
Citation: Zhang, G.; Xu, J.

Multi-GPU-Parallel and Tile-Based

Kernel Density Estimation for

Large-Scale Spatial Point Pattern

Analysis. ISPRS Int. J. Geo-Inf. 2023,

12, 31. https://doi.org/10.3390/

ijgi12020031

Academic Editors: Suzana Dragicevic

and Wolfgang Kainz

Received: 13 November 2022

Revised: 8 January 2023

Accepted: 16 January 2023

Published: 18 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Multi-GPU-Parallel and Tile-Based Kernel Density Estimation
for Large-Scale Spatial Point Pattern Analysis
Guiming Zhang * and Jin Xu

Department of Geography & the Environment, University of Denver, Denver, CO 80208, USA
* Correspondence: guiming.zhang@du.edu; Tel.: +1-303-871-7908

Abstract: Kernel density estimation (KDE) is a commonly used method for spatial point pattern
analysis, but it is computationally demanding when analyzing large datasets. GPU-based parallel
computing has been adopted to address such computational challenges. The existing GPU-parallel
KDE method, however, utilizes only one GPU for parallel computing. Additionally, it assumes that
the input data can be held in GPU memory all at once for computation, which is unrealistic when
conducting KDE analysis over large geographic areas at high resolution. This study develops a multi-
GPU-parallel and tile-based KDE algorithm to overcome these limitations. It exploits multiple GPUs
to speedup complex KDE computation by distributing computation across GPUs, and approaches
density estimation with a tile-based strategy to bypass the memory bottleneck. Experiment results
show that the parallel KDE algorithm running on multiple GPUs achieves significant speedups over
running on a single GPU, and higher speedups are achieved on KDE tasks of a larger problem size.
The tile-based strategy renders it feasible to estimate high-resolution density surfaces over large areas
even on GPUs with only limited memory. Multi-GPU parallel computing and tile-based density
estimation, while incurring very little computational overhead, effectively enable conducting KDE
for large-scale spatial point pattern analysis on geospatial big data.

Keywords: kernel density estimation (KDE); graphics processing unit (GPU); parallel computing;
tile-based processing; geospatial big data

1. Introduction

Kernel density estimation (KDE) is a common approach to spatial point pattern
analysis with applications in various fields including, but not limited to, geography, ecology,
spatial epidemiology, criminology, and transportation [1–5]. Based on a sample set of point
locations where an event of interest (e.g., crime incident) has occurred, KDE estimates event
occurrence probability density at any location by averaging probability contributions from
the event sample locations (Equation (1)):
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1
n

n

∑
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K
(
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)
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where f̂ (x) is the estimated probability density at foci location x, |x−Xi| is the Euclidean
distance between x and event location Xi, and K(·) is a kernel function (e.g., Gaussian) with
unit kernel mass (i.e., the volume under the kernel is 1.0) centered at each of the n event
locations within the study area. The kernel represents a distance-decaying density contribu-
tion from an event location to the foci location (closer locations have larger contributions).
hi is the bandwidth, a critical parameter that controls how quickly density decreases as
distance increases. ei is the edge effect correction factor to account for the absence of event
locations that are outside the study area but still contribute to probability density at the
foci location. It is necessary to obtain unbiased density estimates and is calculated as the
reciprocal of the kernel mass inside the study area [6]. When the study area is represented
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as a raster (a grid of cells), KDE can estimate event probability density cell-by-cell, which
results in a density surface (raster) over the area [5]. The density raster can be readily
mapped for visually inspecting the spatial pattern of the events or for quantitative analysis,
for example, locating regions of unusually high and/or low occurrence density for in-depth
examination [7]. Such endeavors could inform formulating hypotheses to better understand
the pattern-shaping processes underlying the events. As such, KDE is a powerful tool for
exploratory spatial data analysis in many application domains.

The KDE method has seen variants with new methodological developments. Un-
like the above-introduced spatial KDE wherein Euclidean distance is used to measure
the distance between locations and estimates densities at locations (pixels) in the planar
geographic space, network KDE measures the separation between locations with network
distance and estimates densities only at ‘linxels’ (line segments) in a constraining network
space [2,8]. Network KDE has proven superior for analyzing point events only occurring
on networks such as traffic accidents and pedestrian crashes [9,10]. Another variant is
spatiotemporal KDE that considers the temporal dimension of events (e.g., timestamp)
in addition to the spatial dimension (e.g., geographic coordinates). Spatiotemporal KDE
estimates densities at ‘voxels’ in the space-time cube and has been used to explore the
spatiotemporal patterns of a wide range of phenomena (e.g., crime and disease) [3,11–13].

Across all KDE methods, the choice of bandwidth is much more crucial than the choice
of kernel function [14] as the bandwidth would significantly impact the smoothness of the
estimated probability distribution and hence the level of generalization from the observed
event sample locations to the underlying phenomenon. Generally, a larger bandwidth
results in a more smoothed and generalized probability density distribution that is good
for revealing the overall trends in event occurrence likelihood, whilst a smaller band-
width leads to a distribution with more details on local variations. Moreover, bandwidth
can be fixed or adaptive across event locations [5]. In contrast to fixed-bandwidth KDE
wherein bandwidth stays the same at all event locations, adaptive-bandwidth KDE varies
bandwidth across event locations in response to the changing local distribution pattern of
event locations. For example, many human-induced point event data (e.g., alcohol store
locations) tend to be much more densely distributed in populous areas than areas with
sparse population. Using KDE with adaptive bandwidths that are inversely proportional to
local population density produces density maps that better reflect subtle density variations
in areas of dense population [15,16].

Approaches for determining KDE bandwidth, either fixed or adaptive, fall into two
general categories: ‘rule-of-thumb’ heuristics and data-driven cross-validation. Following
‘rule-of-thumb’ heuristics, for instance, the fixed bandwidth for spatial KDE is calculated
as a function of the standard distance of event sample locations and sample size [17],
whereas adaptive bandwidths can be computed as being proportional to the k-nearest
neighbor distance of each event location or similar metrics reflecting the local density of
event locations [4,18,19]. Such bandwidth determination processes come with little compu-
tation overhead but still often result in oversmoothed density distribution estimations [20].
Data-driven bandwidth determination adheres to the ‘maximum likelihood principle’ and
performs leave-one-out cross-validation on the event sample locations to find an optimal
fixed bandwidth, or a set of optimal parameters for computing adaptive bandwidths, which
maximizes the probability of observing the sample locations [5,7]. While bandwidth de-
termined through data-driven methods usually leads to superior results, the computation
processes are expensive because iterative optimizations are often involved [5,20].

Bandwidth determination is not the only step that renders KDE computationally
intricate. A detailed analysis of the spatial KDE method [20] highlights other complex
parts such as computing edge effect correction factors and computing probability density
at large numbers of event sample locations and raster cells. The complexity of the KDE
algorithm is O

(
nm + n2) where n is the number of event locations and m is the number of

raster cells at which densities are to be estimated. As n and m increases, the run time of
KDE is expected to grow quadratically to n and linearly to m. Therefore, it would be very
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computationally demanding to apply KDE on a large number of event locations to estimate
a fine-resolution density raster over a large geographic area. In the meantime, geospatial big
data are now commonplace [21], and many large-scale point datasets, such as biodiversity
observations contributed by citizen science participants [22] and point-of-interest data [23],
can easily exceed millions or even billions of points. Using KDE to analyze point patterns
in these datasets is desirable to better understand the underlying phenomena or embedded
processes [24], but such an endeavor faces immense computational challenges.

Geocomputation utilizing high-performance computing, cloud computing, advanced
cyberinfrastructure, etc., has been adopted to address computational challenges facing
geospatial big data analytics [25–27] and point pattern analysis [20,28,29]. Parallelizing
spatial analysis algorithms on multi-core CPUs (central processing units) or on massive-core
GPUs (graphics processing units) can significantly speed up spatial analysis tasks, although
GPU-parallel computing is often much faster than CPU-based parallelization [28–31].
Specific to the spatial KDE method for point pattern analysis, the state-of-the-art GPU-
parallel implementation developed by Zhang et al. [20] can complete point pattern analysis
tasks tens or even hundreds of times faster than sequential computing (i.e., utilizing only
a single CPU thread). It is also much faster, scalable, and flexible (for providing multiple
bandwidth options) than KDE tools implemented in commonly used GIS software [24].

Nevertheless, the existing GPU-parallel KDE algorithm [20] has certain drawbacks. It
supports computation with only one single GPU, whilst multiple GPUs may be available on
the computing platform for further accelerating KDE computation. Moreover, it assumes
that all data (points, density raster, etc.) can be held in GPU memory for computation, but
in reality, geospatial big datasets could easily outsize GPU memory space. Such limitations
have hindered utilizing the KDE method on point pattern analysis tasks that aim to estimate
high-resolution density surfaces over large areas from massive point datasets. This study
develops new extensions to improve the original GPU-parallel KDE algorithm, so it can take
advantage of multiple GPUs for parallel computing and overcome the memory constraint.
The new extensions are implemented in the multi-GPU-parallel and tile-based KDE, which
is capable of quickly tackling ‘big’ point pattern analysis tasks. The remainder of the article
is organized as follows. Section 2 provides an overview of the existing GPU-parallel KDE
algorithm and identifies its drawbacks. Section 3 develops new extensions to address the
drawbacks. Section 4 reports experiments for evaluating the computing performance of
the multi-GPU-parallel and tile-based KDE. Sections 5 and 6 presents the discussion and
conclusion, respectively.

2. Existing GPU-Parallel KDE
2.1. Overview

KDE takes as input a set of point event locations and a raster layer depicting the
extent of the study area and outputs an estimated probability density raster (Figure 1).
After reading in event locations and the study area raster, fixed or adaptive bandwidths
are determined at event locations. A density raster was then estimated by calculating
probability density at every cell within the study area. The existing GPU-parallel KDE
implementation [20] parallelizes computations involved in bandwidth determination and
density raster estimation on massive GPU threads to accelerate the KDE algorithm. An
overview of the existing GPU-parallel KDE algorithm is provided as follows (Figure 2),
although readers interested in full details should refer to Zhang et al. [20].

The GPU-parallel KDE algorithm can run with three bandwidth options: (1) KDE with
a fixed bandwidth determined using ‘rule-of-thumb’ methods, (2) KDE with a fixed band-
width determined using cross-validation, and (3) KDE with spatially adaptive bandwidths
determined using cross-validation. With the latter two bandwidth options, the algorithm
first goes through a series of iterative computation steps to determine the optimal band-
widths that maximize the likelihood of observing the event locations, and finally estimates
a density surface by computing densities at cells within the study area. The GPU-parallel
KDE implementation adopts certain strategies to optimize the computations to effectively



ISPRS Int. J. Geo-Inf. 2023, 12, 31 4 of 20

reduce algorithmic complexity. First, it avoids unnecessary re-computing of edge effect
correction factors for points far from the study area boundary as these points should have
an edge effect correction factor of 1.0, which is unlikely to change with bandwidth. Second,
it uses k-dimensional tree spatial indexing to speed up distance-based queries, for example,
finding points within certain search radius from a foci point. The optimizations reduce the
complexity of the KDE algorithm from O

(
nm + n2) to O

(
n
√

m + n
√

n
)

[20].
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Figure 2. Computation steps in the existing GPU-parallel KDE algorithm.

On top of the algorithmic optimizations, calculations in each computation step are
parallelized on GPU based on the CUDA (or Compute Unified Device Architecture) parallel
programming library [32] to further accelerate KDE computation. For instance, computing
probability density at a point is independent from computing density at another point.
Thus computing densities at the points can be conducted in parallel on massive GPU
threads, with each GPU thread computing density for one point. Similarly, GPU-parallel
computing can also be utilized in computing density surface, where each GPU thread
computes density for one cell. Computing performance of the existing GPU-parallel KDE
algorithm was tested on point pattern analysis tasks involving datasets of various sizes
(e.g., millions of points or raster cells), and it achieved significant speedups compared
to sequential or CPU-parallel implementations (i.e., tens to hundreds of times faster)
(see details in [20]).

2.2. Limitations

There are limitations to the existing GPU-parallel KDE implementation. First and
foremost, it can utilize only a single GPU for parallel computing, whereas multiple GPUs



ISPRS Int. J. Geo-Inf. 2023, 12, 31 5 of 20

may be available on the computing platform. This drawback, to certain extent, constrains
the GPU-parallel KDE algorithm from being used to quickly perform point pattern analysis
on large datasets. Multiple GPUs, when available, could be exploited to collaboratively
parallelize computations to further speed up spatial analysis algorithms [33]. With the
support of distributing computations across multiple GPUs, the KDE method would be
much more capable of completing point pattern analysis tasks involving very large datasets.

Moreover, the existing GPU-parallel KDE algorithm reads into computer main memory
the points and the study area raster to its full extent and transfers all the data to the memory
on GPU device to perform GPU-parallel computing (e.g., computing edge effect correction
factors, estimating density surface). It assumes that there is sufficiently large GPU memory
space to hold all the data. While point data do not necessarily take much memory space,
the size of a fine-resolution raster representing a large study area may well exceed GPU
memory capacity [30,31]. For example, keeping in memory 10 million points’ geographic
coordinates (e.g., x, y coordinates) needs only about 80 MB (2 coordinates per point ×
4 bytes per float-number coordinate × 10 million points), but a 500-m resolution raster
covering the world between latitudes 60◦ S and 75◦ N would require approximately 13.6 GB
(4 bytes per float-number cell value × 80,150 columns × 42,431 rows). Many GPUs simply
do not have such a large memory capacity to hold the raster. The existing GPU-parallel
KDE would run out of memory and fail to estimate a high-resolution density surface over
a large area. The memory constraint must be addressed so that the GPU-parallel KDE
algorithm can run on GPUs with a limited amount of memory to conduct fine-resolution
density estimation at large scales.

3. New Extensions to GPU-Parallel KDE

This study develops two new extensions to the existing GPU-parallel KDE algorithm,
namely multi-GPU parallel computing and tile-based density estimation, to address the
limitations, respectively. Multi-GPU parallel computing allows the algorithm to effectively
utilize multiple GPUs to collaboratively carry out KDE computation concurrently. Tile-
based density estimation enables estimating high-resolution density raster over large
areas. Together, the new extensions empower the GPU-parallel KDE algorithm (source
codes available at https://tinyurl.com/8jsy8ynk; accessed on 17 January 2023) for efficient
large-scale spatial point pattern analysis.

3.1. Multi-GPU Parallel Computing

Extending the existing GPU-parallel KDE algorithm to support parallel computing on
multiple GPUs is a non-trivial effort. Based on the CUDA programming model [32], parallel
computing threads launched on a GPU device can access only data residing in memory on
that device for computation, and similarly, can write data only to its own memory. Hence,
in order to utilize multiple GPUs to collaboratively complete a computation workload,
the full computation workload and data needs to be partitioned into independent pieces
on the host (CPU-side), which are then dispatched to multiple GPUs to be conducted
concurrently. Data resulted from parallel computing on individual GPUs are then collected
and transferred back to the host for further processing.

The GPU-parallel KDE exploits data parallelism for parallel computing at each com-
putation step, meaning it maps computation on individual data items to individual GPU
threads (e.g., each thread computes density at one point or at one cell) [20]. The key to
multi-GPU-parallel KDE lies in properly dividing the data items (e.g., points or cells) across
the GPUs, transferring the data to their respective GPU memory, launching the computing
kernel on each GPU to carry out the computation on the data items that GPU is responsible
for, and finally transferring results from individual GPUs back to the host where the results
can be aggregated as needed.

Implementation of the multi-GPU parallel computing extension to the GPU-parallel
KDE algorithm is demonstrated below through the density raster estimation step (after
bandwidth determination). The input data (i.e., point locations and study area raster)

https://tinyurl.com/8jsy8ynk
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are first transferred to individual GPU’s memory. Then, there are two different strategies
to approach parallel density raster estimation: Cell-based parallelization or point-based
parallelization (Figure 3). Taking the cell-based approach, raster cells are evenly divided
(equal number of cells) across available GPUs, and each GPU’s assigned cells are marked
active. A computing kernel is then launched on each GPU to estimate densities at the
active cells (following Equation (1)). The kernel execution configuration on each GPU is
determined based on their respective number of active cells (i.e., one GPU thread for each
cell). After the kernel runs complete on all GPUs, estimated densities at their respective
active cells (i.e., partial density raster) are transferred back to the host where they are
spatially combined to produce a final density raster.
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With point-based parallelization, points are evenly divided across available GPUs
(roughly equal number of points on each GPU), and each GPU’s assigned points are marked
active. A computing kernel is then launched on each GPU to compute density contributions
of each point to every cells. The kernel execution configuration on each GPU is determined
based on their respective number of active points (i.e., one GPU thread for each point).
After kernel runs complete on all GPUs, partial density rasters are transferred back to the
host where partial densities at each cell are summed up to compute a final density at that
cell. Consistent with the original GPU-parallel KDE implantation [20], this parallelization
strategy was adopted by default in this study, as it is computationally more efficient.

Other KDE computation steps (e.g., computing edge effect correction factors at points,
computing densities at points) are similarly parallelized across multiple GPUs using the
point-based approach. The Extended multi-GPU-parallel KDE automatically detects the
number of GPUs available on the computing platform, divides workloads across multiple
GPUs, and collects results from the GPUs for necessary aggregation. It is expected to
complete KDE computation faster compared to the original single-GPU implementation, as
it utilizes multiple GPUs to conduct computation concurrently.

3.2. Tile-Based Density Estimation

The study area raster is used for two purposes over the course of the KDE
algorithm [20]. On the one hand, the raster depicts study area boundary, and calculating
edge effect correction factors relies on it to calculate (at each event location) the kernel mass
that is within the boundary. On the other hand, it serves as a geographic template of the
density raster. That is, densities are estimated at every cell (except for no-data cells) in the
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study area raster to produce a density raster. Representing a large area at high resolution
(i.e., small cell size), the study area raster may well outsize GPU memory capacity (Section 2.2).
Also note that, for computing edge effect correction factors, the full extent of the raster
needs to be kept in memory so the KDE algorithm can trace the entirety of the study area
boundary. In contrast, estimating density raster does not require access to the full raster all
at once, as density estimation at one cell is independent from that at another cell.

Accordingly, two separate user-supplied rasters can be provided as input to the KDE
algorithm: one is a low-resolution raster that can easily fit into GPU memory for calculating
edge effect correction factors, and the other a high-resolution raster that can be transferred
to GPU memory tile-by-tile for density estimation (Figure 4). Decreasing the resolution
of the study area raster for edge effect correction has negligible impact on KDE because
edge effect correction factors computed based on a study area raster at a reduced resolution
are not necessarily much different from those computed using a higher-resolution raster,
or there is no need for edge correction if event locations outside the study area are also
present [24], or users simply choose not to account for edge effect such that a (biased) density
raster can be estimated much faster [20]. With the tile-based density estimation strategy,
density raster over large study areas can be estimated at very high spatial resolutions,
as long as the size of one raster tile fits in the GPU memory. The newly extended GPU-
parallel KDE adopts GDAL (Geospatial Data Abstraction Library) to handle raster tile I/O
(i.e., reading/writing tiles from/to GeoTIFF files) [34,35]. It also automatically determines
the tile dimension (columns × rows) based on the amount of GPU memory available on the
computing platform and the physical layout of the GeoTIFF files [30,31]. By default, a tile
can use up to 20% of the memory left, and tile width and height will not exceed half of the
total number of raster columns and rows, respectively, to reduce the chance of obtaining
highly unbalanced tiles. Note that the computation workload of estimating densities on
one raster tile is still parallelized on multiple GPUs (Section 3.1).

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 4. The extended GPU-parallel KDE algorithm estimates density raster one tile at a time. 

4. Performance Evaluation 
4.1. Experiment Design 
4.1.1. Overall Design and Metrics 

Experiments were designed and conducted to evaluate effectiveness of the proposed 
extensions (i.e., multi-GPU parallel computing and tile-based density estimation) by com-
paring computing performance of the extended GPU-parallel KDE algorithm against the 
original single GPU-based implementation. The effects of the two extensions were exam-
ined through experiments (see Section 4.2 for specifics). Computing performance in this 
study was measured as the execution time of the algorithm to complete a given point 
pattern analysis task, where the total execution time is further split into I/O time (i.e., time 
spent on reading/writing data from/to files) and computation time (i.e., time spent on eve-
rything else, including data transfers between the host and GPUs) [20,30]. For each KDE 
experiment, the average execution time (i.e., total, I/O, and computation) of two repeated 
runs was reported. 

The extended GPU-parallel KDE algorithm running parallel computing across mul-
tiple GPUs is expected to speed up KDE tasks over the original implementation that runs 
on only a single GPU. For a given KDE task, speedup is computed as the ratio between 
the computation time of the GPU-parallel KDE running a single GPU and that running on 
multiple GPUs (Equation (2)): 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 _𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 _  (2)

The speedup rate defined above measures how much acceleration is achieved by uti-
lizing multiple GPUs for KDE computation compared to utilizing just a single GPU. 

Figure 4. The extended GPU-parallel KDE algorithm estimates density raster one tile at a time.



ISPRS Int. J. Geo-Inf. 2023, 12, 31 8 of 20

4. Performance Evaluation
4.1. Experiment Design
4.1.1. Overall Design and Metrics

Experiments were designed and conducted to evaluate effectiveness of the proposed
extensions (i.e., multi-GPU parallel computing and tile-based density estimation) by com-
paring computing performance of the extended GPU-parallel KDE algorithm against
the original single GPU-based implementation. The effects of the two extensions were
examined through experiments (see Section 4.2 for specifics). Computing performance
in this study was measured as the execution time of the algorithm to complete a given
point pattern analysis task, where the total execution time is further split into I/O time
(i.e., time spent on reading/writing data from/to files) and computation time (i.e., time
spent on everything else, including data transfers between the host and GPUs) [20,30]. For
each KDE experiment, the average execution time (i.e., total, I/O, and computation) of
two repeated runs was reported.

The extended GPU-parallel KDE algorithm running parallel computing across multiple
GPUs is expected to speed up KDE tasks over the original implementation that runs on
only a single GPU. For a given KDE task, speedup is computed as the ratio between the
computation time of the GPU-parallel KDE running a single GPU and that running on
multiple GPUs (Equation (2)):

Speedup =
Computation_Timesingle_GPU

Computation_Timemulti_GPU
(2)

The speedup rate defined above measures how much acceleration is achieved by
utilizing multiple GPUs for KDE computation compared to utilizing just a single GPU.
Theoretically, the speedup should not exceed the number of GPUs in use, e.g., the maximum
speedup achievable using two identical GPUs (versus using one GPU) is 2.0. One should
not mistake it as the speedup achievable by GPU-based parallel KDE computation over
sequential CPU-based computing, which could reach the magnitude of hundreds or even
thousands. GPU over CPU speedup, however, is not the focus of this study; it has been
thoroughly investigated by Zhang et al. [20].

4.1.2. Experiment Data

Synthetic datasets and real-world datasets were both used for the experiments. The
extended GPU-parallel KDE algorithm can run in two different modes. In the first mode,
the program uses synthetic point data and study area raster generated on-the-fly accord-
ing to user specifications (Figure 5). It generates a specified number of random event
locations within an artificial rectangular study area with an extent of 0–100 along the
south–north direction and 0–100 along the west–east direction. The study area is dis-
cretized into a low-resolution raster for calculating edge effect correction factors and an-
other high-resolution raster for estimating densities. The user specifies two cell sizes for the
two rasters, respectively. In the second mode, data are read from user-provided data files
(i.e., a CSV file containing event locations, a GeoTIFF raster file for edge effect correction,
and another GeoTIFF raster for density estimation). Synthetic datasets of varying sizes
(in terms of number of event locations, and number of raster cells) were used in the ex-
periments to evaluate the effects of the two extensions on computing performance of the
extended GPU-parallel KDE algorithm.

Moreover, to demonstrate the capability of the extended GPU-parallel KDE to handle
authentic large-scale point pattern analysis tasks, the GPU-parallel KDE algorithm was
applied to a real-world dataset containing n = 13,806,513 sampling event locations (i.e.,
birding sites) (Figure 6) obtained from the eBird citizen science project [36,37] for estimating
1000- or 500-m resolution probability density rasters covering the world between latitudes
60◦ S and 75◦ N.
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using the ‘rule-of-thumb’ method.
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4.1.3. Computing Platforms

Experiments were run on three computing platforms with differing computing capa-
bilities: Dell Precision 3620 Tower, Dell Precision 5820 Tower, and Dell PowerEdge T640,
hereafter referred to as the basic, intermediate, and advanced platform, respectively (Table 1).
All computers run the Windows 10 operating system and have CUDA (version 11.7) and
GDAL (version 3.0.0) installed and configured to run the GPU-parallel KDE algorithm.
Nonetheless, they are equipped with CPUs and GPUs with different computing capabili-
ties. The basic platform has two identical Quadro P1000 GPUs (4 GB memory each), the
intermediate has two Quadro P4000 GPUs (8 GB memory each), and the advanced has
one Tesla V100 GPU (32 GB memory). Due to limited resources, no computing platforms
with more than two identical GPUs are available to run the experiments.

Table 1. Specifications of the three computing platforms.

Platform CPU GPU

Precision 3620
(Basic)

Intel Core i7 CPU NVIDIA Quadro P1000 × 2
3.6 GHz max clock speed 1.48 GHz max clock speed
4 cores (8 logical processors) 4 GB memory
16 GB memory 80 GB/s peak memory bandwidth

Precision 5820
(Intermediate)

Intel Xeon CPU NVIDIA Quadro P4000 × 2
3.7 GHz max clock speed 1.48 GHz max clock speed
8 cores (16 logical processors) 8 GB memory
64 GB memory 243 GB/s peak memory bandwidth

PowerEdge T640
(Advanced)

Intel Xeon CPU NVIDIA Tesla V100 × 1
2.7 GHz max clock speed 1.38 GHz max clock speed
24 cores (48 logical processors) 32 GB memory
192 GB memory 898 GB/s peak memory bandwidth



ISPRS Int. J. Geo-Inf. 2023, 12, 31 10 of 20

4.2. Experiments and Results
4.2.1. Effects of Multi-GPU Parallel Computing

Experiments were conducted to examine the speedup achieved by the multi-GPU
version of the parallel KDE algorithm over the single-GPU version, and how various
parameters of a KDE task (i.e., number of points, density raster cell size, bandwidth
option, and edge effect correction) and computing platform may impact the speedup.
All experiments in this section were run on the intermediate computing platform and by
default without edge effect correction, unless otherwise specified. In all the experiments,
the size of the study area raster did not exceed memory capacity and hence was read in all
at once as a single tile for density estimation.

4.2.1.1. Impact of the Number of Points

The experiment results show computation time increases as the number of points
increases, although the number of folds increased is smaller when the KDE algorithm runs
on multiple GPUs compared to running on a single GPU (Table 2). For example, when the
number of points increases by 10 folds from 100,000 to 1,000,000, computation time increases
by 30.22 and 24.9 folds on one GPU and two GPUs, respectively. The speedup achieved on
two GPUs also improves on KDE tasks involving a larger number of points. It increases
from 1.58 at 100,000 points to 1.93 at 2,000,000 points, approaching the theoretical speedup
of 2.0. This implies that the multi-GPU parallel computing extension effectively accelerated
KDE computation and the acceleration is more significant on KDE tasks involving larger
number of points.

Table 2. Execution time (in seconds) for density estimation with adaptive bandwidths on synthetic
datasets (varied number of points; density raster cell size = 0.05).

# Points # GPUs Total I/O Computation # Folds Increased Speedup

100,000 1 31.67 0.17 31.50 1.00
2 20.10 0.17 19.92 1.00 1.58

200,000 1 85.45 0.16 85.29 2.71
2 45.89 0.17 45.72 2.29 1.87

500,000 1 281.41 0.19 281.22 8.93
2 152.29 0.20 152.09 7.63 1.85

1,000,000 1 952.00 0.17 951.83 30.22
2 496.35 0.18 496.16 24.90 1.92

2,000,000 1 2237.94 0.15 2237.79 71.04
2 1159.77 0.17 1159.60 58.20 1.93

4.2.1.2. Impact of Density Raster Cell Size

As density raster cell size decreases (i.e., number of density estimation cells increases),
computation time increases. However, the number of folds increased is again smaller when
the KDE algorithm runs on multiple GPUs (Table 3). As an example, when cell size is
reduced from 0.5 to 0.02 and hence the number of cells increases by 625 (25 × 25) folds,
computation time increases by only 20.75 and 9.4 folds on one GPU and two GPUs, respec-
tively. The speedup achieved on two GPUs improves on KDE tasks involving more density
estimation cells. It increases from 1.05 at cell size 0.2 to 1.88 at cell size 0.02, indicating that
the multi-GPU extension brought more significant acceleration on KDE tasks involving
larger number of density estimation cells. Noticeably, the speedup was 0.85 (below 1.0)
at cell size 0.5 (i.e., computation was slower on two GPUs), which may suggest that the
benefits of multi-GPU computation outweigh its associated costs on KDE tasks only beyond
certain problem size (more in Section 5.1).
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Table 3. Execution time (in seconds) for density estimation with ‘rule-of-thumb’ fixed bandwidth on
synthetic datasets (n = 1,000,000 points; varied density raster cell size).

Cell Size # GPUs Total I/O Computation # Folds Increased Speedup

0.5 1 11.30 0.00 11.29 1.00
2 13.24 0.00 13.23 1.00 0.85

0.2 1 13.24 0.01 13.23 1.17
2 12.67 0.02 12.65 0.96 1.05

0.1 1 20.69 0.08 20.62 1.83
2 17.87 0.06 17.81 1.35 1.16

0.05 1 47.67 0.15 47.51 4.21
2 31.47 0.21 31.26 2.36 1.52

0.02 1 235.49 1.09 234.41 20.75
2 125.65 1.27 124.38 9.40 1.88

4.2.1.3. Impact of Bandwidth Option

Density rasters estimated with fixed or adaptive bandwidths determined based on
cross-validation are more capable of revealing fine-scale density variabilities (Figure 7).
Nonetheless, determining bandwidth through cross-validation is much more computation-
ally expensive than using the simple ‘rule-of-thumb’ method (Table 4). Utilizing one GPU,
the computing time of KDE with cross-validated fixed bandwidth and with adaptive band-
widths increases by 3.28 and 20.3 folds compared to KDE with ‘rule-of-thumb’ bandwidth,
respectively, whilst utilizing two GPUs, the number of folds increased in computation time
is 2.74 and 15.87, respectively. The speedup achieved on two GPUs improves from 1.52 on
KDE with ‘rule-of-thumb’ bandwidth to 1.92 with adaptive bandwidths, suggesting the
multi-GPU extension achieved more significant acceleration on KDE tasks involving more
complex bandwidth determination methods.
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Table 4. Execution time (in seconds) for density estimation with three bandwidth options on a
synthetic dataset (n = 1,000,000 points; density raster cell size = 0.05).

Bandwidth Option # GPUs Total I/O Computation # Folds Increased Speedup

Fixed bandwidth
(‘rule-of-thumb’)

1 47.67 0.15 47.51 1.00
2 31.47 0.21 31.26 1.00 1.52

Fixed bandwidth
(cross-validation)

1 155.79 0.16 155.63 3.28
2 85.72 0.17 85.55 2.74 1.82

Adaptive bandwidths
(cross-validation)

1 952.00 0.17 951.83 20.03
2 496.35 0.18 496.16 15.87 1.92

4.2.1.4. Impact of Edge Effect Correction

Edge effect correction may be necessary to obtain unbiased density estimates, espe-
cially at estimation locations close the boundary of the study area, when event locations
outside the study area are not present (Figure 8). However, it incurs significant extra com-
putational workload. With edge effect correction, the computation time of KDE with cross-
validated fixed bandwidth and with adaptive bandwidths (Table 5) increases by roughly
3 and 18 folds compared to their KDE counterparts without edge correction (Table 4).
Utilizing one GPU, the computing time of KDE with cross-validated fixed bandwidth and
with adaptive bandwidths increases by 9.21 and 344.7 folds, respectively, compared to KDE
with ‘rule-of-thumb’ bandwidth. Utilizing two GPUs, the number of folds increased in
computation time is 7.83 and 288.39, respectively. Nevertheless, the speedup achieved
on two GPUs improves from 1.61 on KDE with ‘rule-of-thumb’ bandwidth to 1.92 with
adaptive bandwidths, implying that the multi-GPU extension still brings more significant
acceleration on KDE tasks with complex bandwidth determination methods even when
computationally expensive edge effect correction is carried out.
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Table 5. Execution time (in seconds) for density estimation with edge effect correction on a synthetic
dataset (n = 1,000,000 points; density raster cell size = 0.05).

Bandwidth Option # GPUs Total I/O Computation # Folds Increased Speedup

Fixed bandwidth
(‘rule-of-thumb’)

1 50.07 0.16 49.91 1.00
2 31.16 0.15 31.01 1.00 1.61

Fixed bandwidth
(cross-validation)

1 459.67 0.16 459.51 9.21
2 242.92 0.17 242.75 7.83 1.89

Adaptive bandwidths
(cross-validation)

1 17,203.41 0.18 17,203.23 344.70
2 8941.88 0.19 8941.69 288.39 1.92
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4.2.1.5. Impact of Computing Platforms

Completing the same KDE task on a synthetic dataset, the computation time on
the intermediate and advanced platforms decreases by 2.97 and 12.57 folds, respectively,
compared to that on the basic platform (Table 6). This is expected as the three platforms,
from basic to advanced, are equipped with increasingly capable GPUs. Nonetheless,
utilizing two GPUs on the basic and intermediate platforms both achieved a speedup of 1.92
(the maximum theoretical speedup is 2.0), suggesting compatibility and good performance
of the multi-GPU-parallel KDE algorithm across platforms of varying computing capability.

Table 6. Execution time (in seconds) on different computing platforms for density estimation with
adaptive bandwidths (no edge effect correction) on a synthetic dataset (n = 1,000,000 points; density
raster cell size = 0.05).

Platform # GPUs Total I/O Computation # Folds Decreased Speedup

Basic 1 2829.95 0.17 2829.78 1.00
2 1473.41 0.17 1473.24 1.00 1.92

Intermediate 1 952.00 0.17 951.83 2.97
2 496.35 0.18 496.16 2.97 1.92

Advanced 1 225.27 0.19 225.08 12.57 n/a

4.2.2. Effects of Tile-Based Density Estimation

A synthetic dataset with 1,000,000 points in the artificial study area (represented as a
raster at 0.005 cell size) was used to test the effectiveness of the tile-based density estima-
tion strategy (Table 7). The study area raster for density estimation has 400 million cells
(20,000× 20,000), which requires about 1.5 GB GPU memory space (4 bytes per float-number
cell value × 400 million cells). Whilst the Tesla GPU with 32 GB memory on the advanced
computing platform could easily hold the whole raster in its memory as a single tile, the
basic platform can only process the raster tile-by-tile, because the Quadro P1000 GPU
therein has only 4 GB of memory, which also holds other data such as points, and by default
only 20% of the memory left can be used for the raster tile. While the execution time was
longer on the basic platform than on the advanced platform (I/O and computation time
was 2.6 and 9.8 times as long, respectively), the GPU-parallel KDE algorithm was able to
estimate the density rater in nine tiles on the basic platform. Enabled by the tile-based
density estimation extension, the GPU-parallel KDE algorithm can now complete KDE
tasks that involve density rasters larger than the GPU memory.

Table 7. Execution time (in seconds) for density estimation with ‘rule-of-thumb’ fixed bandwidth (no
edge effect correction) on a synthetic dataset (n = 1,000,000 points; density raster cell size = 0.005).

Platform # GPUs # Tiles Total I/O Computation

Advanced 1 1 772.36 22.37 749.99
Basic 2 9 7370.79 57.54 7313.25

4.2.3. Point Pattern Analysis on the eBird Dataset

The multi-GPU-parallel and tile-based KDE algorithm was applied to the eBird dataset
for density estimation with different bandwidth options and on different computing platforms
to evaluate its usability on authentic large-scale point pattern analysis tasks. Density raster
maps covering the world land areas between latitudes 60◦ S and 75◦ N were estimated
with fixed bandwidth using all n = 13,806,513 eBird sampling locations at 1 km or 500 m
spatial resolution. The space needed to store the full raster size in memory is approximately
3.4 GB at 1 km resolution (4 bytes per float-number cell value× 40,075 columns× 21,215 rows)
and 13.6 GB at 500 m resolution (4 bytes per float-number cell value × 80,150 columns ×
42,431 rows). A density raster map was estimated with adaptive bandwidths at 30 m resolution
in a focus area (Colorado, United States) based on extracted eBird sampling locations within
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and around the study area (n = 324,983 points). For the focus area, the full raster size in memory
is approximately 2.1 GB (4 bytes per float-number cell value× 27,090 columns× 19,760 rows).
Edge effect correction is not necessary in these KDE cases because sampling locations
beyond the study area boundaries are present in the dataset.

4.2.3.1. KDE with Fixed Bandwidth

As expected, the ‘rule-of-thumb’ bandwidth leads to over-smoothed density estimates
that are good for revealing eBird sampling density trends at larger spatial scales (e.g.,
global, continental), whilst the cross-validated fixed bandwidth better captures sampling
density variations at smaller scales (e.g., regional, metropolitan) (Figure 9) [24]. Regarding
execution time for estimation at 1 km resolution (Table 8), consistent with the results from
experiments using synthetic datasets, determining bandwidths through cross-validation
incurs much more computation workload compared to using the simple ‘rule-of-thumb’
method. The computation time increases by about 12 and 19 folds on the intermediate
and advanced platforms, respectively. However, the speedup achieved by utilizing two
GPUs improves from 1.95 to 1.99, closely approaching the theoretical maximum of 2.0.
Estimating density at 500 m resolution (Table 9), it took about 8 h (in 32 tiles) on the basic
platform using two GPUs and 2 h (in 8 tiles) on the advanced platform, roughly a 4 folds
increase from density estimation at 1 km resolution. The results indicate that the extended
GPU-parallel KDE algorithm can effectively handle large-scale point pattern analysis tasks
by dividing-and-conquering the problem using the tile-based density estimation strategy
and by exploiting parallel computing power on multiple GPUs.
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Table 8. Execution time (in minutes) for density estimation with fixed bandwidth on the eBird dataset
(n = 13,806,513 points; density raster cell size = 1 km; geographic extent: latitudes 60◦ S–75◦ N).

Platform Fixed Bandwidth # GPUs # Tiles Total I/O Computation Speedup

Intermediate ‘Rule-of-thumb’ 1 8 226.16 1.51 224.65
2 8 116.79 1.50 115.29 1.95

Cross-validation 1 15 2583.30 1.58 2581.72
2 15 1297.52 1.75 1295.77 1.99

Advanced ‘Rule-of-thumb’ 1 8 32.31 1.80 30.52
Cross-validation 1 8 567.92 1.76 566.16

Table 9. Execution time (in minutes) for density estimation with ‘rule-of-thumb’ fixed bandwidth on
the eBird dataset at 500 m resolution (n = 13,806,513 points; geographic extent: latitudes 60◦ S–75◦ N).

Platform # GPUs # Tiles I/O Total Computation

Intermediate 2 32 12.82 482.13 469.31
Advanced 1 8 7.16 116.57 109.41

4.2.3.2. KDE with Adaptive Bandwidths

Compared to the 1-km resolution density map estimated with cross-validated fixed
bandwidth, the 30-m resolution density map estimated with adaptive bandwidths can
reveal density variations at even finer spatial scales (e.g., neighborhood) (Figure 10) [24].
As for execution time (Table 10), estimating the 30-m density map (in 9 tiles) with adaptive
bandwidths can be completed in about 79 and 29 min on the basic and intermediate
platforms (using two GPUs), respectively, and in 11 min on the advanced platform. The
speedup achieved by utilizing two GPUs was 1.86 and 1.9 on the basic and intermediate
platforms, respectively. Further, it shows that the tile-based density estimation and multi-
GPU parallel computing extensions can enable fine-resolution density estimation with the
computationally intricate adaptive bandwidth determination method.
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Table 10. Execution time (in minutes) for density estimation with adaptive bandwidths on the eBird
sampling locations within and around Colorado (n = 324,983 points; density raster cell size = 30 m).

Platform # Tiles # GPUs Total I/O Computation Speedup

Basic 9 1 147.96 1.74 146.23
9 2 78.79 1.88 76.91 1.90

Intermediate 9 1 51.43 1.46 49.97
9 2 28.47 1.53 26.94 1.86

Advanced 9 1 11.14 1.67 9.47 n/a

5. Discussion
5.1. Cost-Benefit Analysis of the New Extensions

The multi-GPU parallel computing and the tile-based density estimation extensions,
on the one hand, come with some overhead. First, multi-GPU parallel computing incurs
extra cost on frequently transferring data between the host and multiple GPUs. For exam-
ple, when iteratively determining the optimal adaptive bandwidths [20], at each iteration,
densities at sample locations are estimated on multiple GPUs (e.g., utilizing two GPUs,
each GPU is responsible for computing densities at half of the locations). The partial density
arrays on each GPU are then copied to the host to form a complete density array, which
is then copied back to the GPUs for computing updated bandwidths to compute density
estimates at the next iteration. To assess such a data transfer cost, the time spent on every
data transfer between the host and GPUs were recorded for the experiment of estimating
30-m resolution density raster on the basic computing platform with adaptive bandwidths
in Colorado using eBird data. Results show moving data back-and-forth between the
host and GPUs are very fast given the high peak memory bandwidth on modern GPUs
(e.g., Table 1). It took only 2.22 and 6.52 s to transfer data between the host and one GPU
and between the host and two GPUs, respectively. Data transfer cost increases when
more GPUs are involved, but it remains negligible compared to the total execution time
(147.96 and 78.79 min, respectively; Table 10). Even with a larger number of GPUs
(e.g., more than two), data transfer cost is not expected to increase the execution time
in any significant way.

Second, tile-based density estimation also incurs extra cost on reading/writing data
multiple times from/to the raster file. Nonetheless, across all experiments in this study,
I/O time is much less than computation time, seldomly exceeding 5% of the total execution
time. In addition, I/O cost is determined by host characteristics (e.g., disk I/O speed). It
does not correlate with the cost of data transfer among GPUs (i.e., utilizing a larger number
of GPUs does not increase I/O cost).

However, the benefits of the two extensions are apparent. Multi-GPU parallel com-
puting effectively exploits computing resources on multiple GPUs, with the speedup rate
approaching the theoretical maximum, to speed up complex KDE computation involving
very large numbers of points and density estimation cells. Tile-based density estimation
overcomes memory constraint and makes it feasible to estimate densities at high spatial
resolutions over large areas. The extensions should scale well to a larger number of GPUs,
as analyzed above. Overall, the two extensions are highly cost-effective and scalable to
handle large-scale point pattern analysis on massive datasets.

5.2. Recommendations on Using GPU-Parallel KDE

Experiment results have demonstrated that the multi-GPU-parallel and tile-based
KDE algorithm is capable of handling very large-scale point pattern analysis tasks. It could
be a useful tool for discovering patterns embedded in massive geographic point datasets to
shed light on the underlying spatial processes [24,38]. Here are a few recommendations for
users to effectively adopt this computational tool for their own application scenarios.

First and foremost, decide on an appropriate bandwidth option. Making such a deci-
sion requires careful consideration of the methodological and computational implications.
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Fixed bandwidth determined based on simple ‘rule-of-thumb’ methods, although it al-
most always leads to over-smoothed density estimates informative of patterns at coarse
spatial granularity, is most convenient computationally. In contrast, fixed bandwidth deter-
mined through data-driven methods (e.g., cross-validation) often is able to capture density
variations at finer spatial scales, but the computational processes are more involved. Deter-
mining adaptive bandwidths through data-driven methods, however, is computationally
the most complicated but it results in density surfaces that can reveal patterns at the finest
spatial granularity among the three bandwidth options. When the number of event loca-
tions is relatively small (e.g., a couple million points), any bandwidth option is feasible as
KDE computation can be completed fairly quickly. For a large-scale point pattern analysis
task (e.g., tens of millions of points), however, bandwidth (fixed or adaptive) determination
through cross-validation on the full dataset may become burdensome due to the elongated
execution time.

In such cases, users are advised to approach the KDE task at hand in one of the
two following ways. (1) The GPU-parallel KDE offers an option to directly read bandwidths
from the point data file. The user can thus run KDE with a progression of fixed band-
widths on the full dataset to identify an appropriate bandwidth that produces a satisfactory
density surface. As an example, Zhang [24] utilized KDE with a series of bandwidths
(e.g., 1/2, 1/4, 1/8, . . . , 1/128 of the ‘rule-of-thumb’ bandwidth) to generate density sur-
faces with varying levels of detail for detecting and visualizing hot-spots in massive point
data across spatial scales. (2) Zoom in to a focus study area and run KDE with fixed or
adaptive bandwidths determined through cross-validation on only data points within and
around the focus area. This proves to be a reasonable compromise between the method-
ological and computational implications, as the advantage of cross-validated bandwidths
happens to lie in revealing fine-scale density variations in local areas (Section 4.2.3.2; [24]).

The second is regarding whether to run KDE with edge effect correction [6]. Edge
effect correction, even with a low-resolution study area boundary raster, incurs significant
computational overhead (Section 4.2.1.4; [20]). Hence, wherever possible, it should be
avoided, or its cost be reduced as much as possible. To re-iterate, edge effect correction can
be omitted, for example, in the following situations. (1) Event locations (points) outside
the density raster boundary are also present in the dataset, so there is no need for edge
effect correction (e.g., experiments in Section 4.2.3). (2) Users deem a density surface with
slight density estimation biases near the boundary still suits the application purpose and
thus prefer shorter execution time over accurate density estimation. In cases where edge
correction is absolutely necessary, users can still reduce its associated computational cost
by using a low-resolution raster to represent the study area boundary to more quickly
compute the approximate edge correction factors [28].

5.3. Point Pattern Analysis versus Heat Map Visualization

The KDE algorithm in this study was adopted to estimate a density raster covering
a geographic study area at a certain spatial resolution (i.e., a grid of cells, each with an
estimated probability density value indicating the likelihood of the event occurring at the
cell location) based on a set of point event locations, with properly determined bandwidths,
and with edge effect accounted for where necessary (Equation (1)). The output density
raster is specifically intended to aid spatial point pattern analysis, which can be carried
out in a variety of ways. Event hotspots can be extracted from the density raster using
quantitative methods, for example, by simply applying a density threshold (i.e., cells with
density above the threshold are regarded as hotspot areas). Alternatively, the estimated
density raster can be visualized as a density map (i.e., “heat” map) for visually (thus
qualitatively) locating hotspots, which can be performed in regular GIS software and in an
interactive manner (e.g., zoom in, zoom out, and pan).

Rendering heat maps is never the ultimate goal, but rather a byproduct of KDE in the
context of geographic point pattern analysis [5], although KDE has been used extensively
for heat map visualization as a general way of summarizing a large amount of point data.
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Strategies have been developed to address the computation challenges associated with
KDE-based heat map generation from big point data, for example, by utilizing big data
infrastructure [39] and streaming computing [40], and by computing approximate, instead
of exact, densities to reduce computing complexity [41]. These strategies could potentially
accelerate KDE for point pattern analysis as well. However, several differences between
the two KDE application scenarios may render the strategies not readily transferrable
to point pattern analysis. First, density estimation in heat map visualization usually
does not involve edge effect correction as it is not constrained by a geographic study
area. Second, heat map visualization generally do not offer flexible bandwidth options
(e.g., adaptive bandwidths). Third, heat map visualization often generates maps only for
display (e.g., on computer screens) and densities are computed on-the-fly only at a small
number of display pixels (e.g., 1280 × 960 pixels) at the current zoom level [42]. In contrast,
density estimation for point pattern analysis could be at high-resolution over a large
area (e.g., 80,150 × 42,431 cells at 500 m resolution covering the world between latitudes
60◦ S and 75◦ N; Section 4.2.3). Moreover, for heat map visualization, there may be no need
to save densities at locations beyond the pixels within the current display extent, which
greatly reduces memory demand, but for point pattern analysis the full extent density
raster needs to be tracked.

6. Conclusions

This study develops a new GPU-parallel KDE algorithm that supports multi-GPU
parallel computing and tile-based density estimation for large-scale point pattern analysis
(e.g., massive points, large area, and high resolution). By dividing computation workload
across GPUs, it can exploit computing resources on multiple GPUs to speedup complex
KDE computation. The tile-based processing strategy addresses the memory bottleneck
facing KDE over large areas at high spatial resolution. The results of the experiments
conducted on platforms with differing computing capability confirm that the multi-GPU
parallel KDE algorithm achieves significant speedup over the single GPU version. It
achieves higher speedups, approaching the maximum theoretical speedup, on KDE tasks of
a larger problem size (e.g., KDE tasks involving a larger number of points and/or density
estimation cells, more complicated bandwidth determination mechanisms, and expensive
edge effect correction). Moreover, the tile-based strategy towards density estimation
renders it feasible to run the parallel KDE algorithm on computers with only limited GPU
memory to complete ‘big’ KDE tasks (e.g., estimating a global 500-m resolution density
raster based on tens of millions of eBird sampling locations). The scalable multi-GPU
parallel computing and tile-based density estimation features, while incurring very little
computational overhead, effectively enable the GPU-parallel KDE algorithm for large-scale
spatial point pattern analysis on geospatial big data with the KDE method.

Due to limited resources, this study did not test the performance of the multi-GPU
parallel KDE algorithms on more than two identical GPUs, although analyses suggest
that it should scale well to a larger number of GPUs (Section 5.1). Another potential
improvement on the current multi-GPU parallel KDE algorithms is to further extend it
to support utilizing GPUs available on a network of compute nodes so it is even more
capable of handling massive KDE tasks. The algorithm now only uses GPUs on the same
computer for parallel computing, which was implemented based on the CUDA program-
ming library. If it were to access GPUs on more than one compute nodes, more complex
cross-computer programming libraries such as CUDA-aware MPI (message passing inter-
face) (https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/; accessed on
17 January 2023) would be needed for implementation, and additional cost of transferring
data across nodes (for both GPU computation and I/O) is expected to be incurred.
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