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Abstract: Java’s Brantas River Basin (BRB) is an increasingly urbanized tropical watershed with
significant economic and ecological importance; yet knowledge of its land-use changes dynamics and
drivers as well as their importance have barely been explored. This is the case for many other tropical
watersheds in Java, Indonesia and beyond. This study of the BRB (1) quantifies the land-use changes
in the period 1995–2015, (2) determines the patterns of land-use changes during 1995–2015, and
(3) identifies the potential drivers of land-use changes during 1995–2015. Findings show that from
1995 to 2015, major transitions from forest to shrubs (218 km2), forest to dryland agriculture (512 km2),
and from agriculture to urban areas (1484 km2) were observed in the BRB. Responses from land-user
questionnaires suggest that drivers include a wide range of economic, social, technological, and
biophysical attributes. An agreement matrix provided insight about consistency and inconsistency in
the drivers inferred from the Land Change Modeler and those inferred from questionnaires. Factors
that contributed to inconsistencies include the limited representation of local land-use features in the
spatial data sets and comprehensiveness of land-user questionnaires. Together the two approaches
signify the heterogeneity and scale-dependence of the land-use change process.

Keywords: land-use; Brantas River Basin; tropical watershed; spatial trends; potential spatial drivers;
perceived drivers; land-users

1. Introduction

Land-use is widely considered as a primary parameter of environmental change from
local to global scales and is increasingly included in environmental change assessments [1,2].
Changes in land-uses may impact upon hydrology [3], biodiversity, water saving mea-
sures [4], and disaster risk [5]. Rapid land-use changes have often been associated with
uncontrollable urban growth [6], farm loss [7], and deforestation [8].

The triggers or factors that lead to land-use changes or influence the process of land-
use change are commonly termed “drivers” [9]. Studies show a broad range of drivers [10],
which can be broadly categorized into biophysical factors (e.g., climate, soil, and terrain) and
anthropogenic factors (e.g., population, technology, policy, culture, and economy) [11–15].
These drivers may be direct, such as a growing population [16] and increasing market
prices [17]. Some others can be more complex, such as institutional and cultural settings [18].
It is widely accepted that changes, planned or not, are principally the consequence of human
decisions [19]. Anthropogenic factors usually exhibit a more immediate impact than natural
factors [14]. Studies show that drivers might interact with each other [20], and operate on
differing scales, namely institutional, temporal, and spatial scales [9].

Information on land-use changes and their associated drivers is important for under-
standing the likely condition of future land-use and outlining land management strate-
gies [21,22]. Relationships among drivers can be complex, and therefore it may be difficult
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to identify and quantify the primary drivers operating in a particular landscape [23]. Ap-
proaches to quantifying the relationship between drivers and land-use changes include
economic modeling, systems theory, and spatial modeling [9,14,24–26]. Some studies
employ qualitative household-level surveys to understand what triggers land-use con-
version [12,27,28]. While spatial modeling can provide insight about spatial variability
of drivers at a regional scale, surveys can provide information about drivers at a land-
user or household or local scale [14]. However, most studies have employed only one
approach—either quantitative modeling or qualitative surveys [7,29–32].

Land-use change studies are commonly carried out at a watershed level due to the
pivotal role of watershed land-use dynamics in water resource policy and planning. Such
studies support understanding of how land-use change and its interaction with climate
influence the watershed’s hydrological functioning [33,34]. This is exemplified by sev-
eral studies, such as those on the impact of climatic variability and land-uses on water
resources [35,36], and the impact of increasing urban sprawl on water quality [37,38]. From
an Indonesian context, urban sprawl has been considered a major factor in land-use change
due to rapid population growth and it brings multiple consequences from ecological to
socio–economic, which in turn affect the sustainability of the region and become a major
consideration in land-use policy making [39].

Indonesia is a primary example of a tropical nation that continues to undergo rapid
land-use changes marked with high extents of forest loss (0.31–0.69 Mha in 2000–2010) [40],
massive urbanization [7], and associated environmental problems such as groundwater
springs drying up [41]. Yet, research to support comprehensive understanding of land-use
change in Indonesia and its impacts has been limited, scattered, inconsistent, and mostly
focused on forest assessment studies outside Java. Relevant research has been conducted
on the influence of population in shaping Java’s land-uses [26], the role of policy in shaping
Indonesian land-use [42], and quantification of forest loss in Sumatra [8]. However, research
providing insight into the dynamics of land-use change, patterns, and drivers over different
scales is lacking, especially in Java.

The period from 1995 to 2015 is marked by socio–economic and political reforms in
major Indonesian sectors such as agriculture and economy and governance [43–47]. In
particular, during 2004–2005 Indonesia underwent a major administrative power shift
through the implementation of local autonomy, providing more authority for regional
level decision making, and also saw the introduction of a new long-term development
policy in East Java [48]. Many studies suggested that this new policy led to elevated
deforestation, intensified urbanization, and agricultural decline [48–52]. The mid-point of
this period, 2004–2005, was also considered globally as the turning point of global surface
transition [52]. Similar results from local perspectives support this finding. During this
period, intensified urbanization from agricultural conversion has been observed in China,
resulting in consideration for ecological sustainability assessment [51,52]. Similarly, in
Indonesia, the period 1995–2015 was marked by a major shift in deforestation for palm
plantation [53], massive urban sprawl [39], and deterioration in watershed [54]. Land-use
changes have also been linked to the climate change in this period. In Nepal, changes
in climatic variability, despite insignificant, in this period have been observed that were
considered partially due to changes in land-uses [55]. Massive landscape transformation as
well as its global implications then apparently stimulated the necessity of land-use change
studies [56].

This research was carried out to investigate land-use change drivers in the Brantas
River Basin (BRB), a large tropical watershed in the island of Java, Indonesia. The BRB can
be regarded as a typical tropical developing country watershed in the sense that land-use
change is rapid due to varying factors related to the growing population and economic de-
velopment [42]. While rapid socio–economic and ecological dynamics have been observed
in BRB [41,57,58], empirical evidence on the type, patterns, and drivers of these dynamics is
limited. This study therefore aims to contribute to understanding of inter-decadal land-use
dynamics, patterns, and drivers in tropical and developing countries. As opposed to most
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land-use change studies, our study combines geospatial regional scale modeling with
local-scale questionnaires [7,29–32]. Using the two complementary approaches aims to
allow a high degree of confidence in identifying principal land-use drivers. The study
specifically aims to (1) quantify the land-use changes in BRB, (2) determine the patterns of
land-use change in BRB, and (3) identify the potential drivers of land-use changes in BRB
during 1995–2015 using two approaches: geospatial modeling and questionnaires.

2. Materials and Methods
2.1. Study Area

The BRB, with an area of 11,832 km2, covers approximately 30% of the province of
East Java (Figure 1). The basin (“basin” is the term typically used for a large watershed
in Indonesia and so is adopted in this paper) is home to two major cities and 13 regencies.
These 15 administrative boundaries have their own statistics with scattered data coverage.
Most areas have their data starting from 2005, and 2005–2017 is the longest period where
the 15 areas have the common and full coverage to district population level. The population
grew from around 21 million in 2005 to 22.5 million in 2017, accounting for 54% of East
Java’s population and 7.5% of Indonesia’s population. The information of population
presented here is to provide an overview of the demography of Brantas watershed.
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Seven mountains create large topographical variability. Elevation ranges from sea-
level to 3663 m above sea-level. Geology is heterogeneous, shaped by alluvial processes,
lahar deposition, volcanic formation, and tuff depositions. The BRB exhibits a typical
tropical monsoon climate with two distinct seasons: a dry season (April–October) and
a wet season (November–March) [59]. Recorded long-term annual rainfall (1995–2015)
ranges from an average of 2000 mm/year to nearly 3000 mm/year at high altitudes.

The BRB represents a mixed rural and urban society, with potentially competing land-
uses. Growing urbanization and industrialization have led to encroachment on remaining
forests, especially in the upper basin. Due to this, the ecosystem functions of the upper BRB
have been considered poor for at least two decades [60] and there is an increasing number
of environmental reports particularly related to the increasing challenges of drought, floods,
eutrophication, water pollution, and sedimentation [41].

2.2. Land-Use Mapping Using Remote Sensing

The research approach is presented in Figure 2. The BRB spans four Landsat scenes
each with 30 m resolution (Path:118/65–66 and Path:119/65–66). There are several con-
siderations for the selection of Landsat images: the long coverage, richness in spectral
variety [61,62], and suitability for mapping complex landscapes [63,64]. The years 1995,
2005, and 2015 were selected due to the quality of images during these years, the turning
points of ecological and political conditions, and because the increasing environmental
issues associated with land-use have increased since the 1990s [41,65]. The already georef-
erenced and atmospherically corrected surface reflectance products from NASA [66] were
used to minimize atmospheric effect variations, which is especially important due to the
use of multi-temporal and multi-tiled images [65–68]. To overcome difficulties in creating
mosaics, we utilized a Google Earth Engine (GEE)-aided platform from Climate Engine [69].
We removed the clouds and shadowed pixels from analysis using the QA band in GEE
and we utilized all available images after the cloud and shadow removal. For example,
for 1995, we retrieved all images available from 1 January to 31 December 1995, and then
applied the cloud and shadow removal. In each year we had 23 scenes for each path/row.
We derived average images from all spectral bands of Landsat-7 for 1995 and 2005, and
from Landsat-8 for 2015. The average image was selected instead of the median image
because: (1) throughout the years of 1995, 2005, and 2015, there were no perceived extreme
climatic events that might cause large differences in the reflectance of the objects, and the
presence of outliers is negligible, (2) similarity in median and mean image histograms, and
(3) deriving the median image is more computationally heavy [70]. Screening resulted in 16
to 24 images per year. The generated seamless mosaics showed no visual signs of anomalies.
Although analysis of phenology may be used to derive land-use maps [67], in this case we
did not have the data to apply this approach or to validate phenology parameters before
generating phenology-based land-use maps.

We adopted the land-use classification scheme from Indonesia’s Ministry of Forestry [49].
The 13 land-uses classes pertaining to the BRB landscape were simplified into 11 classes as spec-
ified in Table 1. The decision to adopt this approach was for several reasons: (1) BRB covers
15 administrative boundaries making it suitable for a study at a regional scale with medium
resolution dataset, (2) The objective of the study was to examine the role of general land-use
classes without specifying the stages of the vegetation. The primary and secondary vegetation
classes do not exhibit distinct differences in hydrological responses and are relatively similar
under the medium resolution images. Regrouping the 13 classes into 11 classes (merging two
forest classes and two mangrove classes) allows a synoptic view of the landscape condition
pertaining to forest and mangrove general conditions and their roles to water resources and
watershed management as well as policy making at a regional level.
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Table 1. Land-use classification scheme (adapted from Indonesia Ministry of Forestry, 2021).

No Land-Use or Open
Water Class Description Combined Land-Use

Class and Code

1 Water body Open waters, including sea, rivers,
lakes, reservoirs.

1. Water (WTR)

2 Primary dryland forest

Natural forests, which are grown and
developed naturally, are stable, have
never been exploited, and are free from
waterlogging throughout the year.

2. Dryland forest (DRF)

3 Secondary dryland forest

Natural forests that have been grown
following disturbance, have been
exploited, with evidence of roads,
remnants of burning and
cutting/clearing, or that grow on
degraded lands.

4 Primary mangrove forest
Mangrove forest that is spread along the
coastal areas and tidal influenced
estuaries without signs of cutting.

3. Mangrove forest (MGF)

5 Secondary
mangrove forest

Mangrove forest that is spread along the
coastal areas and tidal influenced
estuaries with signs of cutting
and burning.

6 Planted forest
(industrial/estate forest)

Planted forests built to increase the
potential and quality of production
forests (already planted), including
plantation reforestation and
industrial plantations.

4. Planted forest (IDF)
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Table 1. Cont.

No Land-Use or Open
Water Class Description Combined Land-Use

Class and Code

7 Dry land farming Agricultural activities on dry lands such
as moors and fields.

5. Dryland agriculture (DRA)

8 Mixed dry land farming
Agricultural activities of dry land and
gardens alternating with shrubs
and bushes.

6. Mixed dryland
agriculture (MDA)

9 Settlements, buildings

Land used for settlements, including
urban, rural, industrial, public facilities,
showing clear evidence of
settlement/buildings.

7. Settlement and
built-up (BUA)

10 Open field

Open land without vegetation (rock
outcrop mountaintop, snowy peak,
volcanic crater, sandbanks, beach sand,
river deposits).

8. Bare land/sand (BRL)

11 Shrubs and bushes
Parts of Regrown Dryland Forest with
few natural trees, dominated by
short vegetation.

9. Shrubs and bushes (SHB)

12 Rice field Overlay land for agricultural activities
characterized by a bunding pattern.

10. Rice-field (RCF)

13 Ponds

Land for terrestrial fishing activities
(fish/shrimp) or salt farming, which is
characterized by a pattern, and usually
flooded and located around the beach.

11. Ponds (PND)

We then performed object-based image analysis (OBIA) to map land-use using eCog-
nition™ software version 9.0 [71]. The OBIA and ruleset classifier were adopted based on
several considerations: (1) it can better handle the issues of pixel-based mapping in that it
can represent the complexity of shape, pattern, texture, context, and knowledge, which all
are usually required to better define the land-use classes [72], (2) it reduces the salt-pepper
effect due to spectral variations, (3) the use of ruleset and expert knowledge is useful in
dealing with spectral limitations [73,74] and often results in a higher accuracy [75]. One
drawback of the OBIA approach is the heavy computation and potential error propagation
due poor segmentation [75,76]. There are no agreed rules in the segmentation and numer-
ous studies applied shape and compactness scales on the basis of visual appearances of the
segmented objects [77–79]. The segmentation parameters (shape and compactness) were
reviewed in the current work by testing the values with 0.1 increments, finally choosing
values of 0.2 and 0.7, respectively, that produced the visually most satisfactory delineation
of objects while allowing OBIA to run relatively quickly. Association of land-use distri-
bution and ecological factors were examined to help determine the hierarchical ruleset to
classify objects [80]. The ruleset approach incorporated spectral and non-spectral features
of an object such as elevation, distance, texture homogeneity, shapes, lengths, and width
of objects, which is useful for mapping objects with similar spectral features [81]. In the
OBIA-ruleset, we considered frequently used spectral indices in land-use mapping such as
normalized difference vegetation index (NDVI) and normalized difference built-up index
(NDBI), as well as non-spectral indices such as grey level co-occurrence matrix (GLCM)
homogeneity and texture [81–83]. The threshold values used to separate objects were
obtained from trials on a series of samples of objects with known land-use classes based on
ground surveys, aerial photos, and Google Street View images. This approach reduces the
possibility of misclassification that can arise from random sampling [84]. The thresholds
were calculated from average values and visual optimization for the land-use class differen-
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tiation. We acknowledge this approach introduces subjectivity to the ruleset; however, it is
helpful in achieving computational efficiency by skipping complex non-linear optimization
approaches.

In total, 52 aerial photographs were used to validate the 1995 map (823-point samples).
For the 2005 and the 2015 maps, ground survey notes, Google Street View images and
Google Earth (1776 points) were used. The maps were overlain with a 1 km × 1 km grid and
the grid centroids were used as the sampling locations. Around each sampling location, a
30 m × 30 m square mimicking the Landsat resolution was generated, and observation was
performed within this boundary. In cases where ground survey data validation data were
not available in that rectangle, for example due to access constraints, but were available
nearby in the same grid square, the sampling location was moved to the nearest point
that provided ground survey data. Two validators were used. For assessing the accuracy
of the maps, we used a contingency table [85]. A map with kappa accuracy above 80%
was regarded as acceptable for use in land-use change modeling [31]. A pixel-based post-
classification change detection was selected [86–88]. To minimize the presence of spurious
change (1) radiometric correction and co-registration was applied before classification [89],
(2) an OBIA approach was used to reduce the salt-pepper effect, contributing to avoidance
of spurious changes [69], and (3) ancillary data and expert knowledge were used to check
and, where necessary, modify the generated maps [83,84]. The spurious changes that could
not be avoided were accepted as part of the associated errors of the maps.

2.3. Potential Land-Use Drivers from Spatial Modeling

The Terrset Land Change Modeler (LCM) was selected to model spatial drivers of
land-use change. This platform has been widely applied in varying landscapes such as
African grasslands [24] and Southeast Asian green space [31]. LCM quantifies the spatial
drivers through change analysis, pattern analysis, calculation of change probability and
performance reporting. Change analysis is conducted by overlaying two post-classification
maps in LCM [13,90]. LCM is also equipped with a built-in module to examine spatial
trends of changes. The pattern of change was modelled using a third order polynomial due
to its suitability for mapping the changing patterns [91].

According to Eastman (2016) [91], the spatial pattern (also termed as trend of land-use
change in LCM), was developed using a trend surface analysis (TSA) where polynomial
equations for changes were calculated and interpolated. The generic equation fitted by
LCM’s TREND module is

Z(U, V) = α00 + α10. U + α01. V+α20. U2+α11.U. V+ . . . + αpq. Up. Vqp (1)

where Z is the distributed variable, in this case is the transition between two selected land-
uses, α terms are the polynomial coefficients, and U and V are the locational coordinates.
The TSA surfaces were then calculated by coding the pixels of a specific transition as 1 and
pixels of no change as 0 and treating the values as if they were continuous values to which
the surface Z is fitted [91,92]. The values of Z generated have no special significance but
allow the degree and direction of transition trends to be mapped and can identify the hot
spots of land-use changes [91,93]. Higher positive values of Z indicate areas with more
transitions, lower negative values imply areas dominated by the opposite transition, while
zero values indicate areas with no or few transitions [94–97].

In this study, our primary concerns are the biophysical and socio–economic drivers of
land-use. Factors regarding land ownership and legal status might play roles in influencing
the land-use dynamics. However, such data are unavailable in the BRB. We acknowledge
this as one limitation in this modeling. In addition, recent observations show that there
has been substantial agricultural occupation of national parks such as in Bromo Tengger
Semeru national park and Taman Hutan Raya Suryo. This violation to the official land
status implies the inability or inefficiency of land zoning plans in governing the land-use
dynamics in the BRB. We generated 33 candidate spatial biophysical and economic drivers
based on our best understanding of local and regional conditions, literature on Java and
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other relevant landscapes [7,32,98–100], suitability, data availability and accessibility for
research use. The candidate spatial drivers were generated from varying rasterized datasets
such as elevation, roads, rivers, zonation plans, and digital climatic variables. To avoid
correlated inputs and help interpret results, principal component analysis (PCA) [97] was
used. The PCA results in the loading factors of each variable or driver. The drivers selected
were all variables having high loading factors (>0.55 or <−0.55) in the PC and number of
PCs included was that >90% of the variance was explained (Table 2).

Table 2. Twelve selected land-use change drivers from PCA analysis.

No Driver Definition Data Source and Processing

1 DTR Distance to national, provincial, and main city
road networks

Vector road layer scale 1: 50,000 (Indonesian
Geospatial Agency). Rasterized to 30 m grid in
ArcMap. Calculated using Euclidean distance

2 RFL Long term rainfall (1995–2015)
498 Rain stations in BRB (Indonesia’s

Meteorology and Climate Agency). Rasterized to
30 m grid using IDW interpolator

3 DTC Distance to city center
Distance analysis in 30 m grid using ArcMap.

City center was defined using centroid from city
boundary shapefile

4 ELV Elevation/altitude (in m). Height from sea level. USGS ASTER DEM 30 m

5 SLP Slope of terrain (in degree) USGS ASTER DEM 30 m. Processed from
ASTER DEM using surface analysis in ArcMap

6 DTD Distance to area designated as a high risk of
disaster zone (volcanic hazards) *

East Java Province Spatial Planning (RTRW,
2011). Rasterized to 30 m grid in ArcMap.

Calculated using Euclidean distance

7 DRD Distance to regional development zone *

8 DEA

Distance to economic zone A (designated areas
for development centers for technology and
industry as well as priority economy sector with
local resource optimization) *

9 DEB
Distance to economic zone B (designated areas
for centers or “Agropolitan” and “Agroindustri”
in East Java) *

10 DAA Distance to area designated as an annual
agriculture development zone *

11 DTC Distance to area designated as a forest protection
and conservation zone *

12 DTT Distance to area designated as a hardwood/tree
development zone *

* Refers to regional spatial planning policy of East Java Province [101].

LCM has the ability to quantify the relationship between a set of spatial explanatory
drivers and a particular land-use transition type. In this study, land-use transition types
were not grouped into “sub-models”. LCM determined primary land-use change transitions
by excluding those with extents less than 0.5% of the total area. Then, LCM used a multi-
layer perceptron (MLP)—an extended artificial neural network, non-parametric approach
to model the specified transition type [102]. The relative contribution of a driver to the
R2 value defines its importance to the transition type. The overall importance of a driver
was measured by summing its importance rank over all land-use transition types.

2.4. Potential Land-Use Drivers from Questionnaires

Questionnaires were distributed to two groups of land-users covering agricultural
land-users (farmers) and urban land-users (housing residents) during fieldwork in De-
cember 2018–March 2019. The questionnaires were distributed in 10 of the 13 cities, each
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of which provided 20–40 land users/respondents (total N = 280). The questionnaire was
close-ended in the form of multiple choices. The drivers covered in the questionnaires
were based on relevant published literature [7,32,98–100] and are listed in Appendix A.
Questionnaire forms explored the land-users’ points of view about land-use change; and
represented local features as opposed to the broader-scale biophysical environment, and
therefore cannot account for the interaction of variables over space [100]. The relative
importance of a variable of driver group was measured as the proportion of responses
identifying the particular variable as important. In this context, we used a qualitative
approach to quantify the importance for the household-level responses. We considered the
degree of dominance as a measure of a variable’s importance. Whenever the percentage
of response for each variable exceeded or was equal to the threshold, we listed this as a
perceived driver. The threshold was quantified as 100% divided by the number of vari-
ables within a driver group (set to 50% for a driver group with only 1 variable). On the
other hand, the relative importance of a spatial driver (driver used in LCM), was assessed
using the relative reduction of R2 when a variable was excluded. All variables showing
no or negligible R2 reduction were considered relatively less important. To evaluate the
agreement between LCM-selected drivers and land-user-perceived drivers, an agreement
matrix adapted from [14,77] was used (Table 3).

Table 3. Classes of agreement of a driver in geospatial and land-users approach.

Level of Agreement Ranked as Important
in LCM

Perceived as Important
in Questionnaire

High Yes Yes
Low Yes No
Low No Yes

3. Results
3.1. Land-Use Change Quantification

The land-use maps produced for 1995, 2005 and 2015 were considered good with
overall accuracy higher than 80% when it was aggregated over the 11 land-use classes
(81.7%, 76.9%, and 81.2%, respectively). The relatively low-class accuracy values for sand,
and shrubs (average: 78.4, 77.8, see Appendix B) may be attributed to the large variability
of plant types and compositions in shrubs and bushes. We combined dryland forest classes
(2 and 3 in Table 1) and dryland agriculture classes (7 and 8 in Table 1) into only dryland
forest and dryland agriculture. This led to increased overall kappa accuracies of 87.3%,
83.1%, and 83.0% for 1995, 2005, and 2015, respectively.

Figure 3 portrays the land-use in the BRB in 1995, 2005, and 2015 (detailed information
is in Appendix C). Over the study period, in 1995 the BRB was clearly dominated by
agricultural land-uses (dryland farming and rice-fields), accounting for 77% of the total
area, which declined to 68% in 2015 (Figure 4A). A decline was also observed in most other
land-use classes, with varying rates (Figure 4B). Dryland forest showed the largest decline
rates followed by rice-fields. Built-up areas almost tripled in extent from 1995 to 2015
(7.1% to 19.9%). Shrub and bush coverage increased by 1.5% from 1995 to 2015. Forest loss
was higher in the period 1995–2005 and slowed down in the period 2005–2015. As opposed
to this, rice-field and dryland agricultural losses were higher in the period 2005–2015. Over
these two decades, around 29% of the BRB landscape changed.
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The land-use changes in the BRB vary among cities (Figure 5). Urban expansion and
agricultural decline occurred in all cities. The increases in built-up area ranged from 10% to
35%. A lower degree of urbanization (less than 15%) generally occurred in bigger cities
than in smaller cities where agricultural land-uses are more evident. This might indicate
bigger cities experience urban verticalization (leading to increasing population density
without proportional increases in land-coverage).
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Figure 5. City-wise changes in land-use during 1995–2015. The black line is the change relative to the
city’s size (%), and the bars are the magnitude of changes (km2). The cities are ordered based on their size.

Post-classification change analysis allows us to examine types of transition as well as
the extents. Figure 6 shows that over the two periods the ten largest land-use transitions
were relatively consistent. In the period 1995–2005, 413 km2 of forest was converted
to dryland agriculture. This extent dropped considerably in 2005–2015. Deforestation
(including all land-use transitions from forest) and urbanization (all transitions to built-up
areas) remain the largest transitions. Compared to rice-fields, dryland agriculture served
as a bigger contributor to built-up areas. The most tangible transitions (>100 km2) are
deforestation leading to shrubs and dryland agriculture, urbanization from rice-field and
dryland farming loss, and the exchange from dryland farming to rice-fields and vice versa.
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Figure 6. Primary land-use transitions and their magnitude (in km2) for period (A) 1995–2005,
(B) 2005–2015, DRF: dryland forest, DRA: dryland agriculture, SHB: shrubs/bushes, RCF: rice-fields,
BUA: built-up areas.
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3.2. Land-Use Transition Spatial Patterns (Trend of Changes)

Figure 7 provides the spatial patterns of four major land-use transitions generated from
the LCM in the periods 1995–2005 and 2005–2015. Figure 7 shows that the patterns of land-
use transition were visually similar between the two periods, suggesting that the drivers
of land-use changes did not change much. It is evident from comparing Figure 1 with
Figure 7A,B,E,F that the hotspots of forest conversion are associated with mountain regions.
Considering the values from the TSA raster, the period 1995–2005 showed intense deforestation
in the Arjuno-Kelud, Ngliman, and Bromo-Semeru mountain complexes. This was indicated
by the concentration of high positive values of Z (Equation (1)) up to 0.130 (yellow to red).
In 2005–2015, forest loss lessened as shown by the lowering positive values (maximum
positive values 0.081) and was mostly found in Arjuno-Kelud. The transition from dryland to
shrubs/bushes was also focused on mountain regions. Given the important role of dryland
forests as tropical biodiversity hotspots, the results in Figures 5–7 support the need for further
investigations into changing biodiversity patterns in the region [78].

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 15 of 31 
 

 

 

Figure 7. Spatial patterns of deforestation and urbanization for 1995–2005 (A–D) and 2005–2015 (E–

H). 

Spatial trends in land-use transition suggest that urbanization did not occur uni-

formly across the BRB. It was evident that maximum positive values of Z in the second 

period increased from 0.083 to 0.098 for RCF to BUA and DRA to BUA, respectively. Spa-

tially, the conversion of rice-fields to built-up areas was dominant in the northern part of 

the BRB, while dryland agricultural conversion was more intense in the middle and south-

ern parts. While higher altitude areas exhibited forest loss, the lowland regions exhibited 

intense urbanization at the expense of rice-field and dryland farming. Urbanization of 

rice-field areas dominated in the northern lowlands, likely due to the industrialization of 

northern lowland cities, which has been evident over the last two decades due to govern-

ment development policy. Urbanization of dryland farming areas was more evident in the 

middle to south-west BRB. 

Figure 7. Spatial patterns of deforestation and urbanization for 1995–2005 (A–D) and 2005–2015 (E–H).

Spatial trends in land-use transition suggest that urbanization did not occur uniformly
across the BRB. It was evident that maximum positive values of Z in the second period
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increased from 0.083 to 0.098 for RCF to BUA and DRA to BUA, respectively. Spatially, the
conversion of rice-fields to built-up areas was dominant in the northern part of the BRB,
while dryland agricultural conversion was more intense in the middle and southern parts.
While higher altitude areas exhibited forest loss, the lowland regions exhibited intense
urbanization at the expense of rice-field and dryland farming. Urbanization of rice-field
areas dominated in the northern lowlands, likely due to the industrialization of northern
lowland cities, which has been evident over the last two decades due to government
development policy. Urbanization of dryland farming areas was more evident in the
middle to south-west BRB.

3.3. Potential Land-Use Drivers from Land Change Modeler

Table 4 lists LCM’s performance in modeling the major transitions, and the importance
ranks of the tested drivers. Overall, the model performances were good (higher than 0.8)
for afforestation and deforestation processes. Urbanization from rice-fields was modeled
with lower accuracy (0.64) compared to urbanization from dryland (0.8). This infers that
this process of urbanization is relatively complex. This transition (RCF to BUA) might also
be introduced by the lower accuracy land-use maps for rice-field class (average land-use
class accuracies: 80.50–83.70, Appendix B).

Table 4. Relative importance of each driver for each land-use transition and model performance in
explaining transitions.

Variable

Land-Use Transitions Driver’s
Total

Score *
Rank

DRF DRF DRA DRA DRA DRA RCF RCF SHB SHB
Converted to

DRA SHB RCF DRF BUA SHB DRA BUA DRA DRF

Explanatory
variable
(driver)

DTR 4 2 5 4 1 4 2 2 2 2 28
RFL 10 5 12 10 11 11 12 8 12 6 97
DTC 9 11 6 6 6 7 11 3 5 4 68
ELV 3 1 1 3 2 2 3 10 1 1 27
SLP 11 9 11 11 3 8 8 9 11 11 92
DTD 12 12 9 1 12 6 7 7 8 12 86
DRD 5 3 3 5 5 1 1 5 3 3 34
DEA 1 4 2 2 4 5 4 1 9 5 37
DEB 2 8 8 7 9 3 10 4 7 10 68
DAA 6 10 7 8 8 9 6 11 10 7 82
DTC 7 7 4 9 7 10 9 12 4 9 78
DTT 8 6 10 12 10 12 5 6 6 8 83

Accuracy rate 0.80 0.72 0.81 0.88 0.80 0.88 0.68 0.64 0.91 0.71

* Drivers with lower scores signify more important drivers.

We acknowledge that errors could propagate from the land-use mapping to the land-
use driver analysis. The lower performances of the land-use transition model were generally
related to transitions involving rice and shrub classes. This may be affected by the accuracy
of land-use map inputs. Appendix B shows that the mapping of rice-fields and shrubs
has relatively low accuracy (producer and user accuracies of 82.6% and 83.7%), while
Table 4 shows that the four land-use transitions with the lowest R2 values (smaller than
0.75) are transitions that involve rice-field and shrubs. This implies that the accuracy of the
land-use change modeling is controlling the accuracy of the transition model. Furthermore,
there might be drivers affecting such transitions that cannot be spatially represented in
the LCM platform. Socio–economic factors mostly operate at an individual scale and
play a role in the family decision making process. Customs, family assets systems, living
standards, capitals, poverty level, farming resilience, and personal perception, are types of
factors influencing the decision-making process in land-use systems and often trigger the
land-use change at individual level [14,103,104]. An example of how these factors work
is exemplified by a household modeling of Deadman et al. [105] where a combination of
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physical land characteristics and household behavior such as subsistence requirements,
number of capitals, and labors determine the decision in land utilization.

The results show that the importance of the driver depends on the transition type.
Overall, elevation, distance to roads and city, and future economy zonation plans were
relatively the most influential variables as identified from their higher influence (low scores).
Drivers affecting forest loss were generally associated with elevation and proximity to
roads and economic centers. Terrain constraints such as extreme slopes, thin soil, and
low fertility might impede forest encroachment and make forests unsuitable for farming,
leaving it to develop shrubs or secondary growth forest. Reports indicate that the main
cause of deforestation in the BRB is illegal logging [106–108].

3.4. Perceived Land-Use Change Drivers

The questionnaire responses suggest the drivers that operate at land-user level (Table 5).
In the housing sector, the four biggest portions of variables perceived by respondents were
water facilities, water availability, growing population, and access/location with a portion
of responses of 97%, 95%, 60%, and 39% of total respondents, respectively. About 2% of
farmer respondents converted farming land into housing also for the needs of growing fam-
ilies. The growing population in the BRB during 2005–2015 [82] appears to be closely linked
to the built-up area expansion. More than 90% of responses included facility networks and
water availability suggesting that these factors influence conversion of land to housing.
The prevalence of road access and location in responses also signifies the economic factors
behind housing development.

Table 5. Distribution of respondents’ responses on factors affecting land-use change.

Source Driver Group Variables Number % *

Housing questionnaire
respondents (N = 108)

Biophysical

Natural beauty (site quality) 21 19
Natural water availability 105 97
Slope 0 0
Elevation 0 0

Demography Basic need/growing family members 65 60

Economy
Investment (business) 17 16
Big housing sales 10 9
Price 23 21

Infrastructure

Road access and location 42 39
Distance to markets or school
or workplace 5 5

Facilities (communication
and electricity) 103 95

Policy and institutional

Safety/crime 18 17
Understanding of spatial
plan zonation 30 28

Understanding of building and land
tax responsibility 29 27

Agricultural
questionnaire
respondents (N = 193)

Biophysical

Drought or flood or diseases
and disaster 61 32

Infertile/unproductive/erosion 14 7
Natural water availability 54 28
Slope 0 0
Elevation 0 0

Culture
Social empowerment 75 39
Land contract/customary land
tenure system 14 7
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Table 5. Cont.

Source Driver Group Variables Number % *

Agricultural
questionnaire
respondents (N = 193)

Demography
Manpower availability and skills 12 6
Converting farm for building a house
(basic need) 3 2

Economy

Funding for farming practices 7 4
Needs of urgent huge cash 11 6
Seeing neighbor success (business) 6 3
High-cost land preparation and tillage 54 28
Market price fluctuation/low price 157 81
Access to buyers 4 2
Loans and subsidies availability 101 52

Infrastructure
Irrigation network 25 13
Network availability for direct
selling—ease of selling 52 27

Policy and Institutional
Market guarantee 96 50
Awareness of planning policy and
land administration responsibility 54 28

Technology
Production technology access and
availability (i.e., seeds, fertilizers) 82 42

Machinery application 105 54

* Relative to total respondent group (housing or agriculture).

Agriculture has long been a major livelihood for most people in the BRB. Farmers often
change their plant types when facing less favorable conditions. Factors influencing farmers’
decisions to change plant types (also decisions to leave land fallow) included market-
related factors, farming expenses, individual economic ability, technology/infrastructure,
and biophysical conditions. Manpower availability was also seen to contribute to farmland
persistence. The net gain and loss analysis in Figure 4B showed the decline in agricultural
land-uses, and East Java statistical data showed the decreasing manpower in this sector [83].
Among these perceived drivers, market factors were the most essential (81%), followed
by technology—machinery applications (54%), loans and subsidies (52%), and market
guarantee (50%). Biophysical factors such as disaster hazards, and water availability were
perceived only by 32% and 28% of farmers as factors contributing to change. Interestingly,
policy and institutional factors were regarded as the least important, featuring in only 28%
of responses.

3.5. Agreement between LCM-Based Drivers and Questionnaire-Based Drivers

Table 6 lists the driver groups and corresponding variables that were identified as
important by both the questionnaire and LCM-based analysis. Natural hazards, rainfall
variability, and accessibility in terms of locations, road network, and distance to farm were
variables with a high degree of agreement. Biophysical variables were more dominant in
the results of geospatial modeling, while anthropogenic variables such as economy, culture,
technology, policy, and demography were only evident as land-user perceptions. These
results allow inference about the degree of human–nature interaction. For example, from
the geospatial approach, slope, elevation, and rainfall were statistically significant. Yet,
only rainfall was perceived as an important driver. This implies that agricultural changes
in BRB were more influenced by internal anthropogenic factors such as technology and
market forces, and less by biophysical conditions. Due to the restriction of the questionnaire
method to agricultural and urban land-users who were willing to participate, this method
provides limited insight into drivers of encroachment into legally protected areas and
changes from one public land use to another. For these questions, different approaches such
as the use of participatory mapping, needs of informant connectors, indirect interviews,
and focus group discussions would be required [84–86]. The results in Tables 5 and 6
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should be interpreted in context, predominant in the BRB, of legal transitions controlled by
private landowners.

Table 6. Agreement of inferred drivers from questionnaires and geo-statistical model.

Driver Group Variable
Perceived
Drivers—

Questionnaire

Ranked
Driver—LCM LCM Drivers Agreement

(Questionnaire—LCM)

Biophysical

Drought or flood or diseases
or disaster Yes NA DTD Low

Infertile/unproductive/erosion No No DAA High
Natural water availability Yes No RFL Low
Slope No No SLP High
Elevation No Yes ELV Low

Culture
Social empowerment No NA - Low
Land contract/customary
land tenure system No NA - Low

Demography

Manpower availability
and skills No NA - Low

Converting farm for building
a house (basic need) No NA - Low

Economy

Funding for farming practices No NA - Low
Needs of urgent huge cash No NA - Low
Seeing neighbor success
(business) No NA - Low

High-cost land preparation
and tillage Yes NA - Low

Market price
fluctuation/low price Yes NA - Low

Access to buyers No No DEA, DEB,
DTR, DTC High

Loans and subsidies
availability Yes NA - Low

Investment (business) No NA Low
Big housing sales No NA Low
Price No NA Low

Infrastructure

Irrigation network No NA - Low
Network availability for direct
selling—ease of selling No NA - Low

Distance to markets or school
or workplace (road access) No Yes DTR Low

Policy and
institutional

Market guarantee No NA Low
Awareness of planning policy
and land administration
responsibility

No No
DEA, DEB,
DTF, DTT,

DRD
High

Safety/crime No NA Low

Technology

Production technology access
and availability (i.e., seeds,
fertilizers)

No NA Low

Machinery application Yes NA Low

Remarks: italic: drivers identified from the housing sector not available in the agricultural sector, NA: variable
that cannot be represented in spatial data.

4. Discussion
4.1. Land-Use Changes in the Brantas River Basin

Our results demonstrate how satellite image-based land use mapping was useful for
presenting the 20-year dynamics of land-use changes in BRB. Post-classification change
detection results from two land-use maps showed the snapshots of land-use changes in
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two periods, and thus identified the predominant land-use transitions in BRB. Massive
urbanization has marked the changing landscape of the BRB from 1995 to 2015. Similar to
other developing regions, the growing industrialization and economic zonation has led
to urbanization [109] with, in this case, compensatory losses of rice-fields and dryland
agriculture (Figure 6A,B). Post-classification change detection results show that urbaniza-
tion appears to be the most stable process, meaning that once developed, there has been
no or little chance to transform to other land-uses [90]. Dryland conversion to settlement
occurred more intensely than rice-field conversion suggesting that rice-field conversion is
less practicable. One plausible cause is that rice-fields in the BRB are mostly irrigated and
the land price for irrigated areas is higher than for non-irrigated lands. In addition, current
agricultural laws restrict conversion of irrigated lands (rice-fields) to other land-uses. This
confirms the role of the socio–economic context in modifying the BRB landscape.

The spatial pattern of major land-use transitions in BRB highlights potential land
use management problems. Both periods (1995–2005 and 2005–2015) were marked with
forest conversion in mountain areas, massive rice conversion in the northern lowlands, and
dryland farming loss mostly in the middle and southern lowlands. Considering that the
forest concentration is at higher altitudes, the loss of forest would have hydrological conse-
quences for lower regions with respect to intensified degradation. Increasing consequences
in upper regions such as springs drying up, floods, and soil erosion have been increasingly
reported [41]. Urban intensification in the lower BRB might exacerbate these consequences
due to the increasing population exposed to floods, droughts, and poor-quality water sup-
plies. Combating deforestation has been challenging and complex due to the socio–political
context in Indonesia, such as enactment of local autonomy law [110].

4.2. Land-Use Transitions and Land-Use Patterns

At individual land-user level, the drivers are often related to external factors such as
policy, socio–economic factors, and biophysical land conditions [27]. At this level, land-use
change represents decision-making by land-users. Understanding these factors is essential
in tropical developing regions as the transformation occurring in this level often leads to
serious threats to sustainability. Therefore, besides quantitative modeling, a qualitative
approach is commonly employed for investigating land-use change drivers [12,28].

Responses from local farmers in BRB inferred that agricultural land-use changes are
not always related in simple ways to biophysical properties but also involve interactions
of factors including cultural and socio–economic dimensions. For example, a study in
upland Bromo (in south-eastern BRB) showed that improved roads led to better agricultural
product delivery, which eventually triggered local people to cut down trees and convert to
agriculture [111]. In this regard, roads appear to play a similar role in supporting continuing
deforestation. It is important to note that agriculture remains a marginal sector for most
farmers in BRB because most farmers have a small income (65% have an income < $USD
200). Respondents show a high dependence on the compilers not only for easy selling but
also for loans, leaving fewer options for managing their lands. Compilers here refers to
people buying farmers’ harvests on farm, often before harvest time at a lower than market
price (this practice is termed “ijon”). Traditionally, compilers serve not only as buyers
but also loan providers for farmers. In many cases, market prices can influence land-use
conversions yet in the BRB this is not always the case. Around 25% of responses came from
farmers stricken by minimum capital (low income, small land size, low education, lack of
skills and experience) (Table 5), which to some degree explains why farmers may opt to
keep growing the same crops. Efforts to convert land-use have implied that the processes
are complex and involve several stages as outlined by [112]. Considering this, conversion
of forest to new agricultural areas in the BRB might be associated with the easiest pathway
to higher profits. The absence of alternatives to revenue generation has been acknowledged
as a land degradation factor [113].

Information derived from the land-user questionnaires proved to be rich and detailed,
qualitative, context-rich information able to be used to interpret land use management.
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These data were difficult to convert to objective measurements. With regards to the factors
affecting the land users’ decisions, it is generally accepted that drivers at the individual level
can vary and be unique [107,114,115]. This variability and uniqueness lead to challenges in
designing questionnaires that comprehensively elucidate drivers—locally pertinent drivers
may be missed.

4.3. Implication for Land-Use Change Modeling and Driver Assessment

LCM is a land-use model whose inputs are derived from varying geospatial datasets.
For successful modeling, the accuracy of land-use map inputs is essential, and for this a high
degree of land-use-map accuracy is preferable, with an 85% kappa accuracy sometimes used
as a target [31]. Achieving high accuracy over areas with many land-use classes, such as the
BRB, can be challenging. Generally, accuracy decreases with an increasing number of land-use
classes [94]. This study utilized nine land-use classes with kappa accuracies of 87%, 83%, and
83% for the three studied years. Most previous LCM studies employed smaller numbers of
land-use classes yet presented lower or similar LCM sub-model accuracies (39–91%) [24,116,117].
Despite the achievement of this study, there may be scope for better accuracy by optimizing the
OBIA-mapping, which relied upon subjective selection of the ruleset.

Using both the questionnaires and geospatial modeling provided insight about the
consistency and inconsistency between approaches in identifying drivers. Table 6, which
only lists variables that were represented in both approaches, shows that biophysical vari-
ables were identified more commonly in the geospatial approach, while socio–economic
and institutional variables were identified more commonly in the qualitative approach.
One thing to note is that the PCA-based data reduction excluded some variables that were
collinear with included variables from the geospatial analysis, so additional consistencies
may be implicit. This might infer that variables which are significant at the regional level,
might not be significant at the land-user level. Furthermore, as previously discussed, con-
sistencies may be excluded due to the limitations of the geospatial data sets. We therefore
acknowledge that the approach taken to understand the land-use change process is influ-
enced by data and methodological limitations, in particular the challenge of integrating
qualitative local-scale and geospatial regional-scale data sets requires further research.
Decadal medium satellite image-based assessment cannot precisely outline the mechanism
or process of each land-use trajectory, and further work is needed, that involves higher
temporal resolution assessments and actual phenology characteristics.

4.4. Limitations of the Study

While the study has provided insight into the historic behavior of the landscape
and drivers of changes, there are some limitations that are acknowledged and should
be considered for future work. The first is that the study accommodated only the period
1995–2015 and excluded the more recent years, due to the lack of a complete decade. During
these years, the BRB landscape is likely to have undergone and continue to undergo changes
that may extend understanding of patterns and drivers of change and allow assessment of
the medium-term impact of policies. Soon there will be opportunity to gain this further
insight by updating the analysis to 2015–2025. There is also an opportunity to use our new
understanding to project land-use change into the near future, 2025–2035, under policy
scenarios, which we address in a separate work. From the geospatial modeling perspective,
one limitation in this study’s approach is the decision to use regional-level land-use analysis.
While this approach is proven to be computationally efficient, specific local land-uses such
as airports and local sand mining could not be accounted for despite their known influence
on the landscape. A future study with a more detailed land-use class scheme would offer
opportunity to examine this issue.

The scale of the geospatial data also presents limitations. For example, in this study,
district level population data (the only population data available for this study) does not
represent demographic variability at a lower (village) level. Another challenge is whether,
and how meaningfully, cultural variables can be represented as geospatial data layers.
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Factors such as social interaction and traditional customary land regulations cannot be
easily represented in spatial data format. Land conflict, and the associated disagreements
on zonation, lack of public access to data, and undocumented transitions from public
to private land, create additional challenges in spatial data analysis. For example, there
have been reports of land utilization for agriculture in national parks in Bromo Tengger
Semeru (BTS) national park and Tahura Suryo (Suryo Grand Forest), which are supported
by our visual assessment of high-resolution data from Google Earth. As a result, what
was represented by legal spatial data (acknowledged park boundaries) might not always
correspond with actual data (presence of farming gardens within park boundaries). The
data availability limitations and complexity of specific factors affecting encroachment into
protected areas are significant obstacles to a comprehensive understanding of land-use
change drivers in the BRB and comparable regions and are perhaps the main limitation of
this work. We recommend that, should the necessary data on land status become available,
the research is extended to include this, and that complementary research attempts to
understand the factors governing encroachment.

5. Conclusions

Over two decades (1995–2015), the BRB landscape has been marked by a reduction in
vegetated areas. Forest area reduced from 1301 km2 to 730 km2 (11% to 6.2% of the total
BRB area) and agricultural land-uses lessened from 9150 km2 to 8048 km2 (77% to 68%).
A tripling in built-up areas signifies a rapidly urbanizing landscape. Major land-use
transitions include forest conversion to dryland agriculture and agricultural area conversion
to built-up area. The first phase of deforestation in the BRB is agricultural expansion,
followed by conversion to built-up areas, which is nearly irreversible.

The biophysical and socio–economic drivers included in the geospatial modeling
explain to a high degree the land-use transitions in the BRB over 1995–2015, which were
mainly elevation, presence of roads, and access to urban centers and economic development
centers. At land-user levels, the drivers are more complex and inter-related. The household
and land-user questionnaires reveal (although incompletely) drivers that are localized and
individualized. The questionnaire results were consistent with the geospatial modeling
regarding the importance of rainfall, elevation, and access to economic centers, and thus
provide high confidence about these results. The larger number of inconsistencies between
the approaches set challenges for improved representation of cultural, demographic, and
economic factors in geospatial modeling.
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Appendix A

Table A1. List of Drivers Implemented in Land-Users Questionnaire.

Sector Driver Group Variables Reference

Agriculture

Biophysical
Drought or flood or diseases [118]
Infertile/unproductive/erosion [26,119]
Natural water availability [26,120]

Culture
Social empowerment [15,121]
Land contract/customary land
tenure system [17,32]

Demography/
population

Manpower availability [26]
Growing family members [26]

Economy

Funding for farming practices [15,32]
Needs of urgent huge cash [122]
Seeing peer/neighbor success (business) [121]
High-cost land preparation and tillage [15]
Market price fluctuation/low price [23]
Access to buyers [123]
Loans and subsidies availability [15]

Infrastructure Irrigation network [7,124]

Policy/
institutional

Network availability for direct
selling—ease of selling [32]

Market guarantee [125]
Awareness to planning policy and land
administration responsibility [15]

Technology
Agricultural technologies access and
availability (i.e., seeds, fertilizers) [17,126]

Applying machineries [126]

Housing

Biophysical Natural beauty (site quality) [124,127]
Natural water availability [120,127]

Demography/
population Basic need/growing family members [128]

Economy Investment (business) [129,130]
Land/Housing Price [15,128]

Infrastructure
Road access and location [26]
Distance to markets or school or workplace [26]
Facilities (communication and electricity) [15,127]

Policy/
institutional

Safety/crime [127]
Understanding to spatial plan zonation [131]
Understanding to tax and land regulation [130]

Appendix B

Table A2. Accuracy Assessment for Classified Images of BRB 1995, 2005, and 2015.

Land-Use Code
1995 2005 2015

PA (%) UA (%) Average PA (%) UA (%) Average PA (%) UA (%) Average

Water WTR 92.31 85.71 89.01 na* na na 96.36 98.15 97.26
Dryland forest DRF 100.00 100.00 100.00 100.00 100.00 100.00 100.00 86.11 93.06
Mangrove forest MGF 86.59 94.04 90.32 na na na 89.36 95.89 92.63
Dryland agriculture DRA 93.26 93.99 93.63 90.68 88.43 89.56 91.89 86.11 89.00
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Table A2. Cont.

Land-Use Code
1995 2005 2015

PA (%) UA (%) Average PA (%) UA (%) Average PA (%) UA (%) Average

Built-up areas BUA 86.84 91.67 89.26 89.13 93.18 91.16 81.89 87.83 84.86
Sand/soil (bareland) PST 89.47 85.00 87.24 100.00 100.00 100.00 89.29 67.57 78.43
Shrubs and bushes SMB 82.61 82.61 82.61 100.00 100.00 100.00 82.61 73.08 77.85
Rice SWH 93.33 82.35 87.84 83.10 84.29 83.70 77.34 83.66 80.50
Ponds TBK 96.15 96.15 96.15 100.00 100.00 100.00 92.68 97.44 95.06

Overall accuracy (%) 91.13 88.84 87.33
Kappa accuracy (%) 87.06 83.01 83.1
Sample size 823 251 1776

* No aerial photos used that have water and mangrove forest in the scene.

Appendix C

Table A3. Land-Use Change Matrix of BRB for Period 1995–2004 and 2005–2015.

LULC 1995 (km2)
LULC 2005 (km2)

WTR DRF MGF DRA BUA BRL SHB RCF PND

Water (WTR) 49.38 0.02 0.49 11.76 5.46 0.65 0.00 12.35 3.79
Dryland forest (DRF) 0.26 781.95 0.00 413.20 0.78 0.44 103.38 1.85 0.00
Mangrove forest (MGF) 0.46 0.00 0.98 0.66 0.18 1.68 0.00 0.15 3.61
Dryland agriculture (DRA) 7.24 57.69 0.22 4889.48 448.67 5.51 14.48 459.63 3.44
Built-up areas (BUA) 0.00 0.00 0.00 0.00 841.64 0.00 0.00 0.00 0.00
Bareland (BRL) 1.02 1.05 0.42 10.17 5.18 9.42 5.16 4.35 6.44
Shrubs and bushes (SHB) 0.05 35.84 0.00 58.58 0.36 0.18 119.66 0.37 0.00
Rice-field (RCF) 3.48 0.27 0.00 380.85 207.77 2.55 0.17 2666.18 2.55
Ponds (PND) 2.12 0.02 0.94 1.69 3.13 7.40 0.00 1.69 171.82

LULC 2005 (km2)
LULC 2015 (km2)

WTR DRF MGF DRA BUA BRL SHB RCF PND

Water (WTR) 49.75 0.06 1.44 3.92 2.08 0.45 0.04 5.25 1.01
Dryland forest (DRF) 0.13 546.47 0.00 171.05 1.19 3.29 153.85 0.86 0.00
Mangrove forest (MGF) 0.17 0.00 2.11 0.00 0.00 0.42 0.00 0.02 0.32
Dryland agriculture (DRA) 12.57 151.53 1.18 4579.72 535.10 6.44 65.68 413.23 0.95
Built-up areas (BUA) 0.00 0.00 0.00 0.00 1513.16 0.00 0.00 0.00 0.00
Bareland (BRL) 0.27 0.22 2.41 3.03 4.10 8.43 0.63 2.77 5.97
Shrubs and bushes (SHB) 0.02 31.24 0.00 33.12 0.06 8.71 169.50 0.20 0.00
Rice-field (RCF) 11.73 1.17 0.15 482.29 294.31 5.60 0.27 2346.32 4.73
Ponds (PND) 1.13 0.00 5.55 0.37 3.70 18.70 0.00 6.17 156.05
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