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Abstract: Self-supervised representation learning (SSRL) concerns the problem of learning a useful
data representation without the requirement for labelled or annotated data. This representation
can, in turn, be used to support solutions to downstream machine learning problems. SSRL has
been demonstrated to be a useful tool in the field of geographical information science (GIS). In
this article, we systematically review the existing research literature in this space to answer the
following five research questions. What types of representations were learnt? What SSRL models
were used? What downstream problems were the representations used to solve? What machine
learning models were used to solve these problems? Finally, does using a learnt representation
improve the overall performance?
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1. Introduction

Machine learning may be defined as the use of methods that can automatically detect
patterns in data, and in turn use these patterns to predict future data, or to perform other
kinds of decision making under uncertainty [1]. Deep learning is a type of machine learning
which involves the use of artificial neural networks with many layers [2]. Deep learning has
proven to be useful for solving problems in the fields of natural language processing (NLP)
and computer vision, where it significantly outperforms traditional statistical machine
learning models such as the support vector machine (SVM) and random forest. More
recently, the success of deep learning translated to many other fields. This includes the
field of geographical information science (GIS), where it has been successfully applied to a
large array of problems. For example, Derrow-Pinion et al. [3] describe how Google Maps
uses deep learning to predict travel times. Zhang et al. [4] describe how deep learning can
also be used to perform land-use and land-cover classification.

Supervised learning is an approach for training machine learning models using la-
belled or annotated data [1]. In most cases, the labels are created by manual annotation.
Statistical machine learning models can be successfully trained using supervised learning
with relatively small amounts of labelled data. On the other hand, to successfully train
deep learning models using supervised learning, it is generally necessary to use large
amounts of labelled data. However, in some cases, obtaining large amounts of labelled data
represents a significant challenge [5], which limits the applicability of deep learning models.
In the context of problems within the GIS domain, this challenge stems from many reasons,
including user privacy concerns related to sharing data, the cost of labelling data, and
the lack of physical access to some geographical locations. For example, it is challenging
to obtain labelled data necessary to train models for location or point-of-interest (POI)
recommendation [6]. This is known as the cold start problem and occurs when some POIs
and users have no known previous visits or check-ins [7]. It is also challenging to obtain
labelled data necessary to train models for predicting spatiotemporal phenomena such as
air quality [8].
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Many solutions to this challenge have been proposed, including transfer learning, semi-
supervised learning, and active learning. However, one of the most promising solutions,
which has gained a lot of recent attention in the domains of computer vision and NLP, is self-
supervised representation learning (SSRL) [9]. An SSRL model aims to learn a useful data
representation where semantically similar inputs have similar representations, which in
turn simplifies the problem of supervised learning from such representations. Consequently,
subsequent or downstream supervised deep learning models can be successfully trained
using less-labelled data. SSRL models pose the problem of learning a data representation
as a supervised learning problem where the labels in question are derived from unlabelled
data in an automated manner. For example, this can be done by masking or hiding parts of
the unlabelled data and defining these parts as labels. The most famous examples of SSRL
models are word embeddings in the field of NLP, such as word2vec [10] and BERT [11],
which learn representations of individual words. These learnt representations capture
the semantics of words and as such are commonly used to solve many downstream NLP
problems, such as sentiment analysis and question answering.

More recently, many researchers have started to consider the application of SSRL
to geographical data. For example, Jeawak et al. [12] proposed a method for learning
representations of the environmental characteristics of geographical regions. The authors
subsequently showed that these representations could successfully be used to solve many
downstream problems including predicting species distribution and climate features. Note
that many authors in the GIS domain use the term representation learning when referring
to SSRL.

Despite being a relatively new paradigm, SSRL has been demonstrated by many
authors to help solve machine learning problems in the field of GIS. Therefore, in this
article, we systematically review the scientific literature in this space. The aim of this
review is threefold. Firstly, to summarise the existing articles. Secondly, to identify gaps in
current research and identify future research directions. Finally, to provide readers with a
framework for positioning new research.

The remainder of this article is structured as follows. In Section 2, we review necessary
background material relating to SSRL. In this section, we also summarise existing literature
reviews of SSRL and discuss the contribution of our literature review. In Section 3, we
describe the methodology used to perform the literature review, which includes the identi-
fication of the research questions this article aims to answer. Subsequently, in Section 4 we
answer these research questions. Finally, in Section 5 we summarise the findings of this
literature review and draw pertinent conclusions.

2. Background

In this section, we review background material relating to SSRL that will be used
to frame the present review. The aim of this article is not to provide an introduction to
the topic of SSRL. Therefore, we do not provide a detailed description of the background
material in question. A broader introduction to the topic of SSRL can already be found
in [9].

As discussed in the introduction, an SSRL model aims to learn a useful representa-
tion of the data using labelled data that are derived automatically from unlabelled data.
The labels in question are commonly referred to as pseudo-labels. SSRL can be considered a
special form of unsupervised learning. However, SSRL models are distinct from traditional
unsupervised learning models, such as clustering, because SSRL models formulate the
learning problem as a supervised learning problem using pseudo-labels. To help relate and
contrast different SSRL models, it is useful to define a taxonomy or classification scheme
for these models. In many cases, the boundaries between different types of models are not
clearly defined and this has resulted in different authors defining the boundaries differently.
Furthermore, as the research field of SSRL developed, different taxonomies have been
proposed to reflect the development of new and improved models. In this article, we
adopt the taxonomy proposed by Deldari et al. [13], which is illustrated in Figure 1. In this
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taxonomy, models are grouped with respect to the loss or objective function that learning
attempts to optimise (e.g., cross-entropy and triplet loss). It is a useful taxonomy in the
context of this review because it was designed to be general and not specific to a particular
type of data such as image or text data.

Self-supervised 
Representation Learning 

Generative Models

Discriminative Models

Pretext Models

Contrastive Models

Clustering Models

Non-Contrastive Models

Figure 1. A taxonomy of SSRL models, adopted from that proposed by Deldari et al. [13].

The taxonomy divides SSLR models into two main groups of generative and dis-
criminative models. Generative models attempt to learn a useful data representation by
learning to generate new data elements that have similar characteristics to the original data
elements. An example of a generative model is a variational autoencoder. On the other
hand, discriminative models attempt to learn a useful data representation by learning to
discriminate between different elements of the original data. The taxonomy subdivides this
group of discriminative models into the four subgroups of pretext, contrastive, clustering,
and non-contrastive models. Note that Deldari et al. [13] refers to non-contrastive models
as regularisation models. We adopt the former term because it is more frequently used in
the literature when referring to this subgroup [14]. One may wonder why the taxonomy
for generative models is not as fine-grained as the taxonomy for discriminate models. This
is a consequence of the fact that the latter group of models have been shown to empirically
outperform the latter [15]. Hence, most research articles consider the problem of developing
new discriminative models.

We now define each of the four discriminative model subgroups in turn. Pretext
models attempt to learn a useful data representation by learning to predict the pseudo-
labels. This prediction problem is commonly referred to as a pretext task. In many cases,
these models use a traditional supervised learning model and an objective such as cross-
entropy. A commonly used pretext task involves masking or hiding a subset of the data and
using a supervised learning model to learn to predict this subset [11]. Contrastive models
attempt to learn a useful data representation such that data elements with similar pseudo-
labels are close in this representation whereas data elements with dissimilar pseudo-labels
are far apart in this representation. An example of an objective function used by contrastive
models is the triplet loss [16]. The popular SSRL model word2vec is commonly trained
using a contrastive objective function known as noise contrastive estimation [10].

Clustering models attempt to learn a useful data representation such that data ele-
ments with similar pseudo-labels are clustered together in this representation. Clustering
models can be considered a generalisation of contrastive models where the generalisa-
tion in question is from data points to data clusters. Examples of clustering models are
DeepCluster [17] and SwAV [18].

Non-contrastive models attempt to learn a useful data representation such that data
elements with similar pseudo-labels are close in this representation. Non-contrastive
models are distinct from contrastive models in the sense that they do not require one to
explicitly specify pairs of data elements with dissimilar pseudo-labels. Specifying such
pairs is one of the greatest challenges to implementing contrastive models, and this was
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the motivation for the development of non-contrastive models [19]. Examples of non-
contrastive models are BYOL [19] and Barlow twins [20].

To date, several SSRL review articles have been published. For example, Jing and Tian [21]
and Liu et al. [22] review the applications of SSRL to computer vision and graph data,
respectively. To the authors’ knowledge, there currently exists no review that considers the
application of SSRL to geographical data. Mai et al. [23] present a review that considers
different representations for geographical data that can be used in downstream machine
learning models. However, this article does not consider the topic of SSRL per se. Wang
and Biljecki [24] review the application of unsupervised learning to urban systems but
only mention SSRL in passing. Wang et al. [25] review the application of SSRL to remotely
sensed data, which is only one type of geographical data. As discussed later in this article,
to limit the scope of our review and minimise overlap with [25], we excluded articles that
considered remotely sensed data.

Finally, it is important to note that SSRL is a relatively new and emerging research
field. As a consequence, many of the state-of-the-art models discussed above have only
been applied to a limited set of data types with image and text data being the most common
types. Generalising these models so that they can be applied to different types of data, such
as geographical data, is non-trivial. Furthermore, even if these models could be generalised
in such a way, it is unclear if the representations learnt would be useful.

3. Methodology

As discussed in the introduction to this article, we aim to perform a systematic litera-
ture review of existing articles that consider the application of SSRL to geographical data.
The methodology used to perform this task is based on the recommended best practice
described by Kitchenham [26], which has previously been used in many other studies [27].
It consists of the following seven steps :

1. Formulate the research questions in order to describe the overall aims of the review.
2. Design an efficient and reproducible search strategy to retrieve all relevant studies

with respect to the research questions.
3. Specify inclusion and exclusion criteria to control the review’s scope.
4. Assess the quality of the included studies to ensure their scientific validity as well as

the validity of the systematic review findings.
5. Extract data from the included studies to gather specific evidence relevant to the

research questions.
6. Perform narrative synthesis of findings from the extracted data in order to answer the

research questions.

3.1. Research Questions

The purpose of this systematic literature review is to answer the following research
questions regarding the application of SSRL to geographical data.

RQ1: What types of representations were learnt?
RQ2: What SSRL models were used?
RQ3: What downstream problems were the learnt representations used to solve?
RQ4: What machine learning models were used to solve the downstream problems?
RQ5: Did using a learnt representation improve performance relative to applying a

machine learning model to the raw data or another representation not obtained
using SSRL?

3.2. Search Strategy

The purpose of defining a search strategy is to identify the vast majority of relevant
articles systematically. In our search strategy, we used the Web of Science document search
facility. It indexes all major conferences and journals in the field of GIS and therefore we
were confident that it would allow us to identify the vast majority of relevant articles.
The Web of Science search facility requires that searches be specified in the form of a search



ISPRS Int. J. Geo-Inf. 2023, 12, 64 5 of 17

query containing many fields. The fields in question include the article title and topic.
The search query needed to be carefully designed to ensure that the set of articles returned
had both high precision and high recall. Following an iterative specification and evaluation
process, we defined the following search query:

(geographic OR geographical OR geo OR GIS OR location OR place OR spatiotemporal OR
spatial OR road or street OR address OR GPS OR route OR trajectory OR POI OR points
of interest) (Title) and (encoding OR embedding OR representation OR vectorization OR
metric learning OR self-supervised) (Title) and learning (Topic)

We restricted the search to articles published in the year 2013 and afterwards. The cut-
off year was based on the publication date of the word2vec method for representation
learning in NLP [10]. This method was one of the first to demonstrate the usefulness of
SSRL and the current wave of interest in the topic can be at least partly attributed to it. We
found that many authors mentioned that the success of word2vec was one of their main
motivations for considering SSRL. Furthermore, many methods are named after word2vec,
such as gps2vec [28] and poi2vec [29]. The search query executed on 23 August 2022
retrieved a total of 375 articles.

3.3. Selection Criteria

To filter the articles returned by the search strategy and to ensure only those articles
that provide direct evidence to answer the research questions were included, we defined
inclusion and exclusion criteria. These criteria are presented in Tables 1 and 2, respectively.
Remotely sensed data represents an important type of geographical data. Due to the large
overlap between the domain of remote sensing and the domains of image processing and
computer vision, there exists a large number of studies that consider the application of
SSRL to remotely sensed data [30,31]. A recent review of such studies can be found in [25].
Therefore, to limit the scope of our review and minimise overlap with [25], we excluded
articles that considered remotely sensed data. This was implemented using the exclusion
criterion EX6 in Table 2. We also excluded methods other than SSRL, such as manual
feature engineering, that were used to determine the representations in question. This was
implemented using the exclusion criterion EX7 in Table 2.

Table 1. Inclusion criteria.

ID Criterion

IN1 The article is written in English
IN2 The article considers the problem of SSRL for geographical data.

Table 2. Exclusion criteria.

ID Criterion

EX1 The article is not peer-reviewed.
EX2 The article is a review article.
EX3 The full text of the article is not available to the academic community.
EX4 The article was published before 1 January 2013.
EX5 The article was published after 23 August 2022 (the Web of Science search date).
EX6 The article considers the problem of SSRL for remotely sensed data.
EX7 The article does not use SSRL.

The retrieved articles were independently evaluated by two annotators with respect
to the inclusion and exclusion criteria. An inter-annotator agreement of 89% was calculated
using the Cohen kappa coefficient [32]. Disagreements were resolved by discussion between
the annotators and a more detailed analysis of the articles in question. Subsequently, three
articles were excluded from further analysis because full versions of the articles in question
could not be obtained. A further seven articles were excluded because even though they
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referred to the use of "representation learning" in their corresponding title or abstract, these
articles did not use SSRL to learn the representations in question. The representations were
instead learnt in an end-to-end manner using the downstream problems. Following this,
a total of 108 articles were retained for further processing. A complete list of these articles
is presented in the Supplementary Material.

4. Analysis

In this section, we present answers to each of the five research questions described in
Section 3.1.

4.1. What Types of Representations Were Learnt?

A large proportion of all data has a geographical or spatial element. In fact, some
authors argue that this proportion is 80% or more [33]. To help structure the types of
representations learnt, we designed a taxonomy of the geographical data types most
commonly considered in the works reviewed in this study. This is displayed in Figure 2.
Other authors have previously proposed taxonomies of geographical data types. However,
we found that these mostly contained classical geographical data types and did not capture
many of the data types encountered in our study. For example, the taxonomy proposed by
Scheider et al. [34] does not contain the data types of user or text. These specific data types
were frequently encountered in our study.

Data Type

Location

Location

User

POI

Region

Activity

Street Network

Text

Trajectory

Time

Event

Activity

Segment

Intersection

Individual

Type

Figure 2. A taxonomy of geographical data types is displayed.

A location is a geographical location represented by a latitude and longitude pair.
Location data is commonly obtained using a GPS receiver. A POI is a location with
additional data attached that describes the type or category of an object at that location.
Examples of POIs include pubs, shops, and gyms. SSRL can be used to learn specific
representations for each individual POI or learn general representations of each POI type.
For example, one could learn a representation of a particular pub (e.g., Pen & Wig pub
located at 1 Park Grove, Cardiff, CF10 3BJ) or learn a more general representation of a pub
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as a class of objects (e.g., a kind of drinking establishment that is licensed to serve alcoholic
drinks for consumption on the premises). A region is a geographical object that has an area
greater than zero and examples include postal codes, cities, and countries. Note that a region
may contain many locations and/or POIs. The above definitions of location, POI and region
are motivated by the definitions of location, POI, and place, respectively, proposed by the
World Wide Web Consortium (W3C) (https://www.w3.org/2010/POI/wiki/Main_Page
(accessed on 11 February 2023)).

A user is a person who uses something, such as a place, facility, product, or service,
e.g., a user of a location-based social network (LBSN). An activity is an action performed
by one or more users. An example is a user performing a POI check-in operation in a LBSN
or posting on a social media platform such as Twitter. An event is something that happens
or takes place, especially something of importance. Examples of events include a party,
a traffic accident, or a weather event such as a storm. An activity is distinct from an event
in the sense that the former is user centric while the latter is not.

An example of text is a social media post on Twitter or a postal address. Street
segments and street intersections are two types of street network elements. A trajectory
corresponds to a sequence of elements where the elements in question may be locations
or activities. An example is a sequence of POI check-in operations in a LBSN performed
by a given user. Note that there exist a lot of inconsistencies in the literature with respect
to the names and definitions of the above geographical data types. For example, some
authors will define a place to coincide with our definitions of a location or a POI. To ensure
consistency, within this article we always use the terms and definitions described above.

In the remainder of this section, we state the number of articles that considered
the problem of learning representations of each geographical data type covered by the
taxonomy in Figure 2. We illustrate each data type using examples from the corresponding
articles. A complete list of articles and descriptions can be found in the Supplementary
Material. A few articles considered learning representations of a unique and less general
data type that does not correspond to any element in the taxonomy. We review these
articles at the end of this section. Several articles considered learning representations
where the data type in question corresponds to more than one element in the taxonomy.
For example, in [35] individual POIs are modelled using a tuple of an individual POI
plus a user. Consequently, personalised individual POI representations were learnt. We
highlight these articles throughout this section. Finally, several articles considered learning
more than one data type representation. For example, Yang et al. [36] proposed learning
representations of both users and individual POIs in an LBSN. We will review these articles
and some aspects of the learning process later in Section 4.2.

4.1.1. Location Representations

A total of 11 articles considered the problem of learning location representations.
In [37], the locations correspond to those of buses travelling across a street network.
In [38,39], the locations correspond to that of telecommunication base stations that mobile
devices connect to. In [40], the locations correspond to that of WiFi hotspots that mobile
devices connect to.

4.1.2. Individual POI Representations

A total of 31 articles considered the problem of learning representations of individual
POIs. In many cases, the POIs correspond to those represented in two LBSNs, Foursquare,
and Gowalla. Examples include [7,41]. In [36] the POIs correspond to businesses reviewed
on the crowdsourcing platform Yelp.

In some cases, individual POIs are modelled as a tuple of multiple features. In [35],
individual POIs are modelled as a tuple of an individual POI plus a user. Consequently,
personalised individual POI representations were learnt. In [42], individual POIs are
modelled as a tuple of an individual POI plus a time. Consequently, temporal individual
POI representations were learnt.

https://www.w3.org/2010/POI/wiki/Main_Page


ISPRS Int. J. Geo-Inf. 2023, 12, 64 8 of 17

4.1.3. POI-Type Representations

A total of nine articles considered the problem of learning representations of POI types.
In [41], the POIs correspond to those represented in the LBSNs Foursquare and Gowalla.
In [43,44], the POIs correspond to the types of businesses (e.g., restaurants, beauty salons,
dental practices, etc.) reviewed on Yelp. In [45], the POIs correspond to those represented
in a POI dataset (e.g., dental surgery) from the Ordnance Survey, which is the national
mapping agency for the UK.

4.1.4. Region Representations

A total of 18 articles considered the problem of learning representations of regions.
In [12], the regions correspond to grid cells of size 10km × 10km. Note that, in this article,
a region is modelled as a tuple of a cell plus a time. Hence, a spatiotemporal representation
was learnt. In other articles, the regions correspond to less regular shapes than rectan-
gular cells. In [46], the regions correspond to cities. In [47], the regions correspond to
neighborhood statistical areas defined by the USA government.

4.1.5. Time Representations

A total of seven articles considered the problem of learning representations of time.
All of them divided time into time windows and learnt their representations. For example,
in [12] the time windows correspond to months of the year. Similarly, in [42,48] the time
windows correspond to days of the week.

4.1.6. User Representations

A total of 27 articles considered the problem of learning representations of users.
In [36,49], the users correspond to users in a LBSN. In [50,51], the users correspond to users
of the social media platform Twitter. In [52], the users correspond to customers that have
products delivered to their homes.

4.1.7. Activity Representations

A total of 10 articles considered the problem of learning representations of activities.
In [6,53], the activities correspond to LBSN POI checkins. In many cases, activities are
modelled as tuples of multiple features. For example, in [6] a check in combines an
individual POI, the region containing this POI, the user who performed the check in, and
the time the check in happened into a tuple. In [54,55] the activities correspond to posting
on the social media platform Twitter. In both of these articles, the activities are modelled as
a tuple of the text, time, and location of the post.

4.1.8. Event Representations

A total of four articles considered the problem of learning representations of events.
In [56], representations of traffic accidents were learnt. In [47], representations of crime
types were learnt. In [57], representations of event types were learnt. In this article, an event
is modelled as a location and time tuple.

4.1.9. Location Trajectory Representations

A total of 15 articles considered the problem of learning representations of location
trajectories. In [58,59], the trajectories correspond to GPS trajectories. In [39,60], the
trajectories correspond to trajectories of telecommunication base station locations that
mobile devices connect to.

4.1.10. Activity Trajectory Representations

A total of seven articles considered the problem of learning representations of activity
trajectories. In all articles, the trajectories correspond to trajectories of LBSN POI check ins [61,62].
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4.1.11. Text Representations

A total of 12 articles considered the problem of learning representations of texts.
In [63,64], the texts correspond to postal addresses. In [62,65], the text corresponds to
written descriptions of LBSN POI check ins.

4.1.12. Street Segment & Intersection Representations

A total of six articles considered the problem of learning representations of street
network segments. These articles include [58,66].

Only two articles, [66,67], considered the problem of learning representations of street
network intersections.

4.1.13. Other Representations

Finally, a total of six articles considered learning representations of a data type that
does not correspond to any element in the proposed taxonomy. In [68], representations
of houses were learnt. In [69], representations of knowledge graph entities and relations
were learnt where these entities and relations model geographical knowledge. In [70],
representations of bike-sharing stations were learnt.

4.2. What SSRL Models Were Used?

We wish to identify the SSRL models used to learn representations of the different
geographical data types. As previously discussed, many articles learnt representations of
more than one data type. For example, Yang et al. [36] proposed to learn representations of
both individual POIs and users in an LBSN. There are two main approaches by which such
representation can be learnt. In the first approach, the different representations are learnt
independently and sometimes even concurrently. For example, this approach was used
in the article by Yang et al. [36] mentioned above. In the second approach, the different
representations are learnt hierarchically, where one representation is used to define another
recursively. For example, Chen et al. [49] used this approach to learn representations of
activities and users. The authors first learnt activity representations and subsequently used
these representations to learn user representations. In this case, the process of learning
user representations equates to modelling a user as a distribution of their corresponding
activity representations.

The remainder of this section is structured as follows. In Section 4.2.1, we identify the
SSRL models used to learn representations. Sections 4.2.2 and 4.2.3 review those articles
that learn representations in an independent and a hierarchical manner, respectively.

4.2.1. SSRL Models Used

We defined a taxonomy of SSRL models in Figure 1. For each model in this taxonomy,
we identified the articles that used this model to learn representations. Some works
used more than one model type, for example, when learning more than one data type
representation [36]. In total, 61 articles used a contrastive SSRL model. In total, 19 articles
used an autoencoder, which is considered a pretext SSRL model. In total, 32 articles used a
pretext SSRL model other than an autoencoder. Only two articles used a generative SSRL
model. Finally, four articles used a model based on matrix factorization. For each of these
model types, the corresponding list of articles is provided in the Supplementary Material.
Interestingly, no articles used clustering or non-contrastive SSRL models. We believe this
can be attributed to the fact that these types of models are relatively new inventions.

4.2.2. Learning Representations Independently

In total, 26 articles learnt more than one data type representation in an independent
manner. The full list of articles is provided in the supplementary material. Here, we
reference a handful of representative examples. The combinations of representations learnt
independently include those of individual POIs and users in a LBSN [7,36], individual POIs
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and POI types [41], knowledge graph entities and relations [69], street network segments
and intersections [66], users and regions [46].

4.2.3. Learning Representations Hierarchically

In total, 18 articles learnt more than one data-type representation in a hierarchical
manner. The full list of articles is provided in the supplementary material. Here, we
reference a handful of representative examples. The combinations of representations learnt
hierarchically include those of individual POIs and users [71], street segments and location
trajectories [58], individual POIs and bike share stations [70], POI types and regions [45,72],
crime types and regions [47].

4.3. What Downstream Problems Were the Learnt Representations Used to Solve?

The articles reviewed used learnt representations in a diverse collection of downstream
applications. This can in part be attributed to the fact that GIS is an application-focused
research field. Many of these articles used a single data type representation while many
others used more than one data type representation. For example, many articles use both
LBSN user and individual POI representations for POI recommendation.

A total of 64 articles describe applications that used a single learnt representation of a
relevant type. The full list of articles is provided in the Supplementary Material. A total
of 44 articles describe applications that used more than one learnt representation. Again,
the full list of articles is provided in the Supplementary Material. Given the diverse nature
of the applications, the authors felt it was not feasible to develop a concise application
taxonomy. Therefore, we grouped the corresponding applications according to the type of
representation they used. The following subsections describe some example applications
for each type of representation.

4.3.1. Location Representations

The authors [28,38] predict the next location a user will visit. The authors [73] detected
financial fraud and performed customer segmentation. The financial fraud in question
refers to a customer failing to make required payments.

4.3.2. Individual POI Representations

Refs. [74,75] recommended POIs to users. Refs. [76,77] classified POI types and
clustered individual POIs. Finally, ref. [78] focused on POI search auto-completion.

4.3.3. POI Type Representations

Ref. [79] determined urban functional regions. Ref. [43] measured POI type similarity.
Finally, ref. [44] analysed different POI type representations within a given city. They also
analysed the same POI type representations between different cities.

4.3.4. Region Representations

Ref. [80] predicted house prices. Ref. [8] predicted air quality. Ref. [81] classified land
use. Ref. [12] predicted climate features and the distribution of animal species. Ref. [82]
predicted the number of second-hand house sales. Finally, ref. [83] predicted the number of
POI check-ins.

4.3.5. User Representations

Ref. [84] recommended POIs. Ref. [51] predicted the location of Twitter users. Ref. [85]
predicted the duration of a trip. Ref. [86] clustered vehicle drivers. Finally, in [52], the
problem of clustering of users, to allow better routing of delivery vehicles, was considered.

4.3.6. Activity Representations

Ref. [6] recommended POIs. Ref. [53] predicted the keywords, location and time of an
activity. Finally, ref. [87] predicted properties of an activity, such as its time and location.
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4.3.7. Event Representations

Ref. [56] used representations of traffic accidents to predict traffic congestion. Ref. [57]
used representations of event type to perform event recommendation. Ref. [54] detected
events such as a protest or a disaster. Ref. [88] used representations of weather conditions
and bike stations to predict bike sharing station demand.

4.3.8. Location Trajectory Representations

Refs.[59,89] measured location trajectory similarity. Ref. [90] detected trajectory
anomalies. Ref. [91] scored driving performances and detected dangerous driving regions.
Ref. [92] predicted traffic flow/volume entering and leaving different regions. Ref. [60]
predicted the next location in a trajectory. Finally, refs. [59,93] clustered trajectories.

4.3.9. Activity Trajectory Representations

Ref. [94] recommended trajectories. Ref. [95] clustered trajectories. Ref. [96] predicted
the next locations visited, and matched trajectories to corresponding users.

4.3.10. Text Representations

Ref. [63] matched addresses (i.e., mapped addresses to locations). Ref. [97] pre-
dicted address locations. Ref. [98] disambiguated named entities by assigning similar
representations to the same spatial locations or places. Ref. [99] performed a qualitative
spatiotemporal analysis of social media posts. Finally, ref. [100] determined the locations of
posts on Twitter.

4.3.11. Street Intersection and Segment Representations

Ref. [101] classified street types. Ref. [102] classified street types and speed limits.
Ref. [67] measured location trajectory similarity.

4.3.12. Other Representations

Ref. [103] used representations of trajectories of transportation hubs to perform
trajectory recommendation.

4.3.13. Multiple Representations

As mentioned previously, a total of 44 articles proposed applications that used more
than one learnt representation. The full list of articles is provided in the Supplementary
Material. Here we discuss several examples.

A total of 16 articles considered the application of POI recommendation in an LBSN.
The majority of these works used representations of individual POIs and users [104,105].
Ref. [106] used representations of individual POIs, users, and user reviews to implement
POI recommendation. Ref. [46] used representations of users and regions to recommend
travel destinations. This is distinct from POI recommendation because cities instead of
POIs are recommended. Refs. [29,107] used representations of individual POIs and users to
predict which users will visit which POIs and identify the most influential users.

A total of five articles considered the application of social link prediction or friend
recommendation in an LBSN. All of these works used representations of individual POIs
and users [108,109].

Ref. [110] used representations of locations, names, addresses, and places to disam-
biguate place names. Ref. [111] used representations of users and activities to identify
functional zones and predict crimes. Ref. [42] used representations of individual POIs,
times, and regions to identify thriving communities. Ref. [70] used representations of
individual POIs and bike-share stations to predict bike demand for both existing and new
bike stations. Ref. [68] used representations of houses and POI types to predict house prices.
Ref. [37] used representations of locations and activities to detect anomalous trajectories,
classify activities, and classify bus routes. Ref. [112] used representations of locations,
location trajectories, and users to identify trajectories generated by the same individual.
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Finally, ref. [69] used representations of knowledge graph entities and relations to answer
logic queries.

4.4. What Machine Learning Models Were Used to Solve the Downstream Problems?

In each of the articles reviewed, machine learning models were applied to one or more
learnt representations to solve one or more downstream problems. A large spectrum of
models were considered. Therefore, to concisely summarise the corresponding articles
reviewed, we developed a taxonomy such that most articles use models that correspond
to elements in this taxonomy. The taxonomy in question contains the following eight
elements: supervised neural network models (e.g., multilayer perceptron), supervised
linear models (e.g., linear regression), traditional supervised models (e.g., support vector
machine and random forest), logistic regression, unsupervised clustering models (e.g.,
k-means), visualisation models (e.g., t-SNE), distance measure in the representation space
(e.g., Euclidean distance), and other model types (e.g., a Bayesian graphical model or a
collaborative filtering model). To illustrate how a distance measure may be used to solve a
downstream problem consider the case where one wishes to perform POI recommendation
in an LBSN. If suitable representations of individual POIs and users have been learnt, then
POI recommendation for a given user may be performed by determining the POIs whose
representations are close to the representation of the user in question [7].

A total of 34 articles used supervised neural network models, 13 used supervised
linear models, 12 used traditional supervised models, 3 used logistic regression models,
13 used unsupervised clustering models, 4 used visualisation models, 32 used a distance
measure in the representation space, and 7 used other model types. The corresponding
articles are listed in the supplementary material.

4.5. Did Using a Learnt Representation Provide Improved Performance?

The articles reviewed universally found that applying machine learning models to
learnt representations provided superior performance relative to applying these models
directly to the corresponding raw data. Furthermore, several authors found that performing
visual analytics using the learnt representations uncovered novel insights [39]. This result
is in line with the findings in other research fields such as NLP where the use of learnt
representations is universally accepted to provide superior performance. However, it is
worth noting that the nature of academic publications to only promote positive results may
introduce bias into any such analysis.

In recent years, as the use of learnt representations became common, most articles
evaluated their proposed representations against other previously proposed representa-
tions [105,113]. In an interesting result, Das et al. [68] found that applying machine learning
models to the concatenation of learnt representations with the corresponding raw data
gave the best overall performance.

5. Summary and Conclusions

In this section, we present a summary of and draw conclusions from the answers to
the five research questions presented in this systematic literature review.

SSRL has been used to learn representations of many geographical data types. Some of
the most commonly considered data types are locations, individual POIs, users, and regions.
This is partially driven by the public availability of the corresponding datasets. For example,
there exist several LBSN datasets from platforms such as Gowalla and Foursquare, that
have frequently been used to learn representations of individual POIs and users. We found
that a large percentage of articles learnt representations of more than one data type.

The SSRL models most commonly used to learn representations of geographical data
types are pretext and contrastive models. We found that no articles used more recent
SSRL models, such as clustering and non-contrastive models. However, we expect this
to change in the future, as researchers in the field gradually adopt more recent models.
As mentioned above, a large percentage of articles learnt representations of more than one



ISPRS Int. J. Geo-Inf. 2023, 12, 64 13 of 17

data type. We found that these articles learnt the representations in question independently
or hierarchically.

Representations of geographical data types learnt using SSRL have been used in a
diverse collection of downstream applications or problems. Many of these articles used a
single data-type representation while many others used multiple data-type representation.
The machine learning models most commonly used to solve these problems include neural
networks, linear models, visualisation models, and clustering models. It was found that
applying machine learning models to representations learnt using SSRL provided superior
performance. This demonstrates that the success of SSRL in the fields of computer vision
and NLP does also translate to the field of GIS. This finding should further promote and
accelerate the adoption of SSRL methods in the field of GIS. Furthermore, in the future,
learned representations in all three fields could be fused to enable more useful and powerful
machine learning applications.
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