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Abstract: Abnormal-trajectory detection can be used to detect fraudulent behavior by taxi drivers
when carrying passengers. Existing methods usually detect abnormal trajectories based on the
characteristics of “few and different”, which require large data sets and, therefore, may identify
“few and near” trajectories chosen by drivers according to their driving experience as abnormal
situations. This study proposed an abnormal-trajectory detection method based on a variable grid to
address this problem. First, the urban road network was divided into three regions: high-, medium-,
and low-density road network regions using a kernel density analysis method. Second, grids with
different sizes were set for different types of road network regions; trajectory tuples were obtained
based on the grid division results, and the abnormality rate of the trajectory was calculated. Finally, a
trajectory-abnormality probability function was developed to calculate the deviation of each trajectory
from the benchmark trajectory to detect abnormal trajectories. Experimental results on a real taxi
trajectory dataset demonstrated that the proposed method achieved a higher accuracy in detecting
abnormal trajectories than similar methods.

Keywords: abnormal-trajectory detection; variable grid; kernel density analysis; trajectory tuple;
benchmark trajectory

1. Introduction

The ubiquitous global positioning system (GPS) records and publishes a large amount
of trajectory data with the development of wireless communication and location acqui-
sition technology [1]. The analysis of these trajectory data can reveal some basic motion
patterns [2,3], which can be used for travel time estimation [4,5], traffic management [6],
fraud detection [7], urban planning [8], and route recommendation [9].

Trajectory analysis research is important in urban transportation system research. It
primarily includes trajectory clustering, data classification, data mining, and abnormality
detection [10]. This study focuses on the detection of abnormal trajectories. A trajectory
that deviates from the norm spatially, or in terms of distance, is considered abnormal.
On the contrary, trajectories that are short in space or distance or similar to the absolute
majority of trajectories are considered normal. As shown in Figure 1, the green trajectories
are abnormal trajectories, and the black trajectories are normal trajectories. Researchers
have proposed several abnormality-detection algorithms, such as clustering- [11], path
selection probability- [12], and road network division-based methods [13]. However, most
studies determine abnormalities based only on the distinctive feature of “few and different”
abnormal trajectories, ignoring that drivers choose “abnormal” driving routes based on
their driving experience, which are not necessarily abnormal trajectories. This study aims
to accurately determine abnormal trajectories. Trajectory abnormality-detection methods
can be classified as classification-, distance-, historical similarity-, and grid-based methods.
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(1) Classification-based methods

The classification-based approach is a common supervised learning approach, which
primarily includes logistic regression [14], decision trees [15], and support vector ma-
chines [16]. The classification-based abnormal-trajectory detection method detects abnor-
mal behaviors in two stages. First, an abnormality-detection model is constructed by
labeling the original data; then, the test data are input according to this model and is
segregated into abnormal and normal categories.

Classification-based abnormal-trajectory detection methods can obtain more accurate
results than unsupervised classification methods, but they require large, annotated datasets
in advance. Trajectory paths are undirected and time varying, making it difficult to annotate
all abnormal behaviors, and they do not apply to the detection of online streams.

(2) Distance-based methods

Distance-based abnormality-detection methods primarily use distance functions (e.g.,
Euclidean, Manhattan, and dynamic time-warped distances) to calculate the distance
between data objects [17]. San et al. [18] have proposed a method of scenario-aware
distance-based outlier trajectory detection, which is divided into four main stages: feature
extraction, distance matrix calculation, clustering, and outlier detection. The distance
matrix between trajectories is calculated using a scenario-aware distance based on the
results of feature extraction; group trajectories in homogeneous clusters are segmented and
clustered, and the 1-nearest neighbor method is used to detect outliers in each cluster. Lee
et al. [19] have proposed a segmentation and detection framework for trajectory-outlier
detection that partitions the trajectory into a set of line segments and, subsequently, detects
the abnormal line segments for trajectory outliers. They have also proposed the TRAOD
algorithm, which first segments all trajectories and, then, detects the peripheral trajectory
segments using a distance-based method. Yu et al. [20] have proposed “trajectory neighbors”
to measure the similarity between different trajectories and designed a comprehensive
strategy to efficiently detect outlier types in a large number of trajectory streams. They
have proposed the minimum test (MEX) framework, which considers the spatial similarity
between trajectory objects.

A distance-based algorithm focuses on the abnormality of location features, ignoring
the role of other factors, and cannot accurately detect abnormalities caused by features
other than the distance.
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(3) Historical similarity-based methods

Historical datasets were modeled based on the historical similarity method. Global
features of the data were obtained from the data frequency, and trajectories with para-
doxical features were identified based on the global features. Qian et al. [21] proposed an
online abnormal cab trajectory detection method based on spatio-temporal relationships
and defined two spatio-temporal models (D-S and D-T models) to describe the relation-
ship between travel distance and time. The method retrieved the historical trajectory to
calculate the displacement from the source to the test point, which was used to train the
D-S and D-T models. The trajectory was identified as abnormal if the travel time and
distance were not within the normal range of the model. Mao et al. [22] proposed a mecha-
nism based on feature grouping, which introduced two isolated point definitions of local
abnormal-trajectory fragments and evolutionary abnormal-motion objects. It calculated
local abnormal-trajectory fragments and evolutionary abnormal-motion objects based on
historical data, accumulated the product of all local abnormality factors of historical trajec-
tory fragments, and generated a forward time-decay function [23]. They added the local
abnormality factors of the current time-period trajectory fragments to obtain the evolution-
ary abnormality factor, which was used to obtain the evolutionary abnormal objects. Li
et al. [24] proposed a method to detect temporal outliers using the aggregated time results
of the entire dataset. They then calculated the similarity between road segments in each
time period, recorded their historical similarity values in the temporal neighborhood vector
of each road segment, and calculated the outliers based on the dramatic changes in the
temporal neighborhood vector.

The abnormal-trajectory detection method based on historical trajectory similarity has
high detection accuracy, but the trajectory data are time-varying. Therefore, it takes longer
to reconstruct the model when the data changes incrementally.

(4) Grid-based methods

The grid-based abnormality-detection method quantifies trajectories into a finite num-
ber of cells, converts each trajectory into a series of grid codes, and performs abnormal-
ity detection based on the grid codes. Zhang et al. [25] proposed an isolation-based
abnormality-trajectory (iBAT) detection method. First, all cab trajectories passing through
the same source–destination cell pair were grouped, and the cab trajectories were repre-
sented as an ordered sequence of symbols traversing the cells. Subsequently, iBAT was
used to detect abnormal trajectories by applying an isolation mechanism to detect abnormal
trajectories with the inherent property of “few and different”. Wang et al. [26] proposed
a difference and intersection set distance metric to evaluate the similarity between two
trajectories. They designed an abnormality scoring function to quantify the differences
between different types of abnormal and normal trajectories, and further proposed an
abnormal-trajectory detection and classification (ATDC) method to discover different ab-
normal trajectories. The trajectories were mapped into a two-dimensional grid space,
converting the original trajectories into augmented trajectories consisting of a sequence
of grid cells. This approach transforms the ATDC problem into a problem of finding and
classifying abnormal trajectories from all trajectories with the same SD (fixed starting point
S and fixed ending point D) pairs.

Most grid-based abnormal-trajectory detection methods use fixed grids, and the grid
size affects the detection of abnormal trajectories. Abnormal trajectories may be mistakenly
classified as normal trajectories if the grid size is set excessively large; conversely, normal
trajectories may be classified as abnormal trajectories if the grid size is set excessively small.

(5) Other methods

Yu et al. [27] proposed a new trajectory-outlier detection method based on a com-
mon slice subsequence in addition to the above abnormality-trajectory detection methods
to address the problem of outlier trajectory detection in multiple consecutive abnormal
segments. First, the direction code sequence of each trajectory segment was calculated.
The sequence composed of trajectory slices was obtained by inflection point segmentation.
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The common slice sequence between two trajectories was used to measure their distance.
Finally, the slice and trajectory outliers were detected based on the new common slice
sequence distance. Wu et al. [28] proposed a multi-domain framework to study the spatio-
temporal distribution of cab detour behavior at the directional road segment level. First,
a map-matching-based detour clustering method was proposed to process the GPS data.
A multi-layer road index system was then developed to account for the changes in the
spatio-temporal distribution of cab detour characteristics and statistics, and a sample-based
binary logit model was constructed. Zhao et al. [13] shifted the focus of abnormal-trajectory
detection from trajectories to road networks. They constructed models from the perspective
of road consumption (travel distance and time consumption) and implemented abnormal-
trajectory detection using an unsupervised approach to obtain evaluation results closer to
the actual situation.

The above abnormality-detection method does not consider the influence of road net-
work density in determining abnormal trajectories, except for inherent defects. This ignores
the relationship between the causes of abnormal-trajectory generation and road network
density. The abnormal-trajectory detection method proposed in this study combines road
network density and divides the urban region using variable grid sizes to improve the
execution efficiency and accuracy rate of the algorithm.

The remainder of this paper is organized as follows. Section 2 presents the definitions,
related statements, working framework, and algorithm description of the proposed method.
The experimental evaluation and results are presented in Section 3. Section 4 discusses the
contribution of the proposed method and presents the related analysis. Finally, Section 5
presents the conclusions and future research prospects.

2. Methods
2.1. Basic Concepts and Problem Description

This section defines the relevant concepts used in this study.

Definition 1 (Trajectory). A trajectory is a sequence of GPS points during a taxi’s journey. The ith
trajectory is denoted by Ti = < Idi, (loni

1, lati
1, timei

1), (loni
2, lati

2, timei
2,) . . . , (loni

n, lati
n, timei

n) >,
where Idi denotes the trajectory identifier, loni

j and lati
j are the longitude and latitude of pi

j at timei
j,

respectively (timei
1 < timei

2 < . . . < timei
n), and n denotes the number of points.

Definition 2 (SD-pair trajectories). All trajectories with the same start place (S) and terminal
place (D) are defined as SD-pair trajectories.

Definition 3 (Trajectory set). The set formed by combining multiple SD pairs of trajectories is
defined as a trajectory set and is represented by TD as follows:

TD = {T1, T2, T3, . . . , Tv}, (1)

where v denotes the number of trajectories in the trajectory set TD.

The subjects of this study were trajectories with fixed start and end places (i.e., SD-pair
trajectories under specified start and end conditions).

Definition 4 (Trajectory tuple). Let the trajectory Ti pass through the high-, medium-, and low-
density road network (road network) regions with grid codes Gi

h =
〈

gi
11, gi

12, . . .
〉
,

Gi
m =

〈
gi

21, gi
22, . . .

〉
and Gi

l =
〈

gi
31, gi

32, . . .
〉
, respectively; then, the trajectory tuple TCi

of Ti is defined as follows:

TCi =
〈

gi
11, gi

12, . . . , gi
21, gi

22, . . . , gi
31, gi

32, . . .
〉

. (2)
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Definition 5 (Number of grid codes). The total number of cells that trajectory Ti passes through
in each region is the number of grid codes, denoted as NBGi, as shown in Equation (3).

NBGi = N
(

Gi
h

)
+ N

(
Gi

m

)
+ N

(
Gi

l

)
, (3)

where N
(
Gi

h
)
, N
(
Gi

m
)
, and N

(
Gi

l
)

denote the number of grids of Ti in the high-, medium-, and
low-density regions, respectively.

Definition 6 (Standard trajectory). Standard trajectory is defined as the trajectory with the
least number of grid codes, and the set consisting of standard trajectories is called the standard
trajectory set.

Definition 7 (Benchmark trajectory). Let HT be the set of trajectories with the largest number
of grids in the high-density road network region of the standard trajectory set; let MT be the set of
trajectories with the largest number of grids in the medium-density road network region of HT. Any
trajectory in MT is defined as the benchmark trajectory.

The trajectories in MT have the same number of grid codes in each type of density
region as the standard trajectories have the same number of grid codes.

Definition 8 (Number of zone benchmark grids). The number of grids in the benchmark trajec-
tory set for any trajectory in the high-, medium-, and low-density regions is the zone benchmark
grid number.

2.2. Variable-Grid-Based Abnormal-Trajectory Detection Method

The abnormality-detection based on variable grid (ATDVG) method proposed in this
study includes three stages: road network density analysis, trajectory sequencing, and
abnormal-trajectory detection. The road network density analysis and trajectory sequencing
belong to the pre-processing stage before abnormal-trajectory detection. Figure 2 illustrates
the working mode of the method.
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Figure 2. Abnormality-detection framework.

Pre-processing stage: This stage includes road network density analysis and trajectory
sequencing. First, the city region vector data and city road network data are input into Ar-
cGIS, and the zoning results, which are divided into high-, medium-, and low-density road
network regions, are obtained through kernel density analysis. Subsequently, the urban
region with variable grid sizes is further divided. Finally, the fixed SD-pair trajectories are
input into the gridded road network region to obtain the grid code of each trajectory.
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Abnormal-trajectory detection stage: This stage consists of the following steps. In-
putting the grid code to obtain the standard trajectory set, benchmarking the trajectory,
and obtaining the number of zone benchmark grids. The trajectory abnormality degree
of the remaining trajectory Ti in each density region relative to the benchmark trajectory
is determined, and the trajectory abnormality degree is compared with its corresponding
number of zone benchmark grids. Finally, the trajectory abnormality value is calculated
using the designed trajectory abnormality function and compared with the abnormality
threshold rat to determine whether the trajectory Ti is abnormal. A total of three algorithms
are proposed in the abnormal-trajectory detection stage. Algorithm 1 obtains the number
of zone benchmark grids. According to the number of zone benchmark grids, Algorithm 2
calculates the trajectory abnormality degree. Based on the trajectory abnormality degree,
Algorithm 3 calculates the trajectory abnormality rate (TAR) and trajectory abnormality
function value (TAP) for each trajectory and classifies the trajectories according to the
abnormality threshold rat to obtain the abnormal trajectories.

2.2.1. Road Network Density Analysis

The city boundary vector and road network data were input into ArcGIS, and the
kernel density analysis tool was used to delineate the road network density regions. As
shown in Figure 3, in the density analysis, each route is covered with a surface, that is,
the blue ellipse in Figure 3. Its density value is the largest at the location of the route and
decreases gradually with the increase in the distance from the route. The density value
is zero at the location where the distance from the route is equal to the specified search
radius (blue curve). The density of a lattice element is equal to the sum of the densities
superimposed on the center of the lattice element.
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The kernel function used for road network analysis was adapted from the quadratic
kernel function used to calculate the point densities described in previous studies [29] and
to determine the default search radius, as shown in Equation (4).

SearchRadius = 0.9×min
(

DF,
√

1/ ln(2)× Dm

)
× x−0.2, (4)

where Dm denotes the median distance from the mean center, DF denotes the standard
deviation (calculated by the kernel density analysis tool), x represents the sum of all route
values, and the min function represents the smaller DF and weighted Dm used to calculate
SearchRadius.
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2.2.2. Trajectory Sequencing

The road network density is classified into three categories based on the results of
the kernel density analysis via the natural-interruption-point grading method, which uses
clustering to maximize the similarity within each class and dissimilarity between the
outer classes, as follows: high, medium, and low. However, clustering does not focus on
the number and range of elements in each class. The natural-interruption-point grading
method also ensures that the range and number of densities between each class are as
similar as possible. This shows that the high-density road network region is the smallest,
the medium-density road network region is the second largest, and the low-density road
network region is the largest. After dividing the area into three categories using the natural-
interruption-point grading method (implemented using the function toolbox in ArcGIS),
the regions with the higher and lowest density values are determined to be the high-density
and low-density road network regions, and the remaining region is determined to be the
medium-density road network region.

To improve the sensitivity of high-density road network regions to abnormality, as
the detours mostly occur in high-density road network regions, this study sets the grid
size relationship as: low-density road network region > medium-density road network
region > high-density road network region. Fishnets were created for regions with different
densities in ArcGIS. The grid sizes of the different regions were different, and the size of
the fishnet was the grid size. Referring to previous studies [25,26], we set the initial size of
the grid to 350 m × 350 m. In the experiments, after the trajectory visualization, we found
that the detours occurred less in the medium-density road network region, and almost no
detours occurred in the low-density road network region. According to the above situation,
the region was divided to improve the sensitivity of the high-density road network region
to abnormal trajectories. After gridding the different regions, a code is added to each grid
in each region, and the fixed SD-pair trajectory set is input into ArcGIS. Each trajectory
in conjunction with the regional grid codes is serialized, and the grid codes that each
trajectory passes through in different regions are obtained as outputs and combined to
form a trajectory tuple.

2.2.3. Abnormal-Trajectory Detection

(1) Calculation of the trajectory abnormality degree

The benchmark trajectory set is removed from the trajectory set, and the difference in
the remaining trajectory Ti, relative to the number of grid codes of the benchmark trajectory
in each region, is defined as the trajectory abnormality degree, calculated as shown in
Equations (5)–(7).

DATh
i = N

(
Gi

h

)
− κ, (5)

DATm
i = N

(
Gi

m

)
− µ, (6)

DATl
i = N

(
Gi

l

)
− ν, (7)

where κ, µ, and ν are the numbers of zone benchmark grids in high-, medium-, and low-
density regions, respectively; N

(
Gi

h
)
, N
(
Gi

m
)
, and N

(
Gi

l
)

denote the number of grids of Ti

in the high-, medium-, and low-density regions, respectively; and DATh
i , DATm

i , and DATl
i

denote the trajectory abnormality degrees of Ti in the high-, medium-, and low-density
road network regions, respectively.

The calculation of trajectory abnormality consists of two main steps: obtaining the
number of zone benchmark grids, as shown in Algorithm 1, and calculating the trajectory
abnormality based on the number of zone benchmark grids, as shown in Algorithm 2.
Table 1 lists the relevant terms and symbols used in this algorithm.
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Table 1. Symbols used in the algorithm.

Symbols Definition

TF Abnormal-trajectory dataset
ST Standard trajectory set

TC Combination of grid codes through which the trajectory passes in
each density region

NBG Number of grid codes
DAT Trajectory abnormality
TAR Trajectory abnormality rate

α, β, and γ High-, medium-, and low-density road network region weights
TAP Probability of trajectory abnormality
rat Trajectory abnormality threshold
TR Dataset after removal of the benchmark trajectory set

Initialization: Gn records the number of grids encoded for each trajectory in each
density region; each row represents a trajectory. The first column records the identity of the
corresponding trajectory; the second, third, and fourth columns record the number of grids
for that trajectory in the high-, medium-, and low-density regions, respectively; the fifth
column records the number of grids encoded for that trajectory.

Algorithm 1: Zone benchmark grid number acquisition

Input: Original trajectory dataset TD, network coding number matrix Gn;
Output: Number of zone datum grids κ, µ, ν; matrix MT
1: NSG←min(Gn(:,5));
2: k←0, q←0, r←0;
3: ST←∅, HT←∅, MT←∅;
4: for i←1 to |TD|
5: if Gn(i,5) == NSG
6: k←k + 1;
7: ST(k,:)←Gn(i,:);
8: end if
9: end for
10: κ←max(ST(:,2));
11: for i←1 to |ST|
12: if ST(i,2) == κ

13: q←q + 1;
14: HT(q,:)←ST(i,:);
15: end if
16: end for
17: µ←max(HT(:,3));
18: for i←1 to |HT|
19: if HT(i,3) == µ

20: r←r + 1;
21: MT(r,:)←HT(i,:);
22: end if
23: end for
24: ν←MT(1,4);
25: return κ, µ, ν, MT

In Algorithm 1, Line 1 obtains the minimum value of the fifth column of the network
coding number matrix Gn. Lines 2–3 initialize the relevant variables and matrices. Lines 4–9
obtain the standard trajectory set ST. Lines 10–16 obtain HT, which is the set of trajectories
with the highest number of grids in the high-density road network region in the standard
trajectory set. Lines 17–23 obtain MT, which is the set of trajectories with the highest
number of grids in the medium-density road network region of HT. The time and space
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complexities of Algorithm 1 are O(q) and O(p), respectively, where q = n + |ST| + |HT|
and p = |ST| + |HT| + |MT|.

Algorithm 2: Trajectory abnormality degree calculation

Input: network coding number matrix Gn; matrix MT; Number of zone datum grids κ, µ, ν

Output: The set of trajectory abnormality TP
1: TR←Gn-MT;
2: TP←∅;
3: for i←1 to |TR|
4: Calculate DATh

i , DATm
i , DATl

i using Equations (5)–(7), respectively;
5: DAT←<DATh

i , DATm
i , DATl

i >;
6: TP←TP ∪ DAT;
7: end for
8: return TP;

In Algorithm 2, Line 1 removes the trajectories in the corresponding matrix MT from
the network coding number matrix Gn. Line 2 initializes the matrix TP, which records
the trajectory abnormality degree of the remaining trajectories. Lines 3–7 calculate the
trajectory abnormality degree of the remaining trajectories after removing the matrix MT.
The time and space complexities of Algorithm 2 are O(|TR|) and O(|TR|), respectively.

(2) Abnormal-trajectory rate acquisition and abnormal judgment

The rate of the trajectory abnormality degree of each density region to the correspond-
ing number of zone benchmark grids indicates the degree of abnormality of the trajectory
relative to the benchmark trajectory. The degree of abnormality is expressed as the trajectory
abnormality rate, which is calculated as shown in Equations (8)–(10).

TARh
i =

DATh
i

κ
, (8)

TARm
i =

DATm
i

µ
, (9)

TARl
i =

DATl
i

ν
, (10)

where κ, µ, and ν are the numbers of zone benchmark grids in high-, medium- and
low-density regions, respectively; TARh

i , TARm
i , and TARl

i denote the Ti trajectory ab-
normality rates in high-, medium-, and low-density regions, respectively. According to
Equations (8)–(10), we design and propose a TAP function, which is calculated as shown in
Equation (11).

TAPi = TARh
i × α + TARm

i × β + TARl
i × γ, (11)

where α + β + γ = 1, and the calculated result TAPi is compared with the abnormality
threshold rat to determine whether Ti is an abnormal trajectory.

The TAR acquisition and abnormality judgment are shown in Algorithm 3.
In Algorithm 3, Line 1 initializes the matrix TF. Lines 2–8 detect abnormal trajectories,

where Lines 3–4 calculate TAR and TAP, respectively, and Lines 5–7 determine whether
the trajectory is abnormal and classifies the trajectory. The time and space complexities of
Algorithm 3 are O(|TP|) and O(|TF|), respectively.
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Algorithm 3: Trajectory abnormality rate acquisition and abnormality judgment

Input: The set of abnormal trajectories TP; Trajectory abnormality threshold rat
Output: Set of spatially abnormal trajectories TF
1: TF← ∅;
2: for i←1 to |TP|
3: Calculate TARh

i , TARm
i , and TARl

i using Equations (8)–(10), respectively;
4: Calculate TAPi using Equation (11);
5: if TAPi > rat
6: TF←TF ∪ TPi;
7: end if
8: end for
9: return TF;

2.2.4. Motivating Example

The detour behavior is mostly aimed at first-time visitors to the city, who generally
arrive at the city center by train or high-speed rail (the red-boxed section), as shown in
Figure 4. Long-distance visitors may go directly to some tourist attractions located in the
low-density road network regions. The city center has a complex road network and high
number of road options, while the low-density region, such as where tourist attractions
are located, has fewer road options. Therefore, the urban region was only divided into
high- and low-density regions, and this study assumed that the movement trajectory was
from the high-density to the low-density region. In Figure 4, the high-density region is
represented by the red box, and the rest represents the low-density region. The size of each
grid in the high-density region is smaller than that in the low-density region, and g22 and
g150 represent the starting and ending points of the trajectory, respectively.

Supposing that there are five trajectories, denoted as T1 − T5, which are mapped in
Figure 4, the resulting trajectory tuples are shown in Table 2.

As indicated in Table 3, where NSG = 20, κ = 13, and ν = 7, the number of grids and
grid codes corresponding to the high- and low-density road network regions in the example
in Figure 4 are determined by Algorithm 2. As shown in Figure 4 and Table 3, the detours
mostly occur in the high-density road network regions, and T1 is the benchmark trajectory.
The degree of abnormality of each trajectory was calculated separately according to T1, and
the calculation results are listed in Table 4.

Table 2. The trajectory tuples of T1–T5.

Trajectory Trajectory Tuple

T1
g22, g32, g33, g34, g35, g36, g46, g56, g66, g67, g68, g78, g88, g120,

g127, g134, g135, g136, g143, g150

T2
g22, g12, g13, g14, g15, g16, g17, g27, g37, g47, g48, g49, g59, g69, g79,

g89, g90, g121, g122, g129, g136, g143, g150

T3
g22, g32, g33, g34, g35, g36, g46, g56, g66, g65, g64, g74, g84, g118,

g125, g124, g131, g138, g139, g140, g141, g142, g149, g150

T4
g22, g12, g13, g14, g15, g16, g17, g27, g37, g38, g39, g40, g50, g60,

g59, g69, g79, g89, g90, g121, g122, g129, g136, g143, g150

T5
g22, g32, g42, g52, g53, g54, g55, g65, g75, g76, g66, g67, g68, g78, g88,

g120, g127, g134, g135, g136, g143, g150

Algorithm 3 was used to determine the TAR for each trajectory in the example in
Figure 4; the findings are presented in Table 5.

According to Equation (11), assuming α + γ = 1 (β = 0), where α = 0.6 and γ = 0.4, α is
used to indicate the sensitivity rate of the high-density road network region to abnormalities,
and γ is used to indicate the sensitivity rate of the low-density road network region to
abnormalities. According to Figure 4, we set α to be greater than γ to improve the sensitivity
rate of the high-density road network regions to abnormalities, as detour behavior is more
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likely to occur in the high-density road network regions. The results of the trajectory
abnormalities of each trajectory were obtained, as shown in Table 6.
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Table 3. Number of grid codes for T1–T5.

T1 T2 T3 T4 T5

N(Gh) 13 17 13 19 15
N(Gl) 7 6 11 6 7
NBG 20 23 24 25 22

Table 4. Calculation of DAT for T1–T5.

T1 T2 T3 T4 T5

DATh 0 4 0 6 2
DATl 0 −1 4 −1 0

Table 5. Calculation of TAR for T1–T5.

T1 T2 T3 T4 T5

TARh 0 0.308 0 0.462 0.152
TARl 0 −0.143 0.572 −0.143 0

Table 6. Calculation of TAP for T1–T5.

T1 T2 T3 T4 T5

TAP 0 0.1276 0.2288 0.22 0.0912
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The results in Table 6 show that if the trajectory T1 is a normal trajectory, assuming
rat = 0.2, T3 is most likely to be an abnormal trajectory, followed by T4.

3. Results

The experiment was performed on a computer with an Intel Core i5 processor with a
3.10 GHz CPU. The operating platform was Windows 10, and the proposed algorithm was
implemented using MATLAB 2020a. Accuracy, Precision, and Recall were used to measure
the performance of the proposed abnormal-trajectory detection method and were calculated
using Equations (12)–(14).

Accuracy =
TP + TN

TP + FN + FP + TN
, (12)

Precision =
TP

TP + FP
, (13)

Recall =
TP

TP + FN
, (14)

where TP denotes the actual number of true values in the sample predicted to be true, FP
denotes the actual number of false values in the sample predicted to be true, FN denotes
the actual number of true values in the sample predicted to be false, and TN denotes the
actual number of false values in the sample predicted to be false.

3.1. Trajectory Dataset

This study used the dataset provided by Piorkowski et al. [30], containing trajectories
of 536 cabs in the city of San Francisco, USA, over 30 days, with an average sampling rate
of 100 s/point. The GPS trajectory data recorded the location (latitude and longitude) of
each cab, as well as the corresponding time and occupancy. Only the trajectories between
the San Francisco City Airport and central residential place were extracted.

3.2. Road Network Density Analysis

As shown in Figure 5a, the spatial distribution of the road networks in San Francisco
is uneven, with the inner ring region having the highest road network density, followed
by the inner and outer ring junction regions and outer ring region. In the kernel density
analysis, the size of the lattice element should be smaller than the minimum grid size in the
experiment. Referring to previous studies [25,26], the smallest grid size in our experiments
was set as 350 m × 350 m. Combined with the kernel density analysis results, the lattice
element size was set as 100 m × 100 m, and the city of San Francisco was divided into three
regions, as shown in Figure 5b, where red indicates the denser region of the road network
(grid image kernel density is 10.68–29.61), orange and yellow indicate the slightly dense
region (grid image kernel density is 3.83–10.68) and the sparse region of the road network
(grid image kernel density is 0–3.83), respectively.

According to the results of the kernel density analysis, using the natural-interruption-
point grading method, where different density regions are gridded, and the grid division
size varies for different densities, the road network density is divided into three categories:
high, medium, and low. Combined with the experimental analysis of ATDC [26] and
iBAT [25], the grid sizes of the high-, medium-, and low-density road network regions were
set as 350 m × 350 m, 500 m × 500 m, and 1 km × 1 km, respectively, as shown in Figure 6a.
We extracted part of Figure 6a and enlarged it, as shown in Figure 6b. In the delineation
process, the influence of the boundary of the remaining administrative district on trajectory
abnormality determination can be ignored because of its small surface after gridding, as
shown in the orange region.
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3.3. Experimental Results

Four SD (residential region to the airport) pair (T-1 to T-4) trajectory sets were selected
from 463,860 trajectories extracted from 1.12 million GPS points of 536 cabs to verify the
performance of the proposed ATDVG method. The roads near residential places and the
airport are more complex, and the roads between them are sparse, as shown in Figure 7.
T-1, T-2, T-3, and T-4 contain 600, 301, 300, and 301 trajectories, respectively. We used the
trajectories labeled in a previous study [26], as shown in Figure 1, where the trajectories
marked in black are normal trajectories, and the trajectories marked in green are abnormal
trajectories. The dataset and its labels are available at https://github.com/TUD-DD/
ATDVG (assessed on 13 January 2023). T-1 was used as the training set and contained
approximately the same number of normal and abnormal trajectories. T-2, T-3, and T-4

https://github.com/TUD-DD/ATDVG
https://github.com/TUD-DD/ATDVG
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were used as the test sets. There are more normal trajectories of the same type in T-2, more
normal trajectory types in T-4, and more normal trajectories than abnormal trajectories in
T-2 and T-4. The T-3 dataset is the opposite of the T-2 dataset.

The results of trajectory visualization on datasets T-1, T-2, T-3, and T-4 are shown in
Figure 8a–d, respectively.

The detection results of ATDVG on datasets T-1, T-2, T-3, and T-4 are shown in
Figure 9a–d, respectively.

Figure 9 shows that ATDVG can detect most abnormal trajectories.
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Combined with Figure 7, it can be seen from Figure 9 that the detour behavior mainly
occurs at the beginning of the trajectories (north), where the road network is more complex
and more optional roads exist.

3.4. Varying Parameters

The parameters α, β, and γ are dynamically adjusted according to the different
densities of road network regions through which the trajectory passes. According to
Figures 7 and 9, detours mainly occur in the high-density road network regions.

In this study, five parameters (ωi = αi, βi, γi) were analyzed, where α > β > γ, as
shown in Equation (15). The different parameter settings on the T-1 dataset were tested
separately, and the highest values of Accuracy, Precision, and Recall were obtained for
rat = 0.106 under each group of parameters. The experimental results of T-1, T-2, T-3, and
T-4 under each group of parameter conditions are shown in Figure 10.

ω1 = (0.55, 0.30, 0.25)
ω2 = (0.60, 0.30, 0.10)
ω3 = (0.65, 0.20, 0.15)
ω4 = (0.70, 0.20, 0.10)
ω5 = (0.80, 0.10, 0.10)

. (15)

From Figure 10a–c, at ω = (0.70, 0.20, 0.10) and rat = 0.106, the proposed method can
accurately determine the abnormal trajectory between the airport and the central residential
region. Therefore, this study used the parameter ω4 and abnormality threshold rat = 0.106
for comparison with the fixed-grid method.
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3.5. Comparative Evaluation

The ATDVG method was compared with the ATDC [26] and iBAT [25] methods to
evaluate its performance in detecting abnormal trajectories. The iBAT method exploits the
inherent property of “few and different” abnormal trajectories and applies an isolation
mechanism to detect abnormal trajectories. ATDC is essentially a multi-classification
problem that classifies trajectories into normal trajectories (NT), global detours (GD), local
detours (LD), global shortcuts (GS), and local shortcuts (LS). In this study, NT, GS, and LS
were considered normal trajectories, and GD and LD were considered abnormal trajectories.
Tables 7–9 summarize the Accuracy, Precision, and Recall test results of the three methods
(ATDVG, ATDC, and iBAT) for trajectory sets T-1, T-2, T-3, and T-4.

Table 7. Accuracy comparison.

Data Sets ATDVG ATDC iBAT

T-1 0.9900 0.9617 0.6383
T-2 0.9900 0.9801 0.7243
T-3 0.9867 0.9333 0.3400
T-4 0.9934 0.9236 0.7276

Table 8. Precision comparison.

Data Sets ATDVG ATDC iBAT

T-1 0.9789 0.9452 0.6115
T-2 0.9850 0.9709 0.7489
T-3 0.9540 0.8929 0.3028
T-4 0.9949 0.9130 0.7090

Table 9. Recall comparison.

Data Sets ATDVG ATDC iBAT

T-1 1 0.9753 0.6396
T-2 1 1 0.8800
T-3 1 0.8721 1
T-4 0.9949 0.9742 0.9794

The detection results of ATDC on datasets T-1, T-2, T-3, and T-4 are shown in Figure 11a–d,
respectively.

The detection results of iBAT on datasets T-1, T-2, T-3, and T-4 are shown in Figure 12a–d,
respectively.

Tables 7–9 summarize the Accuracy, Precision, and Recall test results of the three
methods (ATDVG, ATDC, and iBAT) for trajectory sets T-1, T-2, T-3, and T-4. The proposed
ATDVG method achieves the highest Accuracy, Precision, and Recall values on the four
datasets. According to the visualization results, as shown in Figures 11 and 12, ATDC and
iBAT can detect the abnormal trajectories of a GD. The Accuracy, Precision, and Recall values
of ATDC on T-2 are higher than those on T-1, T-3, and T-4, and the Accuracy value of iBAT on
T-2 is higher than that on T-1, T-3, and T-4 because ATDC and iBAT usually detect abnormal
trajectories according to the characteristics of “few and different”, and there are few spatial
types of normal trajectories in T-2. Table 9 illustrates that the Recall value of iBAT is higher,
and the Accuracy, Precision, and Recall values of ATDC on T-4 are smaller than those on T-1
and T-2 due to the large number of spatial types of normal trajectories in T-4. Some normal
trajectories with a small number of spatial types may be judged as abnormal trajectories.
The experimental results show that the Accuracy, Precision, and Recall values of ATDVG on
T-4 are higher than those of ATDC and iBAT because ATDVG detects abnormal trajectories
according to the “few and near” characteristics. Although there are more spatial types of
normal trajectories in T-4, it has less influence on the ATDVG experimental results.



ISPRS Int. J. Geo-Inf. 2023, 12, 40 18 of 22ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 19 of 23 
 

 

Normal trajectories Abnormal trajectories
 

  
(a) (b) 

  
(c) (d) 

Figure 11. Visualization of ATDC results: (a) T-1; (b) T-2; (c) T-3; (d) T-4. 

The detection results of iBAT on datasets T-1, T-2, T-3, and T-4 are shown in Figure 

12a–d, respectively. 

Normal trajectories Abnormal trajectories
 

  
(a) (b) 

Figure 11. Visualization of ATDC results: (a) T-1; (b) T-2; (c) T-3; (d) T-4.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 19 of 23 
 

 

Normal trajectories Abnormal trajectories
 

  
(a) (b) 

  
(c) (d) 

Figure 11. Visualization of ATDC results: (a) T-1; (b) T-2; (c) T-3; (d) T-4. 

The detection results of iBAT on datasets T-1, T-2, T-3, and T-4 are shown in Figure 

12a–d, respectively. 

Normal trajectories Abnormal trajectories
 

  
(a) (b) 

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 20 of 23 
 

 

  
(c) (d) 

Figure 12. Visualization of iBAT results: (a) T-1; (b) T-2; (c) T-3; (d) T-4. 

Tables 7–9 summarize the Accuracy, Precision, and Recall test results of the three meth-

ods (ATDVG, ATDC, and iBAT) for trajectory sets T-1, T-2, T-3, and T-4. The proposed 

ATDVG method achieves the highest Accuracy, Precision, and Recall values on the four 

datasets. According to the visualization results, as shown in Figures 11 and 12, ATDC and 

iBAT can detect the abnormal trajectories of a GD. The Accuracy, Precision, and Recall val-

ues of ATDC on T-2 are higher than those on T-1, T-3, and T-4, and the Accuracy value of 

iBAT on T-2 is higher than that on T-1, T-3, and T-4 because ATDC and iBAT usually 

detect abnormal trajectories according to the characteristics of “few and different”, and 

there are few spatial types of normal trajectories in T-2. Table 9 illustrates that the Recall 

value of iBAT is higher, and the Accuracy, Precision, and Recall values of ATDC on T-4 are 

smaller than those on T-1 and T-2 due to the large number of spatial types of normal tra-

jectories in T-4. Some normal trajectories with a small number of spatial types may be 

judged as abnormal trajectories. The experimental results show that the Accuracy, Preci-

sion, and Recall values of ATDVG on T-4 are higher than those of ATDC and iBAT because 

ATDVG detects abnormal trajectories according to the “few and near” characteristics. Alt-

hough there are more spatial types of normal trajectories in T-4, it has less influence on 

the ATDVG experimental results. 

4. Discussion 

The existing abnormal-trajectory detection methods usually require large amounts of 

trajectory data and a far greater number of normal trajectories than the number of abnor-

mal trajectories. They also ignore the impact of the road network environment on abnor-

mal-trajectory detection. Dividing the road network into fixed-size grids cannot reflect the 

difference in road network density in different regions; this is addressed by varying the 

grid sizes. The quadtree indexing method commonly used for trajectory simplification 

[31,32] can also generate grids of different sizes, but it is not suitable for research on com-

plex road network environments. This study introduced the concept of a variable grid in 

conjunction with road network density and proposed the ATDVG method to solve these 

problems. First, the kernel density analysis was conducted in conjunction with the urban 

area and road network, dividing the city into three sub-regions based on the density of 

the urban road network, namely, high-, medium-, and low-density road network regions, 

each divided into grids of different sizes. Second, each source–destination trajectory was 

mapped to this two-dimensional grid space, and the grid codes of the different regions 

through which the trajectory passed were obtained. A trajectory tuple was used to inte-

grate the grid codes to represent each trajectory, transforming the abnormal-trajectory de-

tection problem into one of finding abnormal trajectories from grid codes with the same 

“source–destination pair.” Experiments with real trajectory datasets and road network 

data show that the proposed algorithm has higher matching accuracy and efficiency. 

Figure 12. Visualization of iBAT results: (a) T-1; (b) T-2; (c) T-3; (d) T-4.



ISPRS Int. J. Geo-Inf. 2023, 12, 40 19 of 22

4. Discussion

The existing abnormal-trajectory detection methods usually require large amounts of
trajectory data and a far greater number of normal trajectories than the number of abnormal
trajectories. They also ignore the impact of the road network environment on abnormal-
trajectory detection. Dividing the road network into fixed-size grids cannot reflect the
difference in road network density in different regions; this is addressed by varying the grid
sizes. The quadtree indexing method commonly used for trajectory simplification [31,32]
can also generate grids of different sizes, but it is not suitable for research on complex road
network environments. This study introduced the concept of a variable grid in conjunction
with road network density and proposed the ATDVG method to solve these problems. First,
the kernel density analysis was conducted in conjunction with the urban area and road
network, dividing the city into three sub-regions based on the density of the urban road
network, namely, high-, medium-, and low-density road network regions, each divided
into grids of different sizes. Second, each source–destination trajectory was mapped to this
two-dimensional grid space, and the grid codes of the different regions through which the
trajectory passed were obtained. A trajectory tuple was used to integrate the grid codes to
represent each trajectory, transforming the abnormal-trajectory detection problem into one
of finding abnormal trajectories from grid codes with the same “source–destination pair.”
Experiments with real trajectory datasets and road network data show that the proposed
algorithm has higher matching accuracy and efficiency.

In real life, some detours may occur to save travel time. It is acceptable for some
passengers to spend some extra money to arrive at their destination quickly. However,
such detours are indeed abnormal in space, no matter the cause. This study only detects
spatial anomalies, which may include such “positive” detours required by some passengers.
For further time analysis, we calculated the shortest travel time of benchmark trajectories,
which is used as the shortest travel time to compare with the travel time of the abnormal
trajectories detected from each dataset. In the T-1 dataset, trajectories with less travel time
than the shortest travel time account for only 0.0158 of the abnormal trajectories. In T-2,
trajectories with less travel time than the shortest travel time account for only 0.0100 of the
abnormal trajectories. In T-3, trajectories with less travel time than the shortest travel time
account for only 0.0141 of the abnormal trajectories. In T-4, trajectories with less travel time
than the shortest travel time account for only 0.0189 of the abnormal trajectories. According
to these experimental results, time is saved by only a small part of the abnormal behaviors.
Therefore, the spatial abnormality detection proposed in this paper is meaningful.

The main contributions of this study are as follows:
(1) A combination of road network and kernel density was applied for abnormal-

trajectory detection, and the sensitivity of high-density road network regions to abnor-
mality was improved by classifying different density regions based on the kernel density
analysis results.

(2) The variable grid method was applied to the analysis of abnormal trajectories.
The variable grid is used less in the field of abnormal-trajectory detection. This study
combined grid division with the road network density to improve the accuracy of the grid
abnormality-detection method.

(3) Trajectories are compared with the benchmark trajectory to prevent the rest of the
trajectories in the domain with common subsegments from influencing the abnormality
judgment for that trajectory.

The proposed algorithm improves the accuracy of abnormal-trajectory detection. The
results of this study can help identify suspicious activities in vehicles and can be used in sev-
eral applications, such as security monitoring and vehicle abnormality scheduling, to pre-
vent taxi drivers from fraudulently adding trips to their customers for additional benefits.
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5. Conclusions

Given the defect that the existing grid-based anomaly-detection methods do not con-
sider the influence of road network density on trajectory anomaly detection, and only
use grids with fixed sizes to divide regions, this study proposes an abnormal-trajectory
detection method based on a variable grid, which compares each trajectory with the bench-
mark trajectory and analyzes them to prevent the influence of the remaining trajectories
in the domain with common sub-fragments on the abnormal judgment of this trajectory.
Additionally, the method uses the number of grids that the trajectory passes through to
replace the travel distance and introduces variable grids in anomaly detection. Following
kernel density analysis, the grid size varies for areas according to density. The grid size
in high-density regions is smaller, which improves the difference between abnormal and
normal trajectories. The grid size in low-density regions is larger, which improves the
detection efficiency of abnormal trajectories. The method combines road network density
analysis and uses variable grids to divide different regions, avoiding the poor anomaly
detection problem caused by excessively large or small grid size.

However, the ATDVG method has some limitations. It cannot determine the specific
segment of the abnormal trajectory that has problems, nor can it effectively determine the
cause of the abnormality despite accurately determining the global abnormal trajectory.
This is because of the complex causes of abnormal trajectories and lack of abnormal-
trajectory data with annotations in the datasets used. In addition, the choice of benchmark
trajectory determines the abnormality threshold, which requires trajectory datasets with
high sampling frequencies. A higher number of grids in the high-density road network
region improves the sensitivity of the region to abnormality. A slow trajectory may be
judged as an abnormal trajectory if the trajectory dataset with a low sampling frequency is
used because the parameter settings may improve the sensitivity of this type of region to-
ward abnormality. Hence, the accuracy of this method in detecting low-sampling abnormal
trajectories is low. Additionally, the location of the trajectory starting point for the ATDVG
method is limited to the adjacent grid of the benchmark trajectory, which has high require-
ments for the starting point. Other features, such as length, time, direction, and speed, can
be added in the future to further improve the accuracy of abnormal-trajectory detection.
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