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Abstract: Environmental and health deterioration due to the increasing presence of air pollutants is a
pressing topic for governments and organizations. Institutions such as the European Environment
Agency have determined that more than 350,000 premature deaths can be attributed to atmospheric
pollutants. The measurement of trace gas atmospheric concentrations is key for environmental
agencies to fight against the decreased deterioration of air quality. NO2, which is one of the most
harmful pollutants, has the potential to cause diseases such as Chronic Obstructive Pulmonary Disease
(COPD). Unfortunately, not all countries have local atmospheric pollutant monitoring networks to
perform ground measurements (especially Low- and Middle-Income Countries). Although some
alternatives, such as satellite technologies, provide a good approximation for tropospheric NO2, these
do not measure concentrations at the ground level. In this work, we aim to provide an alternative
to ground sensor measurements. We used a combination of ground meteorological measurements
with satellite Sentinel-5P observations to estimate ground NO2. For this task, we used state-of-the-art
Machine Learning models, linear regression models, and feature selection algorithms. From the
results obtained, we found that a Multi-layer Perceptron Regressor and Kriging in combination
with a Random Forest feature selection algorithm achieved the lowest RMSE (2.89 µg/m3). This
result, in comparison with the real data standard deviation and the models using only satellite data,
represented an RMSE decrease of 55%. Future work will focus on replacing the use of meteorological
ground sensors with only satellite-based data.

Keywords: atmospheric pollution; nitrogen dioxide; machine learning

1. Introduction

Atmospheric pollution is a pressing topic for governments and organizations due to its
negative impact on human health and on the environment. European regulatory authorities
reported that atmospheric pollution was responsible for over 350,000 premature deaths
in 2019 [1]. To encourage countries to make strict regulations on improving air quality,
the United Nations (UN) Sustainable Development Goals (SDGs) address the reduction in
atmospheric pollution. In particular, SDGs 3, 7 and 11 focus on clean energy production,
people’s well-being and making cities safer (healthier) [2]. However, according to Ref. [3]
, about 90% of the World’s population lives in places where air quality does not comply
with the UN pollution recommended limits. A key factor in improving this situation is the
monitoring and reporting of air quality measurements [3].

Respiratory infections and diseases such as Chronic Obstructive Pulmonary Disease
(COPD) are the fourth leading cause of death worldwide and can be linked to Nitrogen
Dioxide (NO2) [4]. Additionally, NO2 contributes to the process of eutrophication and
acidification of environmental components by acting as a precursor for ozone (O3) and
particulate matter (PM) [5]. Measurements in highly developed regions of the world, such
as the USA or Europe have specified that the primary sources of NO2 emissions are strictly
related to human transportation, i.e., vehicles using combustion engines and stationary
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fuel combustion [6,7]. In fact, Ref. [8] reveals how the progressive reduction in population
mobility during the COVID-19 period in the city of Milan (Italy) contributes to the reduction
in NO2 concentration. This occurred during the COVID-19 lockdown in 2020, when both
transportation and supply chain emissions were significantly reduced. By the end of March,
a reduction of 77% in private transportation, 66% in light and heavy-duty vehicles, 39%
in combustion in manufacturing factories, and 20% in production processes led to a NO2
reduction of one-third [8].

With the aim of controlling atmospheric pollutant levels in the air, some agencies,
such as the European Environment Agency (EEA), established air quality directives. These
directives establish thresholds that countries must not surpass on a yearly, daily and
hourly basis [9]. To measure air quality, new technologies have been developed in the
past decades. As an example, the Copernicus programme was developed by the European
Commission and the European Space Agency (ESA). This programme utilises satellites and
in-situ (non-satellite) data to measure air quality. These data provide European citizens and
authorities with information about the condition of the atmosphere. The central appeal of
the Copernicus programme is to use satellite technology to provide data about the Earth’s
atmosphere in regions that it would otherwise not be possible to obtain [10]. Among its
satellite catalogue, Copernicus measures tropospheric NO2 concentrations.

According to the European Union guidelines for the measurement of atmospheric
NO2, local authorities must provide air quality measurements through the use of certified
ground stations [11]. These guidelines specify that stations must measure air pollutants
at a height between 2 and 10 m from the ground. The main drawback of using ground
stations as the source of measurements is twofold. The first is that ground sensors are
only able to measure point data at the location where they are installed. The second is that
the cost of installation, maintenance and operation requires both technical expertise and
financial investment, which is not always available. This is a common case in low and
middle-income regions such as Africa and Asia [3]. These constraints reduce the area of
measurements, limiting the understanding of the physicochemical phenomena taking place.
However, satellite technology has enabled scientists to overcome this limitation. Such is
the case of the Copernicus satellite Sentinel-5P, a measurement tool equipped with state-of-
the-art technology capable of capturing the presence of tropospheric trace gases. The main
working unit of this satellite is the TROPOspheric Measurement Instrument (TROPOMI).
TROPOMI is a sensor developed by the Netherlands Space Office and the ESA, which is able
to measure NO2, Carbon Monoxide (CO), aerosols and other atmospheric pollutants [12].

Even though the Sentinel-5P can be an initial approach to measuring atmospheric
NO2, this technology still has some disadvantages. The first is that this satellite provides
measurements at the tropospheric level. This means that the satellite measures the total
column of gas (i.e., the total concentration of a pollutant from the ground up to 10 km above
ground level). Although the troposphere is the closest atmospheric layer to the Earth’s
surface, it does not represent the conditions that exist at the ground level (2 m to 10 m high).
The second is regarding the spatial resolution, which is 3.5 x 5km; this measurement is
not adequate for the previously mentioned directives established by regional authorities.
Another challenge when monitoring pollution using satellite technology is related to the
measure itself. While satellites provide the number of NO2 particles in an area (pixel),
the ground stations provide a volume of the particles present in an air sample. Taking
these characteristics into consideration, providing an accurate estimate of air quality a few
meters from the ground can be challenging.

In this work, we focused on the creation of a model for estimating ground atmospheric
NO2 as an alternative to ground stations. According to Pinder et al., 2019, [13], air quality
monitoring has been conducted for the past 50 years in high-income economies. The same
study claims that this was made possible by spending millions of dollars to establish,
operate, and maintain monitoring stations. As mentioned previously, this is not the
situation in Low- and Middle-Income Countries (LMICs), where air quality monitoring is
subpar or nonexistent. The situation is different for weather stations, which, according to
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the World Meteorological Organization (WMO), are monitored globally through a network
of more than 8000+ stations [14]. Figure 1 shows the locations of these stations and whether
they belong to an LMIC or a high-income country. Different from NO2 sensors (Figure 2),
meteorological ground sensors are present all over the world (including LMICs). This opens
up the opportunity for LMICs to use a combination of Sentinel-5P NO2 and meteorological
indicators to perform an accurate estimation of the concentration volume of NO2 at the
ground level.

Figure 1. Weather stations registered by the WMO. The station’s colour represents the countries’
income classification (low, medium and high income)[14].

Figure 2. Global NO2 stations registered by the World Health Organization (WHO). Global Air
Quality Database App: app for exploring air quality in countries. WHO Global Air Quality Database
(update 2018) edition. Version 1.0. Geneva, World Health Organization, 2018.

Recent studies have estimated ground level NO2 concentrations based on satellite
NO2 observations by means of Machine Learning (ML) and linear models. Random Forest
is among the most-used methods to model ground NO2 [15–17]. Other ML methods used
by authors include Decision Trees, Extremely Randomised Trees, Gradient Boost Deci-
sion Trees, Extreme Random Forest, XGboost, and Bayesian Maximum Entropy [15,18–20].
Linear regression and polynomial fitted regression are also implemented [21], as well as
universal Kriging [22]. Several studies consider Sentinel-5P TROPOMI NO2 measure-
ments [4,15], which provide tropospheric NO2 columns at the highest available resolu-
tion [23]; nevertheless, other studies consider the Aura Ozone Monitoring Instrument (OMI)
NO2 measurements as well [16,22,24], being both state-of-the-art satellite instruments [23].
The satellite NO2 measurements are usually integrated with ground NO2 concentrations
derived from local air quality monitoring stations [24,25] or from authoritative datasets,
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e.g., the AirBase dataset from the EEA [26]. The auxiliary data (i.e., independent variables
of the model) include mainly meteorological variables such as temperature, wind, and hu-
midity, which are retrieved from both ground stations [19] and authoritative datasets such
as the European Centre for Medium-Range Weather Forecasts (ECMWF) fifth-generation
atmospheric reanalysis product (ERA5) [4,17], and ECMWF Modern-Era Retrospective
Analysis Research and Application, version 2 (MERRA-2) [24]. Other auxiliary data include
road and population density, terrain height, and land use/land cover [26]. As a case study
for this work, we proposed a single daily estimate of ground NO2 concentrations based
on Sentinel-5P tropospheric NO2 and ground meteorological data by means of a set of
machine learning, linear regression, and feature selection models. The study is in line
with the current state of the art, obtaining a better Root Mean Squared Error (RMSE) than
similar studies.

The area of interest is focused in Lombardy, located in the North of Italy which is
considered a pollution hotspot due to the physical features of this area (Figure 3). Specific
topographic components such as the Alps’ in the north and west of the region and the
Apennines’ presence in the south cause the wind to be entrapped in the Po Valley. Thermal
inversions on a regular basis hinder the proper dispersion of air pollutants [27]. We
concentrate on the air quality in the metropolitan city of Milan. This choice was made
because Milan is a traffic-intensive and industrial area.

Figure 3. Satellite image (MODIS Aqua radiometer) of the Northern Italy Po Valley showing the
aerosol layer entrapped in the area. The location of Milan is indicated with a red circle. Image
extracted from https://worldview.earthdata.nasa.gov for the date 18 October 2017.

The project’s methodology consists of three phases (data processing, training and
testing). For the data processing, we created a Python pipeline that automatically processes,
re-grids and registers the data into the data management system (Open Data Cube—ODC).
For this work, we integrated ground sensors and satellite data into the ODC, a procedure
established in other works [28]. The ODC is an indexing system that acts as an intermediary
layer between the user and satellite data. It is commonly used to make analysis-ready
data available and eliminate the processing steps for future users. For further details
about the ODC, the official website can be reviewed (https://datacube-core.readthedocs.
io/(accessed on 12 September 2022)).

To implement the regression models, we used a selection of Machine Learning algo-
rithms able to learn from real ground stations present in the Milan area. The input for these
models was directly obtained from the ODC. The training procedure made use of a dataset
of meteorological indicators from ARPA Lombardia (the Lombardy Regional Environment
Protection Agency) and Sentinel-5P NO2 measurements. The output of the models was an
estimation of single daily NO2 ground measurements at the time of passage of the satellite
(from 12:00 h to 15:00 h UTC+1) [15,29].

https://worldview.earthdata.nasa.gov
https://datacube-core.readthedocs.io/
https://datacube-core.readthedocs.io/
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The results indicate that the model’s NO2 estimation is accurate compared to the daily
standard deviation and mean of the Metropolitan City of Milan from 12:00 h to 15:00 h
UTC+1. The model’s output has a lower Root Mean Square Error compared to using only
satellite data for the estimation of NO2 ground data.

The structure of the paper is as follows. In the first section, we describe the data used
for the project, as well as the technologies involved. In the second section, we describe the
Machine Learning algorithms implemented in this work. In the third section, we present the
results. The final section contains a discussion of the results, conclusions and future work.

2. Materials and Methods

This section describes the data used to train and test the ground-air NO2 estimation
model. All the data used in this work focuses on the Metropolitan City of Milan (MCM) for
the period of 1 January 2019 to 28 September 2022.

2.1. NO2 Ground Sensors Data

The Lombardy Regional Environment Protection Agency (ARPA Lombardia) is the
entity in charge of monitoring, among other things, the atmospheric pollutants in Lombardy.
This is achieved by means of a network of 84 ground stations (Figure 4) compliant with the
EEA measurement procedures [11]. The stations are capable of measuring NOX (NO and
NO2), SO2, CO, O3, PM10, PM2.5 and benzene with an hourly average temporal resolution.
The hourly average corresponds to the average of measurements during the 60 min before
the indicated time. Even though the Lombardy region has a total of 84 ground stations for
measuring NO2, only 16 of these are located inside the Metropolitan City of Milan.

Figure 4. Location of NO2 and meteorological ground sensors belonging to ARPA Lombardia
alongside Sentinel-5P pixel grid [30].

The data are provided with an open license and can be downloaded through the web
data portal (https://dati.lombardia.it, (accessed on 30 september 2022)). Measurements of
the current year (2022) can also be accessed through an Application Programming Interface
(API). Downloading through the API enables the user to access the data according to their
needs by choosing only the needed pieces of information and not the dataset containing
information outside the area of interest.

2.2. Meteorological Ground Sensors Data

Apart from trace gases, the ARPA Lombardia network also measures meteorological
phenomena such as temperature, atmospheric pressure, humidity, precipitation, wind

https://dati.lombardia.it
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speed and others [31]. The meteorological network in the Metropolitan City of Milan is
composed of 98 ground sensors at 25 different stations (Figure 4). Differently from NO2
ARPA data, the meteorological sensors have a 10 min time resolution. Access to this dataset
is achieved in the same way as described in Section 2.1. For this work, the meteorological
parameters that we used were temperature, wind speed, wind direction, precipitation,
global radiation, and relative humidity.

The original administrative boundaries and meteorological sensors of the MCM in-
clude the city San Colombano al Lambro city, which is outside the boundaries of those
indicated in Figure 4. This portion of the MCM was excluded from our study area because
no ground NO2 stations are present here.

2.3. Satellite Data

Sentinel-5P was the chosen NO2 satellite to train the model. Although other satellites,
OMI from the National Aeronautics and Space Administration (NASA), provide NO2
measurements, Sentinel-5P has a resolution of 5.5 × 3.5 km compared to 13 × 24 km of
OMI [32]. Both Sentinel-5P and OMI have a daily temporal resolution. The daily satellite
passage over the Metropolitan City of Milan is variable, but it is always in the time range
between 11:00 and 14:00 UTM+0 (Figure 5).

Figure 5. Percentage of observations at 1-hour resolution for the Sentinel-5P passing over the MCM
at UTM+0.

Access to the Sentinel data is free and open through the Open Access Hub (https:
//scihub.copernicus.eu/, (accessed on 30 september 2022)). For Sentinel-5P, batch data
download is not available as for other Sentinel missions (e.g., Sentinel-2) in this portal.
For this satellite, the website allows the download of one image at a time. The solution
adopted in this work was the service provided by the Data and Information Access Services
(DIAS). DIAS are private entities that deliver data processing through their platforms.
Although the use of DIAS systems requires payment, they provide the original Sentinel
observations through an API that allows batch mode download. For this work, we used
the WEkEO DIAS (https://www.wekeo.eu/, (accessed on 30 september 2022)) API.

Once the satellite datasets were downloaded, we transformed them from Level 2
to Level 3. This consists of removing pixels containing disturbances (such as clouds),
performing coordinates projection, as well as gridding and trimming to the area of interest.
Level-2 transformation enables the user to choose the quality factor through the variable
called ’pixel validity’. In this project, we used a pixel validity of 75 (from a range of 0 to 100),
as suggested in the Sentinel-5P manuals [33]. The ESA developed the HARP tool, which
we used for processing Sentinel-5P images. This is software designed for the processing of
satellite images of Copernicus Sentinel missions [34].

To filter out satellite observations not belonging to the Metropolitan City of Milan, we
used the official administrative boundaries published as a Shape File (https://www.istat.
it/it/archivio/222527, (accessed on 30 september 2022)).

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
https://www.wekeo.eu/
https://www.istat.it/it/archivio/222527
https://www.istat.it/it/archivio/222527
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2.4. Data Pre-Processing

This work’s three chosen data sources are delivered in different spatial and temporal
resolutions. These spatiotemporal differences required a pre-processing step to make them
coincide in an overlapping grid. On the one hand, satellite observations are regularly
gridded with a resolution indicated in Table 1. On the other hand, ground NO2 and
meteorological ARPA station networks are both irregular but have different locations inside
the MCM. To solve this situation, we considered the MCM as an average measurement for
each of the measurements at the time period from 12:00 h to 15:00 h UTC+1. To validate
this choice, we calculated the standard deviation and the mean for the ARPA NO2 ground
measurements inside the MCM for each day (from 12:00 h to 15:00 h UTC+1). As shown in
Figure 6, the standard deviation is approximately 40% of the mean values. This indicated
that we could consider the complete MCM city of Milan as a single average measurement
of NO2 for each day between 12:00 h and 15:00 h UTC+1.

Table 1. Data sources for spatial and temporal resolutions.

Dataset Spatial Resolution (km × km) Temporal Resolution

ARPA NO2 Non-regular gridding 1-hour
ARPA Meteorological Non-regular gridding 10-min

Sentinel-5P 3.5 × 5 1 day

Figure 6. ARPA Lombardia NO2 sensors’ standard deviation vs. mean over time.

To describe better the physicochemical dynamics of the MCM area (e.g., the effect
of wind in the time previous to the satellite passage), we considered meteorological data
outside the time of passage of the satellite. Therefore, we created an average measurement
of each meteorological indicator for the 21 h prior to the passage of the satellite. This was
achieved by averaging daily measurements starting from 15:00 UTC+1 of the previous day
until 12:00 UTC+1 on the day of the measurement. This 21 h period average was added to
the data frame for every meteorological measurement as individual features.

Moreover, ARPA NO2 data at the time of passage of the satellite presents a yearly
seasonality (Figure 7a). The trend reveals that atmospheric pollution concentrations increase
in winter and decrease in summer. In a similar fashion, the NO2 weekly trend can be
observed in Figure 7b, where NO2 tends to decrease during the weekends. For this reason,
we included both features, indicating the month and the day of the week. Given the
difference in NO2 concentrations between weekdays and weekends, we included a feature
indicating this. All the variables considered for this study can be seen in Table 2.
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Table 2. Variables considered to model ground NO2 with the used temporal resolutions.

Used Temporal Resolution Variable Source

Daily
NO2 Sentinel-5P

Day of the week -
Month -

Daily (average from 12:00 h
to 15:00 h)

NO2 ARPA atm. pollution
Temperature ARPA meteo
Wind speed ARPA meteo

Wind direction ARPA meteo
Precipitation ARPA meteo

Global radiation ARPA meteo
Relative humidity ARPA meteo

Daily (average from 15:00 h of previous day
to 12:00 h current day))

NO2 ARPA atm. pollution
Temperature ARPA meteo
Wind speed ARPA meteo

Wind direction ARPA meteo
Precipitation ARPA meteo

Global radiation ARPA meteo
Relative humidity ARPA meteo

(a)

(b)
Figure 7. ARPA NO2 ground sensor measurements for the Metropolitan City of Milan. (a) Average
NO2 from 12:00 h to 15:00 h UTC+1 for the complete study period. (b) Average NO2 from 12:00 h to
15:00 h UTC+1 for each day of the week for the complete study period.
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Wind direction data required further processing with respect to the rest of the meteo-
rological data. Given that wind direction is originally delivered in degrees, this measure
cannot be simply averaged for the satellite passage time. Doing so would lead to a wind
direction result that is not true for that period. For this reason, we decomposed the wind
direction into north and east vectors and multiplied them by the wind speed. When calcu-
lating the mean of this measure, we are considering the wind strength (velocity) to weigh
the average over a period of time. This operation was performed both for the satellite
passage time and for the 21 h period prior to the passage time. After obtaining this average,
the measurement was transformed back to wind direction in degrees. For model training
purposes, we classified wind direction into four and eight sectors (Figure 8) independently.
The comparison of these two classifications will be further described in Section 2.7.2.

Figure 8. ARPA Lombardia wind direction data classified by sectors.

2.5. Methods

The task of estimating ground or surface level NO2 concentrations has been of interest
to several researchers to help with monitoring air quality. Many of the most recent ap-
proaches use Machine Learning (ML) or Deep Learning (DL) models. These techniques are
used to integrate the meteorological and air quality data (both from satellite and ground
stations). Furthermore, vehicle traffic data and spatially descriptive data, such as land cover,
elevation, and distribution of pollutants sources are used to estimate NO2 or a combined
estimation of NO2 and other air pollutants (e.g., PM2.5, PM10, O3).

Recent ML approaches include Random Forest (RF) [15,16,35–37] as the method or one
of the methods implemented in the studies. RF may also be used as a baseline to compare
the results of more sophisticated methods such as DL models, e.g., total connection encoders
and convolutional neural networks [38]. Other commonly used ML models, which are
used individually or as part of ensemble models, include Support Vector Regression (SVR),
Gradient Boosting (GB), and Extreme Gradient Boost (XGB) [17,35,39,40]. Additional
studies utilised Linear Regression (LR) models such as Exponential Triple Smoothing (ETS)
and Seasonal Autoregressive Integrated Moving Average (SARIMA) as the main methods
to forecast NO2 [41].

The studies that implement ML techniques to model NO2 tend to use LR methods
to compare with the ML results, e.g., comparing RF with LR [16], RF, SVR, and XGB with
Multiple Linear Regression (MLR) [17].

Regarding NO2 measurements, they can be retrieved from different sources such as
Sentinel-5P TROPOMI NO2 [15,17], Aura OMI NO2 [35,37,38,40], Landsat 8 reflectance [42],
and ground sensors [36,39,40]. Meanwhile, the meteorological information is usually de-
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rived from ground sensors belonging to regional or country monitoring networks [36,43].
Several studies also rely on other data relevant to model NO2 and other pollutants, e.g., Dig-
ital Terrain Model (DTM) and power plants distribution [39], road density and population
density [17], and land use [36,40].

Meteorological measurements and spatially descriptive data are the features used in
the ML, DL or linear models. A subset of these features may be removed when they are not
significant to model NO2. The relevance of removing unnecessary features serves to avoid
overfitting and to reduce processing time. The methods utilised for this purpose include
recursive feature elimination [17], Spearman correlation coefficient calculation to examine
the bivariate association between NO2 and predictor variables [39], mutual information
and maximum relevance-minimum redundancy [43].

Therefore, in this context, it is reasonable to test different ML approaches (Section 2.6)
to find the one that has the lowest error with respect to the ground truth. This is performed
with the aim of estimating daily NO2 measurements at the city level (one average NO2
value per day at the time of the passage of the Sentinel-5P).

2.6. Computational Regression Models

The ML models were implemented in Python due to the availability of scientific
libraries. The Python scientific libraries used for this work were TensorFlow (https://www.
tensorflow.org/, (accessed on 5 October 2022)) and SciKit-learn (https://scikit-learn.org/,
(accessed on 5 october 2022)). SciKit-Learn is a library where Machine Learning models are
implemented, and it can be used for training, fitting and testing the data. The trained SciKit-
Learn models can then be exported and used for prediction purposes in other datasets
containing the same features as the training one.

To achieve the estimation of ground NO2 with Machine Learning, we used Non-Linear
Multivariate Autoregressive Models. In addition, we treated the regression system as a
series of discrete linear models by using splines and Kriging to evaluate the results with
respect to ML models. Although pollution is a non-linear system, linear models are used
to compare the performance of non-linear models [16]. Autoregressive models, such as
the ones used for ML, have characteristics useful for this work, such as being theoretically
grounded and generally not presenting overfitting [44]. From a practical point of view,
these models are simple to train and configure.

Following Machine Learning best practices, 80% of the data were used for training
and 20% were used for testing [44]. Normalisation was carried out to reduce the effect that
using different units of measurement can have on the models. With this, all the variables
had the same weight independently from their range of values. Normalisation was only
performed using the training data to avoid introducing information from the testing set
when training the model. Regarding the data splitting, we opted for not extracting data
randomly but extracting the first 80% of the time period for training and using the last
20% for testing. This decision was taken on the one hand because this is the way in
which the algorithm is planned to be used (i.e., daily consecutive estimations). On the
other hand, it ensures that we introduce seasonality into the system by using all the data
characteristics that were present in the training period (1 January 2019 to 6 March 2022).
In the results section, we compare the results of doing this periodical data splitting with a
randomised one.

For the purpose of this project, we decided to test 8 different models that are currently
considered state-of-the-art. For the Machine Learning algorithms, we used Long Short-
Term Memory (LSTM), Random Forest (RF), Epsilon-Support Vector Regression (SVR),
Decision Tree Regression (DTR), Gradient Tree Boosting (GTB) and Multi-layer Perceptron
Regressor (MLPR). Regarding the linear models, we used Kriging and B-Splines.

2.6.1. Long Short-Term Memory Algorithm

LSTM is a Neural Network (NN) supervised learning prediction architecture. This NN
was used to take advantage of its capability to carry long-term dependencies to the future.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://scikit-learn.org/
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This characteristic is not present in other NN architectures [44]. Therefore, the LSTM was a
good candidate for this dataset because data temporality is carried over almost 3 years.

2.6.2. Random Forest

RF is a machine-learning technique that makes predictions based on a group of regres-
sion trees (binary splits on predictor variables) [45]. As specified by Ref. [46], Regression
Random Forests are created by developing trees based on a random vector. In comparison
with other algorithms that only use bagging, RF prioritises random feature selection. We
used this model because it is considered one of the state-of-the-art algorithms. Results have
demonstrated a decrease in overall RMSE by using RF [46].

2.6.3. Support Vector Regression

SVR is commonly used for non-linear regression types. It is based on the same
principle as Support Vector Machines (SVM). When analysing points in an n-dimensional
space, the support vectors are those parallel to the hyperplane and closer to the points of
interest. The purpose of this algorithm is to find those support vectors to create a model
that best fits the data. Our interest in using this model is that in terms of predictability,
the SVR has reportedly outperformed other linear, polynomial, and logistic regression
models [47].

2.6.4. Decision Tree Regression

As described by [48], the DTR is based on a multistage or hierarchical decision scheme
organised in a tree-like structure. It uses a collection of features together to accomplish
regression in a single decision step. The tree is made up of a root node (the complete
dataset), internal nodes, and terminal nodes. A binary choice is made at each node of
the decision tree structure, which divides one class from the other classes. In a top-down
procedure (such as the one used in this work), the processing is accomplished by travelling
down the tree until it reaches the leaf node. The final solution is a result of splitting a
decision into simpler ones [48]. Since this algorithm uses decision trees, we chose it as an
alternative to compare its performance against RF.

2.6.5. Gradient Tree Boosting

GTB uses decision trees (Section 2.6.4) of a fixed size. With these trees, it creates
a global model, which performs better than the single decision trees. We adopted this
algorithm as a variation of DTR and RF because, as seen in the literature, it is used as
an approach for regression with decision trees [17,35,39,40]. Given its performance, it
is considered a state-of-the-art predictor with results at the level of Lasso and Random
Forest [49].

2.6.6. Multi-Layer Perceptron Regressor

MLPR belongs to the class of Artificial Neural Networks (ANN). Each node of this
ANN is a neuron that uses a non-linear activation function. Given that this model is able
to discern between non-linearly separated data [50], it makes it a good candidate to use
in this work. We used this model to analyse the data performance when distinguishing
between non-linearly separated measurements.

2.6.7. B-Spline Regressor

B-splines is a linear regression tool. It is composed mainly of piecewise polynomials
(usually cubic or quadratic) and has a smooth behaviour in comparison with higher-
order polynomials. B-splines have continuous surfaces, reducing the problem of local
polynomial approximations that usually present strong discontinuities. This is achieved by
patching polynomial segments together to generate derivatives of lower order to join the
intersections between each spline segment. We used this linear regression model to reduce
the computational cost derived from Machine Learning algorithms [51].
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2.6.8. Kriging Regressor

Kriging is a group of statistical methods for optimising spatial prediction. It has been
applied to a wide range of fields and demonstrated a reduction in overall errors, such
as RMSE [52]. As explained by Ref. [52], this regressor is a probabilistic predictor, and it
assumes that the data are in the form of a statistical model. Since the prediction error is
minimised and, on average, the predicted value and the true value agree, kriging predictors
are referred to as optimal predictors. We used this tool not only because of its results in
other areas (e.g., environmental sciences, mining and agriculture) but similar to B-Spline,
it can help reduce the computational cost that is normally present in Machine Learning
models [52].

2.7. Training and Testing of the Models
2.7.1. Training

As established in Section 2.6, originally, 80% of the data were used for training, and
20% were used for testing [44]. For the first phases of the project, we used only data from 1
January 2020 to 6 March 2022 to explore preliminary results. Later on, we decided to include
data from 2019. To compare the results when introducing the 2019 datasets, the testing
period (7 March 2022 to 28 September 2022) was maintained the same. This resulted in
using approximately 85% for the training data and 15% for testing.

For training, we used as an input the Sentinel-5P NO2 measurements and ARPA
meteorological data for the period of 1 January 2019 to 6 March 2022 at the time of passage
of the satellite and the 21-h period previous to this. As the target output, we provided the
model with the ARPA NO2 ground average measurement for each day from 12:00 h to
15:00 h UTC+1 for the MCM.

2.7.2. Testing

For the testing, we used the period from 7 March 2022 to 28 September 2022. This step
consisted of using the trained model (Section 2.7.1) to estimate the NO2 ground average
measurement for each day from 12:00 h to 15:00 h UTC+1 for the MCM.

As mentioned in Section 2.4, testing was performed to determine if the models would
have a lower error by classifying the wind direction into four or eight categories. This
consisted of testing all the regression models either with a 4 or an 8-sector division.

A point to consider when analysing the testing data is that ARPA NO2 and meteoro-
logical ground sensors were not available from 9 August 2022 to 23 August 2022. This was
a specific situation for the MCM, and therefore, ground estimations do not consider this
period of time.

3. Results

In this section, we present the results for each of the models using training and testing
data for the period from 1 January 2019 to 28 September 2022. To evaluate the quality of
the results and estimate the model error, we used the Root Mean Square Error (RMSE), as
suggested in the literature [44].

Table 3 contains the RMSEs obtained using each of the models. The first column
indicates whether the model belonged to the group of ML, linear models, the combination
of more than one model or the feature selection algorithms. The second column contains
the name of the model itself. The third and fourth columns show the RMSE for each of
the listed models. The difference between these two is the method performed in the phase
of data splitting (training and testing) specified in Section 2.7.1. The periodical sampling
column involved using training data on the dates between 1 January 2019 and 6 March
2022. For the random sampling, we performed the training/testing splitting randomly but
kept the 85/15% testing and training ratio.
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Table 3. RMSE between ground NO2 estimated values and ground truth from NO2 ARPA ground stations.

Periodical Sampling Random Sampling
Type of Model Model RMSE (µg/m3) RMSE (µg/m3)

Machine Learning

LSTM 3.77 6.82
Random Forest 3.70 7.13
Support Vector Reg. 3.99 6.37
Decision Tree Reg. 4.93 9.61
Gradient Tree Boosting 3.53 6.80
MLPR 3.23 6.42

Linear Models Kriging 3.78 6.11
B-Spline 4.19 6.63

Model Combination Voting (MLPR + Kriging) 3.50 6.06
Stacking (MLPR + Kriging) 3.55 5.98

Feature Selection
RF Feat. Sel. + Voting (MLPR + Kriging) 2.89 6.09
CV Feat. Sel. + Voting (GTB + Kriging) 3.21 5.99
Correlation > 0.6 + Voting (MLPR + Kriging) 4.15 6.87

From the results, we can observe a significant difference between the periodical
and the random sampling, where periodical sampling has a lower RMSE. The difference
can possibly be explained by the seasonality of the input data. On the one hand, we
have the periodical sampling where we ensure that all the temporal, environmental and
anthropological behaviours are used for training. On the other hand, random sampling
does not necessarily take this into consideration. Random sampling extracts dates without
taking into consideration if a particular season or period is included in the model training.
An example of this is the COVID-19 Italian lockdown period.

The time span used for this work (1 January 2019 to 28 September 2022) comprises data
from the COVID-19 pandemic, pre-pandemic and post-pandemic periods. The COVID-19
pandemic period represents the abnormal behaviour of people’s transportation dynamics
due to lockdown restrictions that were in place in Italy (9 March 2020 to 3 May 2020).
Average NO2 concentrations at the time of passage of the satellite declined for each day of
the week during the lockdown period compared to the same period in 2021 (Figure 9) and
2019 [53]. Google Mobility data (https://www.google.com/covid19/mobility/, (accessed
on 20 october 2022)) report the percentage change in people’s movements during the
COVID-19 lockdown period compared to a previous period where no lockdown was
present [54]. By using this data, we can attribute that the decline in people’s mobility was
caused by the transportation restrictions imposed by local authorities.

Figure 9. Mean ground NO2 during 2020 Italy’s COVID-19 lockdown vs. 2021 no-lockdown period.

https://www.google.com/covid19/mobility/
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The percentage decrease in Google mobility data (Figure 10) is calculated with respect
to a baseline period before the pandemic outbreak. The baseline days are determined as the
median value throughout the five-week period from 3 January to 6 February 2020. They
indicate the normal value for that day of the week [54].

Figure 10. COVID-19 pandemic and post-pandemic Google mobility data for a variety of location
categories [54].

In addition to the COVID-19 lockdown period, the wind direction (Figure 8) presents
some features to highlight in terms of periodicity. When aggregating the wind direction into
four groups, we observed that the most frequent one in the MCM was towards the south.
Further division (into 8 sectors) reveals that the most frequent wind direction during the
selected time period was the south-east direction and less frequent towards the north-east.
We examined this difference during the testing phase by training and testing all the models
first classifying them into four sectors and then into eight wind sectors. Results demonstrate
that for the best models, we have an improvement from 3.00 µg/m3 (4 wind sectors) to
2.89 µg/m3 (8 wind sectors). Therefore, we can assume that the eight-sector wind division
has a lower RMSE because the model is able to distinguish better the relationship between
NO2 and the wind direction. A clear example of this is the west and south-west directions,
where the division into four sectors includes part of the west into the south-west. This
distinction between west and south-west helps the model to assume that wind towards the
west will result in a higher NO2 concentration (Figure 11).

By making a more detailed analysis of the wind direction, we observed the presence
of a relationship between wind direction and NO2 concentrations. As seen in Figure 11,
on average, there is a higher atmospheric pollution concentration when the wind direction
is towards the north and the north-west. This behaviour is explained by the topographic
characteristics illustrated in the introduction (Figure 3). Wind blowing from the south to
the north and the north-west transports atmospheric pollutants, which due to the presence
of the Alps and the Apennines, become entrapped in the Po Valley.
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Figure 11. ARPA Lombardia NO2 ground average measurements from 12:00 h to 15:00 h UTC+1 for
each wind direction.

Given the points previously mentioned, we decided to use the periodical splitting
method and eight sectors for the wind direction as features for our model. As observed in
Table 3, the ML model that had the lowest RMSE was the MLPR. To combine characteristics
from several models, we tested all the different pairs of model combinations by using
Sklearn Voting and Stacking regressors. The result showed that the best model performance
was obtained by using the voting mechanism to combine MLPR with Kriging.

Understanding if any of the used features could be removed was relevant because
some of the features may not contribute towards the decrease in the RMSE. For this task,
we used two Sklearn feature selection algorithms: the Random Forest and Cross Validation
(CV). As an alternative, we calculated the Pearson correlation coefficient of all the inputs
with respect to the real ground NO2 measurement. We then used the features that had a
Pearson correlation coefficient higher than 0.5 with respect to ground NO2 to reduce the
number of features. In Table 3, the RMSE results for these feature selection techniques
demonstrate that by using the Random Forest feature selection algorithm in combination
with the Voting Regressor, the RMSE decreased by approximately 18% with respect to the
Voting (MLPR + Kriging) with no feature selection. The features selected by the best model
(RF Feature Selection) and by correlation larger than 0.5 can be found in Table 4.

Table 4. Features selected by Random Forest algorithm and those with Pearson correlation coefficient
larger than 0.5.

RF Selected Features Features with Pearson Corr > 0.5

Satellite NO2 Satellite NO2
Temperature at satellite passage time Temperature at satellite passage
Wind speed at satellite passage time Global radiation at satellite passage

Wind direction at satellite passage time Relative humidity at satellite passage time
Global radiation at satellite passage time Temperature before satellite passage

Temperature before satellite passage Global radiation before satellite passage time
Wind speed before satellite passage

Global radiation before satellite passage time
Weekday/weekend classifier

Day of the week
The month of measurement

Apart from the RMSE results of Table 3, Figure 12 plots the estimations obtained by
the model with the lowest RMSE (voting algorithm combining MLPR and Kriging with
RF feature selection). In this plot, we compare the estimated ground NO2 and the ground
truth for the testing period (7 March 2022 to 28 September 2022 from 12:00 h to 15:00 h
UTC+1). We can observe that the trend and estimations are close to the ground truth.
By calculating the residuals from the estimations and comparing them to three standard
deviations of the ground truth, we found that the date of 24 March is the only one above
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this threshold. A relationship between this date and other factors (meteorological or high-
intensity traffic) was explored, but none confirmed an explanation for the abnormality on
this particular date.

Figure 12. NO2 ground truth vs. estimation from Voting Regression (MLPR + Kriging) and Random
Forest feature selection algorithm.

Table 5 shows the statistical comparison between the ground truth and the best model
(Voting Regression and RF feature selection with MLPR and Kriging) for the NO2 ground
estimations testing period (from 12:00 h to 15:00 h UTC+1). The best model’s RMSE
(2.89 µg/m3) is significantly low because it is approximately lower by 50% compared to the
ground truth’s standard deviation. Additionally, it is 65% lower than the real minimum
value observed during the testing period.

Table 5. Statistical comparison between Voting Regression (MLPR and Kriging) with RF feature
selection NO2 estimations and the ground truth NO2 (from 12:00 h to 15:00 h UTC+1).

Data Measure Value (µg/m3)

Ground Truth
Mean 17.69

Standard Deviation 6.40
Minimum 8.187
Maximum 43.14

Model estimation
Mean 18.18

Standard Deviation 5.97
Minimum 7.41
Maximum 37.493

As a comparison with our best result, we trained all the models using only Sentinel-5P
data. The best model in this case had an RMSE of 6.18 µg/m3 obtained with the SVR model.
This demonstrates that the use of meteorological data in addition to satellite Sentinel-5P
measurements decreases the estimation error of the NO2 average (from 12:00 h to 15:00 h
UTC+1) by approximately 45%.

4. Discussion and Conclusions

The main purpose of this study was to estimate ground NO2 concentrations for the
MCM from 12:00 h to 15:00 h UTC+1. We used ground meteorological data and Sentinel-5P
NO2 observations. This is relevant for regions where no NO2 ground sensors are present,
which in most cases, is a limitation for LMICs. The intention of using other networks that
are globally available (i.e., meteorological indicators) apart from satellite data is to improve
the estimation of NO2 at the ground level.

Due to its topographical and anthropogenic characteristics, the study area for this
work was the Metropolitan City of Milan. The period of time of the data was from 1
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January 2019 to 28 September 2022 every day from 12:00 h to 15:00 h UTC+1. The esti-
mation was accomplished by training linear and non-linear multivariate autoregressive
models. The final output compares the different models based on the RMSE obtained from
their estimations. In detail, the groups compared were ML models, linear models and a
combination of ML and linear models. In order to decrease the number of features and
reduce computational resources, we also used feature selection algorithms. The model
with the lowest RMSE (2.89 µg/m3) was the RF feature selection and a voting regression
combining MLPR and Kriging. The number of features was reduced from 15 to 11 by using
the RF feature selection algorithm.

In addition to the developed model, this study confirms the strong relationship that
meteorological conditions have on NO2 concentrations. This can be specially observed
with features such as wind direction and ground temperature. Due to the NO2 seasonal
behaviour, the period of the year also has a strong influence on the model. Another factor
which may be relevant to the NO2 atmospheric ground concentrations is vehicle traffic.
This is worth considering for future studies.

As indicated in Table 5, the estimations have an RMSE that is more than 50% lower
than the ARPA NO2 standard deviation for the daily average from 12:00 h to 15:00 h UTC+1.
These results are significant compared to using only Sentinel-5P data for training the model,
which resulted in a decrease of approximately 45% in the RMSE.

In future phases of this work, we will analyse the use of satellite data only (both
meteorological and atmospheric). This will be achieved by using satellite meteorological
open data (e.g., EUMETSAT from the EU or GOES from NASA) to ensure an air quality
assessment independent of ground sensors. Additionally, we will explore the estimation of
ground NO2 at the resolution of 5.5 by 3.5 km as used by the Sentinel-5P.
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Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
API Application Programming Interface
ARPA Agenzia Regionale per la Protezione Ambientale
CO Carbon Monoxide
COPD Chronic Obstructive Pulmonary Disease
COVID Corona Virus Disease
CV Cross Validation
DIAS Data and Information Access Services
DL Deep Learning
DTM Digital Terrain Model
DTR Decision Tree Regression
EEA European Environment Agency
ETS Extreme Triple Smoothing
ESA European Space Agency
EU European Union
EUMETSAT European Union Meteorological Satellites
GB Gradient Boosting
GOES Geostationary Operational Environment Satellite
GTB Gradient Tree Boosting
LMICs Low- and Middle-Income Countries
LR Linear Regression
LSTM Long Short-Term Memory
MCM Metropolitan City of Milan
MDPI Multidisciplinary Digital Publishing Institute
ML Machine Learning
MLPR Multi-Layer Perceptron Regressor
MLR Multiple Linear Regression
MODIS Moderate Resolution Imaging Spectroradiometer
NASA National Aeronautics and Space Administration
NN Neural Network
NO2 Nitrogen Dioxide
NO Nitrogen Monoxide
O3 Ozone
ODC Open Data Cube
OMI Ozone Monitoring Instrument
PM Particulate Matter
RF Random Forest
RMSE Root Mean Square Error
SARIMA Seasonal Autoregressive Integrated Moving Average
SDGs Sustainable Development Goals
SO2 Sulphur Dioxide
SVM Support Vector Machine
SVR Support Vector Regression
TROPOMI TROPOspheric Measurement Instrument
UN United Nations
USA United States of America
WHO World Health Organization
WMO World Meteorological Organization
XGB Extreme Gradient Boost
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