform that offers a variety of road
networks. We collected road networks in Xiamen from OSM, including primary roads,
secondary roads, tertiary roads, residential roads, and trunks. The primary, secondary,
tertiary, and residential roads were aggregated to build blocks, yielding 3641 blocks.

4. Methods

This paper proposes a method for identifying UCDs at the block scale. First, the
density of POIs and the population heat value of each block were calculated to describe the
commercial function intensity and human activity characteristics, respectively. Getis-Ord
Gi

* statistic was used to identify high-value clusters of POIs and population heat in urban
spaces as core commercial areas. Second, the commercial function and human activity
characteristics on adjacent blocks were aggregated by weighting to quantify the features of
the blocks. Finally, region-growing algorithms were introduced to identify the boundaries
of commercial districts. Figure 3 shows the workflow of this study.

https://huiyan.baidu.com/
https://huiyan.baidu.com


ISPRS Int. J. Geo-Inf. 2023, 12, 96 6 of 16
ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 3. Workflow of UCD detection. (Words in the gray background indicate the method applied 
for that step. The detected core commercial areas are shown in red. For each block, such as the or-
ange block in the figure, its adjacent blocks are used for weighting and are indicated by red arrows 
in the figure). 

4.1. Detecting Core Commercial Areas 
Core commercial areas usually have high human traffic and a high density of com-

mercial facilities [41], such that they are easily identified. We attempted to identify core 
commercial areas by detecting the clustering of commercial facilities and human traffic. 
The density of POIs related to the commercial facilities in the block was calculated to 
quantify the commercial function intensity of block i, denoted as 𝑥௜௣௢௜. Relevant studies 
have shown that there are two peak periods of human traffic in commercial areas: the 
peak work period, such as 9:00 am and 6:00 pm, and entertainment activities in commer-
cial districts from 8 to 10 pm [42,43]. Thus, we calculated the human traffic density in these 
two periods to indicate human activity characteristics, denoted as 𝑥௜௪௢௥௞ and 𝑥௜௖௢௠௠௘௥௖௜௔௟, 
respectively. 

The Getis-Ord Gi* statistic is a type of hotspot analysis method that has been widely 
used to identify spatial clusters with high or low values [44]. It identifies clusters by com-
paring the value of the block with that of adjacent blocks, as follows:  𝐺௜∗ = ∑ 𝑤௜௝𝑥௜ − 𝑋ത ∑ 𝑤௜௝௡௜ୀଵ௡௜ୀଵ

𝑠ඨ𝑛 ∑ 𝑤௜,௝ଶ − ൫∑ 𝑤௜,௝௡௜ୀଵ ൯ଶ௡௜ୀଵ 𝑛 − 1
, 

(1)

𝑋ത = ∑ 𝑥௜௡௜ୀଵ𝑛 , and (2)

𝑆 = ඨ∑ 𝑥௜ଶ௡௜ୀଵ𝑛 − ሺ𝑋തሻଶ, (3)

where 𝑥௜ represents the attributes of block i, including 𝑥௜௣௢௜, 𝑥௜௪௢௥௞, and 𝑥௜௖௢௠௠௘௥௖௜௔௟; 𝑤௜௝ 
denotes the weight between blocks i and j; and n indicates the number of blocks. When 

Figure 3. Workflow of UCD detection. (Words in the gray background indicate the method applied
for that step. The detected core commercial areas are shown in red. For each block, such as the orange
block in the figure, its adjacent blocks are used for weighting and are indicated by red arrows in
the figure).

4.1. Detecting Core Commercial Areas

Core commercial areas usually have high human traffic and a high density of com-
mercial facilities [41], such that they are easily identified. We attempted to identify core
commercial areas by detecting the clustering of commercial facilities and human traffic. The
density of POIs related to the commercial facilities in the block was calculated to quantify
the commercial function intensity of block i, denoted as xpoi

i . Relevant studies have shown
that there are two peak periods of human traffic in commercial areas: the peak work period,
such as 9:00 am and 6:00 pm, and entertainment activities in commercial districts from 8
to 10 pm [42,43]. Thus, we calculated the human traffic density in these two periods to
indicate human activity characteristics, denoted as xwork

i and xcommercial
i , respectively.

The Getis-Ord Gi
* statistic is a type of hotspot analysis method that has been widely

used to identify spatial clusters with high or low values [44]. It identifies clusters by
comparing the value of the block with that of adjacent blocks, as follows:

G∗i =
∑n

i=1 wijxi − X ∑n
i=1 wij

s

√
n ∑n

i=1 w2
i,j−(∑n

i=1 wi,j)
2

n−1

, (1)

X =
∑n

i=1 xi

n
, and (2)

S =

√
∑n

i=1 x2
i

n
−
(
X
)2, (3)
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where xi represents the attributes of block i, including xpoi
i , xwork

i , and xcommercial
i ; wij denotes

the weight between blocks i and j; and n indicates the number of blocks. When block i
is adjacent to block j, wij between them is equal to 1; otherwise, it is 0. Considering the
characteristics of the commercial district mentioned above, high-value aggregation regions
were detected from the distribution of these three attribute values. Overlay analysis was
then used to explore common aggregation regions for these three types of attributes as core
commercial areas.

4.2. Block Description Considering Adjacency and Distance Decay

The strength of an area’s commercial function may diminish as it moves away from
the core commercial areas [45], which determines ambiguity at the edges of UCDs, such
that it is difficult to identify boundaries. We must compare the functional similarity of
adjacent blocks when attempting to identify the boundaries of functional decay, i.e., the
boundaries of commercial districts. However, the attributes of individual blocks are often
affected by chance, such as a greenbelt in a commercial district that is functionally different
from its blocks but still belongs to that commercial district. To eliminate this possibility and
amplify differences between adjacent blocks, we aggregated adjacent blocks in a weighted
manner for feature construction. The spatial inverse distance weighting method was used
to determine the weights between the adjacent blocks. The proximity of neighborhoods
results in a stronger spatial influence. The aggregated commercial function of block i was
calculated as follows:

x
agpoi
i =

k

∑
j=1

xpoi
j wi,j and (4)

wi,j =

1√
(locxi−locx j)

2
+(locyi−locy j)

2

∑k
j=1

1√
(locxi−locx j)

2
+(locyi−locy j)

2

, (5)

where (loc_xi, loc_yi) represents the spatial coordinates of the center of mass location of
block i, wi,j indicates the weight between blocks i and j, and k indicates the number of
adjacent blocks of block i. Similarly, the human traffic attributes were aggregated as xagwork

i
and xagcommercial

i . These three attributes were concatenated as vector xi to describe block i:

xi =
(

x
agpoi
i , xagwork

i , xagcommercial
i

)T
(6)

4.3. Fuzzy Boundaries Detection of UCDs Supported by Region-Growing Algorithms

The region-growing algorithm is widely applied in the image processing field, which
attempts to identify an object by assembling pixels that satisfy the predefined growth
criterion [46,47]. This ensures spatial and attribute continuity of the identified objects.
Comparing our city as an image, the core commercial areas were set as the seed pixels;
the growth criterion was defined according to the adjusted cosine similarity [48] between
the two blocks. This is because the original cosine similarity focuses too much on the
directional consistency between the vectors and ignores the differences in the norm of the
vectors, which may conceal the differences between blocks:

simi,j =
(xi − x)·

(
xj − x

)
|xi − x|

∣∣xj − x
∣∣ and (7)

f I(j) =
{

1, i f simi,j > ε and i ∈ I
0, else

, (8)

where x indicates the average of the vectors of all blocks, ε indicates the growth threshold,
I indicates the set of known core commercial areas, and i refers to the block that belongs
to set I. Considering each core block detected in Section 3.1 as a seed neighborhood, the
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adjusted cosine similarity between the seed blocks and adjacent blocks was traversed.
Blocks satisfying the growth threshold were marked as UCDs and added to the sequence
of seed blocks for traversal until the region no longer grew. The growth results of all core
blocks were then overlaid to generate the final UCD detection results.

5. Results
5.1. Core Commercial Areas Identification and Verification

After overlaying the Getis-Ord Gi
* statistic analysis results from the POIs and popu-

lation heat data, 35 blocks were detected as core commercial areas, as shown in Figure 4.
Most occurred on Xiamen Island, reflecting its pillar position as an economic center and
unevenness in Xiamen’s economic development. The core commercial areas on Xiamen
Island mainly developed from the former old town, located around Zhongshan Road,
Hexiang West Road, and Xiamen Railway Station. Additionally, some new economic
development areas have been detected, including shopping areas centered around large
brick-and-mortar stores (e.g., METRO Mall and SM City Plaza) and government-planned
commercial districts (e.g., Huli Pedestrian Street). A few core commercial areas were also
detected outside Xiamen Island, but no large commercial entities were found around them,
indicating that there are initial commercial districts in these three districts: other types
of commercial districts are driven by daily basic business needs. However, no core com-
mercial areas were detected in the Tongan District, which may be related to its economic
development. According to the National Economic and Social Development Statistical
Bulletin of Xiamen [49], the gross domestic product (GDP) of Tongan reached 59.121 billion
yuan in 2020, which is lower than that of the other districts in Xiamen.
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Furthermore, to verify the correctness of the core commercial areas, we collected the
distribution of UCDs in Xiamen from previous studies. According to government reports,
such as ’City’s level to be upgraded again and cross-island development to be accelerated
again’ [50] and commercial reports, most of the well-known commercial districts in Xiamen
are located on Xiamen Island, concentrated in the southwest and central areas (Figure 5),
which is consistent with the results shown in Figure 4. Additionally, emerging commercial
districts outside Xiamen Island were identified in this study. These UCDs are usually
neglected by business reports due to their low economic development, but they carry out
major economic activities outside of the island and are an indispensable component in
urban planning.
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5.2. UCD Boundary Detection Results

Figure 6 plots the frequency distribution of the adjacency similarity to determine the
appropriate growth threshold. A significant turnaround in the frequency of similarity
occurred after 0.9 in Figure 6, indicating that several blocks showed a high degree of simi-
larity in commercial functions with their neighbors. With the turning point distinguishing
between commercial functionally continuous and fragmented areas, the growth threshold
was initially determined (>0.9).
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Four thresholds (from 0.92 to 0.98, with an interval of 0.02) were then set to detect
the boundaries of the commercial districts, as shown in Figure 7. The number of UCDs
detected increased as the threshold increased, with 5 UCDs detected at a growth threshold
of 0.92 and 13 UCDs detected at a growth threshold of 0.98. This revealed that the internal
composition of the UCDs may also be polycentric: a large commercial district may form via



ISPRS Int. J. Geo-Inf. 2023, 12, 96 10 of 16

the development of multiple smaller commercial districts connected from earlier periods.
For example, UCD_1 in Figure 7a can be regarded as a merger of UCD_1-1 and UCD_1-2 in
Figure 7b. This emphasizes the necessity for the pre-detection of core commercial areas in
UCDs because the distance decay around a single center cannot identify such polycentric
structures. The area of the UCDs decreased as the growth threshold increased. For example,
the area of UCD_2 shrunk by one-third when the threshold increased from 0.92 to 0.94; it
continued to shrink by one-half when the threshold increased from 0.94 to 0.96. Finally,
only a few coastal blocks were identified as UCD_2 when the threshold reached 0.98. This
shrinkage reveals the circled growth structure of urban commercial areas and provides a
reference for urban planning, where planners can effectively distinguish between areas
of commercial development and areas of commercial concentration. Differences in UCD
development were also found in the comparison of the effects of growth thresholds on
different commercial districts. For example, each growth threshold change affected the
spatial morphology of UCD_2, whereas UCD_3 changed its morphology considerably
only when the growth threshold was changed from 0.94 to 0.96. This suggests that the
government must consider the development stages of all UCDs in a balanced manner
when planning.
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The ambiguity of the boundaries of commercial districts stems from the heterogeneity
in their development and geographical conditions. The ambiguity of commercial district
boundaries was explored by combining the commercial district structures presented under
different growth thresholds and those recorded in previous studies. Generally, the economy
on Xiamen Island is more developed than outside of the island and has been developed
for a longer period; therefore, commercial districts within the island are extremely well
connected and are usually identified as large commercial districts at the scale of Xiamen
City. Zhongshan Road commercial district (UCD_1-1-5), located near Gulangyu Island (a
famous tourist attraction), is one of the most prosperous areas in Xiamen, whose commercial
value is determined by the tourist resources it benefits from. Therefore, Zhongshan Road
commercial district was separated from the island commercial districts when the growth
threshold was increased to 0.98. Similarly, the Metro shopping district (UCD_1-1-2) and
Huli pedestrian street commercial district (UCD_1-1-6) were also divided, both of which are
located at the edge of Xiamen Island and near communities and factories. The Hexiang West
commercial district, Xiamen Railway Station-Fushan commercial district, and Lianhua-SM
commercial district were identified as commercial districts (UCD_1-1-1) owing to their
compact transportation connections and proximity to the geometric center of Xiamen Island.
All of these UCDs gradually expand their spatial extent with a decrease in the growth
threshold, which is exactly what we perceived to be a fuzzy boundary. UCDs do not have
exact boundaries; depending on the growth thresholds, we can identify the circles of the
decreasing functionality of UCDs.

5.3. Comparison of UCDs Detection Results between Different Strategies

To validate the need for multisource data fusion, Figure 8 compares the results of the
hotspot analysis using single and multiple data. Many hotspot districts were detected based
on POIs rather than population heat data, thereby revealing their differences. Specifically,
some significant differences were labeled with numbers, including Spot_1, Spot_2, and
Spot_3. Spot_1 had a high concentration of POIs, but no clustered population traffic. By
reviewing local information and maps, there were no large commercial spaces where the
spatial distribution of commercial spaces was scattered, which may lead to a low volume of
people and prevent the formation of sizeable urban commercial districts. Similarly, Spot_2
was clustered in Figure 8a, but not clustered in Figure 8b. This is because dense POIs were
detected around the housing communities. Spot_3 was located on Guanyin Mountain, an
area recently developed and constructed by Xiamen, where important commercial facilities,
such as the International Convention and Exhibition Center, Tennis Center, and Yacht
Club, have been established. This already occurs in the commercial district reports, but its
development is not yet mature, especially when supporting small equipped commercial
facilities without a gathering of commercial POIs, which fail to attract residents. These
comparisons demonstrate that the integrated consideration of multiple data features can
effectively avoid the impact of biased data from a single data source on the identification of
urban core commercial areas.

Additionally, Figure 9 shows the results considering only the attributes of blocks in-
stead of adjacent blocks to validate the need for considering adjacent blocks. The frequency
distribution of similarity is plotted in Figure 10 to identify the range of growth thresholds.
A similar distribution, as shown in Figure 10, allowed us to set the same growth threshold.
Many UCDs with small areas were detected on Xiamen Island (Figure 9), indicating that
considering only the features of the block itself without adjacent features will result in the
fragmentation of the detection results; the continuity of the functional space cannot be well
portrayed. A high commercial density was not always uniformly present in UCDs owing
to the presence of vegetation and mixed commercial and residential areas, among others.
Growth thresholds can prematurely interrupt the growth of core commercial areas owing to
differences between blocks when only the characteristics of the block itself are considered.
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6. Discussion

The perception of UCD spatial structure provides fine details for urban commercial
development planning. Firstly, the results of core commercial areas detection reveal the
planar pattern of commercial distribution in Xiamen. The southwestern part of Xiamen
Island is still an important commercial center area, which is consistent with the study of
Chen [55] and Huang [56]. The spatial pattern of the commercial areas along the periphery
is different from that of other cities with a circular commercial distribution that decreases
from the center outward, such as Kraków [57] and Nanjing [58]. It may relate to the urban
characteristics of Xiamen, where tourism is an important industry. Famous attractions such
as Gulangyu Island and Nanputuo Temple are located in the southwestern part of Xiamen
Island, which attracts a large number of commercial resources. In addition, the emergence
of core commercial areas outside the island indicates that the imbalance in commercial
distribution, with excess resources on the island and insufficient resources outside the
island [59], is gradually improving. Secondly, the spatial extent of each UCD is quantified
through the regional growth strategy with multiple growth thresholds, which provides a
solution to recognize the ambiguity of geographical entities. The fuzziness of a geographic
entity is reflected in the fact that its boundary may not be a clear line demarcation but a
two-dimensional transition region [60]. The geospatial extent of the same UCD presented
at different growth thresholds simulates the hierarchical nature of human perception in
the spatial extent of geographic entities, and the two-dimensional transition region was
revealed in this way. Thirdly, the joint relationships between UCDs were revealed, which
facilitates the government to promote cooperation and win-win among UCDs. Several
small UCDs can be jointly considered as one large UCD due to their spatial proximity
and close communication, and similar results occur with different bandwidths of kernel
density estimates [7].

In addition, multi-source data fusion provides methodological support for the accurate
identification of UCDs. Point-of-interest data has demonstrated great value in providing
information on the distribution of UCDs in cities, but the dynamic information it can
reveal is limited [25]. Similarly, while population heat data provides information on
the dynamic dynamics of urban space, it lacks information on functional attributes [61].
In commercially prosperous areas, such as Xiamen Island in Figure 8, the distribution
of commercial areas and the distribution of population heat data largely match, which
is consistent with the findings of Huang [56]. However, the distribution of population
heat data and point-of-interest data outside Xiamen Island(in Figure 8) shows significant
differences, indicating that the degree of construction and population vitality are not
synchronized in the initial stage of commercial areas, and a single data source cannot reflect
their real commercial intensity.
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Although our approach is effective for detecting UCDs, experimental analysis has
identified some limitations that must be addressed in future studies. First, commercial areas
may exhibit functional differences depending on how they form and their geographical
location. Their functional semantics must be further understood for urban planning
purposes. Second, our results may be limited by the accuracy of the population heat
data; more data must be collected to compensate for errors caused by data serendipity.
Thirdly, more ground truth data such as survey data need to be collected to quantify and
compare our results.

7. Conclusions

Given that the detection of UCDs is affected by bias from a single data source and
boundary ambiguity, this study proposed a new framework for discovering UCDs by
fusing POI data and population heat data with adjusted cosine similarity and region
growth algorithms. The results at different growth thresholds revealed the inconsistent
development and uneven spatial distribution of UCDs. The connection between commercial
districts was also revealed by the split-merger relationship under different thresholds. Most
UCDs in Xiamen are concentrated on Xiamen Island. The development of UCDs on the
island is relatively stable, i.e., different growth thresholds have less of an impact on their
scope. This finding suggests that the government should focus more on the development
of off-island commercial districts. Additionally, the comparison between UCD detection
without considering adjacent blocks and using only a single data source validated the
effectiveness of the strategy proposed in this study.
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