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Abstract: Infection of liver flukes (Opisthorchis viverrini) is partly due to their suitability for habitats
in sub-basin areas, which causes the intermediate host to remain in the watershed system in all
seasons. The spatial monitoring of fluke at the small basin scale is important because this can
enable analysis at the level of the factors involved that influence infections. A spatial mathematical
model was weighted by the nine spatial factors X1 (index of land-use types), X2 (index of soil
drainage properties), X3 (distance index from the road network, X4 (distance index from surface
water resources), X5 (distance index from the flow accumulation lines), X6 (index of average surface
temperature), X7 (average surface moisture index), X8 (average normalized difference vegetation
index), and X9 (average soil-adjusted vegetation index) by dividing the analysis into two steps: (1) the
sub-basin boundary level was analyzed with an ordinary least square (OLS) model used to select the
spatial criteria of liver flukes aimed at analyzing the factors related to human liver fluke infection
according to sub-watersheds, and (2) we used the infection risk positional analysis level through
machine-learning-based forest classification and regression (FCR) to display the predictive results
of infection risk locations along stream lines. The analysis results show four prototype models that
import different independent variable factors. The results show that Model 1 and Model 2 gave
the most AUC (0.964), and the variables that influenced infection risk the most were the distance
to stream lines and the distance to water bodies; the NDMI and NDVI factors rarely affected the
accuracy. This FCR machine-learning application approach can be applied to the analysis of infection
risk areas at the sub-basin level, but independent variables must be screened with a preliminary
mathematical model weighted to the spatial units in order to obtain the most accurate predictions.

Keywords: Opisthorchis viverrini; forest-based classification and regression; machine learning;
ordinary least square

1. Introduction

Severe liver fluke infections have been detected in Ponna Kaeo district, Sakon Nakhon
Province, Thailand [1]. The liver fluke, scientifically named Opisthorchis viverrini (OV),
causes cholangiocarcinoma (CCA) [2–4]. CCA is a cancer of the bile ducts of the liver, a
disease that has no symptoms. The patient may have signs and symptoms in the early
stages of cholangiocarcinoma. The prevalence of liver flukes and cholangiocarcinoma
has been reported to be the highest in the eastern provinces of Thailand. The cause
of cholangiocarcinoma comes from the liver fluke [5]. It is caused by eating raw fish
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contaminated with contagious larvae, as well as the popular consumption of raw or semi-
cooked and semi-raw fish. Fluke infections from fish products, such as fermented fish, have
also been reported [6]. Every year, more than 1000 new cases of CCA are identified in Sakon
Nakhon Hospital. This incidence has not decreased over the past decade although the
major risk factors for OV infection are known [7,8]. Another study reported the incidence
of CCA in four major regions of Thailand (Sakon Nakhon, Phrae, Roi Et, and Nong Bua
Lamphu) [8–11]. Those with a high severity of OV infection (>6000 eggs/g. feces) were
14.1 times more likely (odds) to develop CCA than people who were not infected [12].
The proportion of humans who have been infected with OV that has developed into
CCA is about 10%, causing serious health emergencies throughout the region [13,14]. The
OV infection can produce bile duct, liver, and connective tissue inflammation, resulting
in the development of CCA [4,15]. The five-year survival rate of intrahepatic, distal
extrahepatic, and hilar CCA patients undergoing surgery was 22–44%, 27–37%, and 11–41%,
respectively [15]. People were infected with liver fluke by their habitat near water bodies;
large bodies of water contribute to the continued existence of liver fluke intermediate hosts
because fish can come to live during the dry season. Therefore, the study of the potential
for infection needs to focus on the boundaries between large bodies of water flowing into
the small river basin.

Due to the geographical features of the area, there is a subdistrict boundary with
the largest natural water contact zone in the northeast, namely Nong Han. The physical
nature of the swamp is a large natural water source, full of water throughout the year, as
it is a waterfront source from several streams, making it an important food source for the
community. The livelihood of people living in the watershed derives from finding fish,
which is an important source of protein, and there is a consumption culture that is familiar
with the taste of raw fish [1,4]. According to preliminary screening results from 2019 to
2021 [2], a small number of people contracted liver flukes. In addition, studies conducted
on the prevalence of liver fluke infection in fish (contagious larvae) showed that Sakon
Nakhon Province had an infection area of 33.33% [13], and a 2016–2017 study of the density
of contact larvae in fish showed a density of 10–20 metacercaria per kilogram of fish [12].
As a result, liver fluke outbreaks are still present in Sakon Nakhon Province, where the
liver fluke’s eggs are transfused with feces, potentially contaminating soil and water bodies
and causing recurrent infections and an endless cycle of infection.

The application of a geographic information system (GIS) as an analysis tool is es-
pecially useful for predicting liver fluke infection when analyzed in conjunction with
remote-sensing (RS) data. Satellite imagery, which is the collection of RS data, can be used
to acquire spatially meaningful moisture indicators. This allows for a thorough investiga-
tion of the distribution and likelihood of liver flukes [14], such as with the standardized
vegetation index, soil moisture index, soil cover index [16], and other indices that may be
associated with the habitation of liver fluke intermediates. The study approach focuses on
spatial modeling in small areas with the connection of water flow lines covered in the area,
unlike other studies that focus on regional modeling. The datasets were homogenized to
have the same extents and pixel size, this study creates independent variables to correlate
the number of infected individuals. Various studies have used spatial statistics to analyze
correlation factors with liver fluke infection [17], such as [18,19], which analyzed a large
area, resulting in discrepancies and incoherence in the raster data. Based on the findings
of [20–22], the limitations of data acquisition at the area level are sometimes inconsistent
with the image point size from satellite imagery, which results in model discrepancies
as these limitations accumulate. As a result, models studied at the regional scale area
cannot be used as representations at the small watershed level. The GWR (geographically
weighted regression) model is typically thought of as the ideal model that can be used
to study and model at a large spatial level, but the model has the limitation of having
continuous, evenly distributed data in spatial units, which is occasionally unsuitable for
small watersheds. However, in this study, the OLS (ordinary least square) model was
applied, which is a global operation model that is sufficient for analyzing areas with a small



ISPRS Int. J. Geo-Inf. 2023, 12, 503 3 of 36

number of spatial units. Because GWR models require large enough units of space to be
weighted by coefficients, OLS models are a satisfying alternative for small-space solutions.

However, since many indices are to be constructed as independent variables to accu-
rately analyze them, the principles of geo-statistics [23], the OLS modeling method of local
operations in particular, require the creation of sub-spatial units [20], such as sub-basins,
defined from the flow boundary of the sub-basin to the modeling control boundary. This
makes OLS models effective in predicting and analyzing spatial relationships as well [24].
To build spatial models for analyzing relationships in small areas such as sub-basin lev-
els [25], there is a need to use appropriate models and design sub-area units to suit the
distribution of data and dependent and independent variables. The application of only
OLS models in independent multivariate analysis often provides satisfactory accuracy
since many independent factors create a lot of variability for the model. However, in this
study, OLS modeling was used to analyze the relationship between a set of independent
variables and the percentage of infections before OV. Past research on spatial modeling has
not used the application of OLS models and sub-spatial unit boundaries in small watershed
systems to track liver fluke infections. This was carried out to screen for the independent
variables associated with infection, and then alternative OLS models were used to select the
set of independent variables that gave the best statistical values to predict the likelihood of
infection in the streamline, and for this, it is necessary to develop models with the accuracy
of predictive prototypes. When using forecasts from spatial statistical models, risk analysis
can only be carried out at the sub-basin level, which requires sufficient independent vari-
able data to create appropriate trendlines. Machine learning (ML) is, therefore, necessary
and is used to predict the risk of water source location with potential infection by learning
from spatial factors.

Modern research has applied ML to spatial risk assessment tasks, such as in [26]. In
recent years, advances in ML algorithms, computing power, and geospatial innovations,
including software, have made it easier to create spatial maps [27]. The precision of spatial
maps can be improved using machine-learning algorithms, such as knowledge-based meth-
ods [28], multivariate logistic regression methods [29–31], and multivariate binary logistic
regression [32], which have all been presented in recent papers. General linear model [33,34],
quadratic discriminant analysis [33,35], boosted regression tree [34,36], random forest clas-
sification (RFC) [37–40], multivariate adaptive regression splines [41,42], classification
and regression tree [34,43], support vector machine [44–46], naïve Bayes [47,48], gener-
alized additive model [33,43], neuro-fuzzy and adaptive neuro-fuzzy inference [49–51],
fuzzy logic [52], artificial neural networks [53–58], maximum entropy [59,60], and deci-
sion tree [31,61,62] methods have also been presented. ML applications were also widely
used to create landslide maps (LSM). Merghadi et al. [63] assessed the performance and
competency of various ML techniques in the literature and discovered that tree-based
ensemble optimization algorithms outcompete other ML algorithms. In a comparison
analysis, Sahin [64] found that Catboost had the best precision (85%) followed by XGBoost
(83.36%), since the proportion of samples determined by Catboost was more precisely
anticipated than other models. The primary advantages of ML and probabilistic processes
are their objective statistical foundation, repeatability, capacity to quantitatively analyze
the effect of variables on spatial prediction, and the capacity to update them regularly.

Several studies in ML applications have shown that the random forest classification
method always has a higher receiver operating characteristic (ROC) and area under the
ROC curve (AUC) effect than other models, but it also depends on the factors that bring the
machine to learning, including the number of learning and testing points. Machine-learning
models can be built using a variety of spatial conditioning factors (land use, slope, aspect,
elevation, road network, water body, factors from proximity, etc.). Several studies on
flood-prone landslide susceptibility and land-use change evaluation have been undertaken
using remote sensing and GIS techniques [65–67].

Because there is currently no direct model that can predict the likelihood of locating
water bodies infected with liver flukes, studies on spatial fluke infection in small river basins
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are lacking. To fill this gap, this study used a forest-based classification and regression (FCR)
modeling approach to hypothesize that spatial factors could be an indicator of infection.
The study’s focus was on identifying the characteristics that are most important to infection
within the small river basin and using these factors to predict using FCR as a model for
model creation. Compared to earlier research, no work has utilized FCR for this type
of prediction.

In this research, the FCR approaches were applied to predict the percentage of infection
risk with spatial factors at both the watershed level and the location of learning points which
are the locations of water bodies with infected fish. Therefore, if it can be demonstrated
that the spatial characteristics in the distribution of each parasite are important to any
subspace unit at the sub-basin level, then the sub-basin level can be properly managed for
protection [68]. For example, breaking the cycle of intermediary hosts, such as mollusks, can
prevent future illnesses and result in healthy communities. The community is strengthened,
and the burden of medical care can be reduced.

1.1. The Study Area

Phon Na Kaeo is a district in Sakon Nakhon Province; in the north, it borders the
Kusumal district; in the east, it borders the Pla Pak district (Nakhon Phanom Province); in
the south, it borders the Wangyang district (Nakhon Phanom Province), Khok Si Suphan
district, and Mueang Sakon Nakhon district; and in the west, it borders the Mueang Sakon
Nakhon district. Its geographical co-ordinates are 17◦13′18′′ N, 104◦17′24′′ E, as shown in
Figure 1.

There are five subdistricts: Ban Phon, Na Kaeo, Nadong Wattana, Ban Khae, and
Chiang Shi. The Phon Na Kaeo district’s area of Sakon Nakhon Province is located in
the east of the Songkram watershed, adjacent to Nakhon Phanom Province and adjacent
to the Nong Harn marsh, which is a large natural water source. There is an exchange of
Mekong fish and fish habitat in the area at a distance of about 40 km from the Mekong
River, resulting in the travel of many Mekong/tributary fish in the Phon Na Kaeo district
and the potential for fish to increase the number of liver fluke infections.

1.2. Datasets and Analyses

Liver flukes and cholangiocarcinoma have long been a public health problem in
Thailand, and at present, at least 20,000 people in the northeast die from cholangiocarcinoma
each year [69,70]. Currently, 6–8 million people have been infected with liver flukes, so
screening people for liver fluke infection to eliminate parasites is very important in reducing
the risk of cholangiocarcinoma [71].

The data on people infected with liver fluke in this research were obtained from the
Sakon Nakhon Provincial Public Health Office (SKKO) [72] https://skko.moph.go.th/
dward/web/index.php?module=skko (accessed on 20 July 2021). Stool examination is
a standard screening method that has been in practice for a long time. For example, the
intensive examination of parasite eggs in feces using the modified Kato–Katz technique
has been an effective method in the past when there were prevalent parasite outbreaks.
Stool specimens were examined for O. viverrini eggs within hours of collection using the
modified Kato–Katz technique [73]. The results of infection showed that most people were
infected in the Phon Na Kaeo district, Sakon Nakhon Province [72]. For people during
the age of between 40 and 60 years, the prevalence of infection tends to increase. Other
testing methods include the FECT (formalin–ethyl acetate concentration technique) and
the enzyme-linked immunosorbent assay (ELISA) [74], which are more effective than stool
testing. It also provides quantitative results that correlate with the density of the parasite
and can be used for post-drug assessment to determine the rate of reinfection or new
infection [74–76]. However, in this study, such methods were not used since they require a
high budget. However, the secondary data obtained from SKKO of the number of people
infected with liver flukes (measured using the modified Kato–Katz method) are reliable
because it is an appropriate method for measuring many people. The prevalence of liver
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fluke infection in Sakon Nakhon Province tends to increase in patients aged 20–30 years, as
shown in Table 1.
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Table 1. Comparison of number of people with cholangiocarcinoma in 2019/2020 [77].

Provinces Number of People with
Cholangiocarcinoma in 2019

Number of People with
Cholangiocarcinoma in 2020

Nongkhai 22 37
Buengkarn 8 7

Loei 54 84
Nakhon Phanom 7 10

Udon Thani 50 88
Nongbualumphu 19 12

Sakon Nakhon 161 130

From 2019 to 2021, 12,063 cases were detected in national stool tests according to
data from the 8th Health District Office (Region, (R8)) [78] https://r8way.moph.go.th/r8
way/index (accessed on 17 June 2021). Of the 2832 stool tests, 599 cases were found in
Sakon Nakhon Province, with the highest number of liver fluke infections in neighboring
provinces in the watershed systems connecting Nakhon Phanom and Bueng Kan [79]. The
summary of reported cases detected as a percentage is shown in Figure 2. Sakon Nakhon
Province has the largest freshwater supply in the northeast and is a water source that breeds
animals during the rainy season [2]. Phon Na Kaeo has the highest average infection rate in
Sakon Nakhon Province. Provincial health authorities monitored the situation in this study
on the likelihood of infection within the sub-basin that could increase the number of people
infected with liver flukes in Phon Na Kaeo district. The distribution of the percentage of
infected persons to the population density is shown in Figure 3a and shows the percentage
of infected persons according to the sub-basin boundary, where the percentage index of
infections from 2019 to 2021 was 0.840–7.840%, which is developed as a dependent variable
in the OLS model and is linked to other independent data layers using the geographic
information system, namely the spatial join method, as shown in Figure 3b.
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Figure 2. Percentage of people infected with liver flukes during 2019–2021 according to the 8th
Regional Health Province (R8) near the Mekong River (adapted from R8, [80]. https://r8way.moph.
go.th/r8-primary/ (accessed on 20 June 2022).

The guidelines for the analysis of free compound factors associated with the spread of
gastric influenza are selected from a total of nine groups of factors prioritized by provin-
cial health authorities and can be defined as the following categories: land-use types,
soil drainage properties, road network, water resources, flow accumulation lines, surface
temperature, normalized difference moisture index (NDMI), normalized difference vege-
tation index (NDVI), and soil-adjusted vegetation index (SAVI). All factors are adjusted
to a comparable score range with the approach of scale normalization. All factors were
used to verify positional and temporal accuracy with Sentinel-2 satellite imagery based on

https://r8way.moph.go.th/r8way/index
https://r8way.moph.go.th/r8way/index
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land-use data via the Google Earth Engine (GEE) (See Supplementary Materials). The green
wavelength, NIR, and SWIR are the surface reflectance of the Sentinel-2 satellite in Band
3, with the green visible spectrum (wavelength: 0.53–0.59 µm), Band 5 wavelength NIR
(wavelength: 0.85–0.88 µm), and Band 6 wavelength SWIR (wavelength: 1.57–1.65 µm),
respectively. In general, a positive NDMI value (NDMI > 0) is interpreted as referring to the
threshold surface area used to measure the water surface index. Maximum and minimum
values are used as a measurement to distinguish the water surface from the forest and
the ground.
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Figure 3. (a) The number of infected populations of each village with population density
(persons/sq·km) (b) Infected percentage of each sub-basin and the Nongharn Lake boundary in the
rainy season.

2. Materials and Methods
2.1. Ordinary Least Square (OLS) Approach for Spatial Modeling (Analysis at the Level of Infected
in Sub-Basins)

The surface moisture factors and surface cover indicators analyzed using satellite
images are represented by calculations of the independent variables from X6 to X9. An OLS
modeling study was used to analyze spatial correlations in terms of liver fluke infection (OV)
from the remote-sensing data of sub-basin-level prototype areas. The research algorithm is
divided into three stages: (1) data collection and manipulation to collect and manage data
for use in analyzing the relationship of liver flukes to watershed areas in sub-basins (See
Supplementary Materials). Starting with the preparation of the Sentinel-2 satellite imagery
data used in the study (January–April 2019, 2020, and 2021), the dry season of each year
is when mollusks are embedded in moist soils, waiting for rain to come during the rainy
season. A total of 12 satellite imagery data (4 images per year for 3 years) were taken to
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average the image points and were used to calculate the indices X6, X7, X8, and X9 for
use as independent variables in the OLS model; (2) independent variable screening; and
(3) alternative modeling. A detailed display of the steps can be shown as follows.

The two steps to perform the modeling process are as follows:

(1) The OLS model uses the principle of estimating the coefficients of the equation with the
same squared method as the conventional linear model, but the creation of a variable
dataset is a geostatistical statistic that can generate a dataset from a smaller sample but
retain a Z value that is similar to the original Z value. The area that seems to be the
ideal area for shellfish implantation is the buffer area away from the accumulated flow
line of water [20]. The variable data are generated as points of location in the village
where the OV data were surveyed. The dependent variable (Y,OV%) is the point data
of the location that each village regularly used to find fish for the period 2019–2021,
where fish samples were collected and tested for liver fluke infection. Points that
represent the percentage of infected people are converted into raster data to reflect
the continuous distribution of dependent variables and use the average of infected
people to represent that sub-basin. The location data of infected villages are used to
create density maps to ensure the continuity of infection. In this study, a heat map
was created with a kernel density approach. The density is calculated using the kernel
density method, the same algorithm used by the kernel density geoprocessing tool in
ArcGIS pro.

The Independent variable Group 1 (spatial variables) was represented as the variable
X5 (distance index from the flow accumulation lines); the mean of the line length, the
Level 3 to 3 water flow level, is a variable that shows the likelihood of embedding the
host’s intermediary of liver flukes along two sides of the stream by 500–2000 m. OLS
creates a local regression equation for each feature in the dataset. When the correlation
test was obtained, a set of variables was used as representations; problems with local
multicollinearity are more likely. The conditional number (Cond) field in the output feature
class indicates when the result is unstable due to local multicollinearity.

(2) When modeling the relationship between liver flukes, other types of parasites, and
spatial factors, OLS uses a global model of spatial statistics, i.e., a model created
specifically for each sub-basin, which allows for predicting liver flukes and other
types of parasites and analyzing the relationships. The model serves to determine
the coefficient of the relationship between the independent and dependent variables
using the distance reciprocal weighting method, where OLS obtains a model to predict
every unit area with a difference in coefficients [9,21,22]. OLS modeling must create
a data layer based on this research, namely the percentage of liver fluke infection of
the sub-basin region to be analyzed from 5 m DEM data, the import of independent
variables, consisting of the index variables generated from the wavelength correlation
of satellite images in mathematical functions, and other spatial factors, such as the
distance from water bodies and roads; the detailed procedure is shown in Figure 4,
and OLS is shown in Equation (1) [25].

yi = β0 + β1(land use) + β2(soil) + β3(road) + β4(water body) + β5(stream lines)
+β6(sur f ace temp) + β7(ndmi) + β8(ndvi) + β9(savi) + [ε]

(1)

where yi = the value observed for the dependent variable at point i;

β0 = the interception point y (constant value);
βn = the regression coefficient or slope of the explanatory variable n at point i;
xn = the value of the variable n at point i. The X variable can be described as X1 (index
of land-use types), X2 (index of soil drainage properties), X3 (distance index from the
road network, X4 (distance index from surface water sources), X5 (distance index from the
stream lines or flow accumulation lines), X6 (index of average surface temperature), X7
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(average surface moisture index), X8 (average normalized difference vegetation index), and
X9 (average soil-adjusted vegetation index);
[ε] = the error of the regression equation.
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The expected outcome is a set of independent variables that illustrates the relationship
between the independent variables and dependent variables obtained using geographically
weighted analysis and least square regression equations, with the difference in the indepen-
dent variables affecting the dependent variables in each sub-region (spatial nit). Therefore,
if it is possible to analyze the spatial characteristics of the distribution of each type of
parasite, the agency or organization can know the areas where the analysis results are
used to correctly manage the parasite infection prevention system [81]. Preventing future
illnesses can help communities to stay healthy and reduce the burden of medical expenses.
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2.2. Independent Variable Modeling

The independent variable set consists of nine factors, namely X1 (index of land-
use types), X2 (index of soil drainage properties), X3 (the distance index from the road
network, X4 (distance index from surface water resources), X5 (distance index from the
flow accumulation lines), X6 (index of average surface temperature), X7 (average surface
moisture index), X8 (average normalized difference vegetation index), and X9 (average
soil-adjusted vegetation index). Socio-economic or demographic data were not used in this
analysis because the populations living in the majority of sub-basins had similar incomes
and similar habits of living and fishing from water bodies, and when these variables were
introduced into the model, they did not create a trend, but this study showed a map of
population density so that we could determine the order of surveillance areas for infected
people from this population. The reasons for selecting these nine factors from the above
(from the inspection of the area) was that we found that the spread of liver flukes in every
season showed that those areas with good retention of surface moisture in the dry season
were positively consistent with the number of infected people, but the surface moisture
factors were also related to other factors from different types of land use. The indexing of
each independent variable is based on a 10 m spatial resolution, allowing for a sufficient
number of independent variables to be able to represent OLS models to find trends by
calculating them on a raster basis with ArcGIS pro v.2.9.0 under the map algebra function.

Each factor is calculated to determine the average division per sub-basin area, and in
addition, Factors 6 to 9 calculated from the remote-sensing index using the raster calculator
function are the average of the Sentinel-2 image range from January to April of 2019–2021,
which is a picture of the dry season, allowing for the analysis of the area where the host
medium survives while waiting for the rainy season to arrive. Mathematical models have
evolved from the fundamental factors based on a variety of research related to variables
influencing liver fluke infection in watershed-level areas. This is shown in the mathematical
model for calculating each factor in Equations (2)–(13) as follows:

X1 =
WLjLj

Ak
(2)

where X1 is the index of land-use types suitable for intermediary host housing. WLj = any
type i land-use weight value where i = (1 = built-up), (2 = forest), (3 = miscellaneous),
(4 = paddy field), or (5 = rice paddies in irrigated areas and water body). Lj = area of
land-use category j unit (sq·m). AK = size of sub-basin area at any k unit (sq·m) (adapted
from the research of [12]).

X2 =
WjSj

Ak
(3)

where X2 is the index of soil drainage properties suitable for the habitation of the interme-
diate host. Sj = area size of drainage properties of any type j soil. Wj = weight value of
drainage of any type j soil (adapted from the research of [7]).

X3 =
∑n

i=1 ∑m
j=1 DRiBj

Ak
(4)

where X3 is the distance index from the road network used to analyze the suitability of the
intermediary host from water trapped by the road network. DRi is the distance from the
road line out to any distance, k (meters), where k starts from 500 m, 1000 m, 1500 m, 2000
m, and more. Bj is the buffer distance at any k distance where k starts from 500 m, 1000 m,
1500 m, 2000 m, and above (adapted from the research of [16]).

X4 =
∑n

i=1 ∑m
j=1 DWiBj

Ak
(5)
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where X4 is the distance index from the surface water sources used to analyze the suitability
of the medium host (from embedding to the soil surface) when moisture still accumulates
in the dry season. DWi is the distance from any surface water source, i, that goes out at any
distance, k, where k starts from 500 m, 1000 m, 1500 m, 2000 m, and over (adapted from the
research of [6]).

X5 =
∑n

i=1 ∑m
j=1 DSiBj

Ak
(6)

where X5 is the distance index from the stream lines or accumulated flow lines of water
used to analyze the suitability of the medium host regarding waterlogging and moisture
accumulation in the dry season. DSi is the distance from any of the accumulated flow
lines of water at any distance, k, where k starts from 500 m, 1000 m, 1500 m, 2000 m, and
over [20].

X6 =
∑n

i=1 Ti Aik
Ak

(7)

where X6 is the index of average surface temperature in any sub-basin used to analyze
the suitability of the medium host from subsurface embedding to the sub-basin. Ti is any
grid temperature value in degrees Celsius. Aik is the total area of temperature at i degrees
Celsius within the sub-basin boundary at k (adapted from the research of [9]).

X7 =
∑n

i=1 NDMIi Aik
Ak

(8)

where X7 is the average surface moisture index in any sub-basin used to analyze the
suitability of host media from subsurface embedding in the sub-basin. NDMIi is any grid
surface moisture value. Aik is the total area of surface moisture at i, that is, within the
sub-basin boundary at k (adapted from the research of [18]). Waterbody distribution: Water
availability boosts the variety of species and natural resources, which helps extract the
location of areas where surface moisture can be maintained, which are clearly separated
from the dry soil surface, using the NDMI to emphasize this chosen satellite picture. NDMI
ranges from −1 to 1, with water bodies usually having NDMI values greater than 0.4. In
the distribution classification of water bodies, NDMI values were divided into five groups,
with the higher values indicating the high likelihood of intermediary host habitat. The
following equation was used to determine the NDMI of the study area using

NDMI =
GREEN − SWIR

NGREEN − SWIR
(9)

X8 =
∑n

i=1 NDVIi Aik
Ak

(10)

where X8 is the average vegetation index in any sub-basin used to analyze the suitability of
the medium host from subsurface embedding to sub-basin. NDVIi is any grid-normalized
difference vegetation index. Aik is the total area of the vegetation index at i within the
sub-basin boundary at k (adapted from the research of [18]).

A total of 12 sets of satellite images were downloaded from Sentinel-2. The following
equation was used to determine the NDVI:

NDVI =
NIR− RED
NIR + RED

(11)

For Sentinel-2, NIR represents the near-infrared Band 8 (0.842–0.865 µm) and RED
the corresponding Band 4 (0.665–0.704 µm). NDVI values are straightforward visual
indicators that may be used to examine remotely-sensed data and determine whether there
is living, green vegetation present [12]. The NDVI ranges from−1.0 to +1.0, a positive value
indicating dense and healthy vegetation. The research identified five unique vegetation
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distribution groups based on NDVI values, with greater values indicating a region with a
suitable potential of host intermediaries.

X9 =
∑n

i=1 SAVIi Aik
Ak

(12)

where X9 is the vegetation index for adjusting the average soil in any sub-basin to analyze
the suitability of the medium host from subsurface embedding in the sub-basin. SAVIi is
the i-th grid soil adjusted vegetation index value. Aik is the total area of the soil-adjusted
vegetation index at i within the sub-basin boundary at k (adapted from the research of [19]).
The soil-adjusted vegetation index (SAVI) is the vegetation index created for the calculation
of vegetation in the study area with relatively low vegetation content and has a similar
calculation formula to NDVI, but a constant value (0.5) was provided for the Sentinel-2
image to reduce the influence of reflection from the lower ground soil of vegetation.

SAVI =
NIR− RED

NIR + RED + 0.5
× (1 + 0.5) (13)

2.3. Data Preparation for OLS and FCR Models

Starting with the process of data modification indicated in Figure 4 and Table 2, the
result of this procedure is to import satellite image data and standardize the data into a
format that can be compared with a mathematical model. The DEM data are then fine-
tuned to different heights to build a water flow line, and the final data are case statistics,
which are point data of infected villages utilized to create a raster data layer using the
heatmap technique.

Table 2. The percentage of liver fluke infections, and the mean of independent variables used to
model spatial correlation analysis with OLS models.

Sub-Basin Y (% of OV) X1 (lu) X2
(soil)

X3
(road)

X4
(water)

X5
(stream)

X6
(temp)

X7
(ndmi)

X8
(ndvi)

X9
(savi)

Jomjaeng 2.01 14.773 9.144 14.755 7.361 14.293 5.966 −0.064 0.075 0.143
Poopim 1.05 49.947 33.838 47.748 29.494 43.984 7.954 −0.060 0.115 0.218
Phonnoi 7.84 17.688 6.252 15.376 6.922 13.931 7.925 −0.083 0.118 0.225

Phonkaeyai 0.84 14.279 11.576 14.489 6.149 15.661 8.210 −0.081 0.124 0.237
Wanplachuem-1 9.18 20.042 8.565 19.993 5.129 7.122 8.241 0.152 0.119 0.224
Wanplachuem-2 6.48 60.884 24.128 64.132 14.349 61.311 7.593 −0.037 0.104 0.199

Klangmai 4.38 37.048 24.577 37.011 5.862 32.838 7.677 0.042 0.117 0.227
Nakaew 2.52 60.758 29.858 74.811 40.229 59.603 7.740 −0.035 0.116 0.224

Nongphue 1.95 80.795 34.581 90.847 18.963 79.482 7.909 −0.049 0.119 0.227
Maikrabok 3.66 5.235 19.740 4.753 15.510 7.539 7.920 −0.050 0.121 0.232

Table 2 shows the index of the nine stationary independent variable subbasins, which
is computed from Figure 4 Substep 2. The findings of utilizing OLS models for independent
variable analysis to determine the consistency of each aspect associated with infection were
chosen and incorporated to the FCR model. Each fishing port’s point data, representing
each sub-basin, are displayed, along with the average value of each factor.

In addition to using correlation analysis to choose variables, the Pareto plot method is
also used. The correlation results demonstrated from the Pareto plot can show different
correlation values and can observe preliminary correlation trends. The variable factor based
on the average of infection percentages showed that the area with the average infection rate
Y (% of OV) differed from the other basin areas for as many as five basins by observing the
curve intersecting the y-axis at 80%, namely Maikrabok, Klangmai, Wanplachuem-1 and
2, and Phonnoi, respectively, for the mean difference, as shown in Figure 5a. The Pareto
graphs showing correlation screening over a similar number of river basins include the X1,
X2, X3, X4, and X5 variable analysis graphs that have similar trend curves, and we culled
the river basins that found significant correlations in the range of five to six river basins, as
shown in Figure 5b–h.
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(Soil), (d) X3 (Road), (e) X4 (Water), (f) X5 (Stream), (g) X6 (Surface Temperature), (h) X7 (NDMI), (i)
X8 (NDVI), and (j) X9 (SAVI).

The Pareto graph of the correlation analysis of the factors calculated from most remote-
sensing indices can screen areas on a scale of two to three watersheds, and this still has a
significant correlation for the index mean, with the highest screenable factors being X5, X6,
X8, and X7, respectively, as shown in Figure 5g–j. However, this correlation analysis shows
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that in many sub-basins, each factor has shown a significant correlation, which makes it
possible to formulate a hypothesis that each factor can be modeled in the analysis of those
coefficients related to infection. This analysis is based on the average of factors divided
by the watershed, resulting in large-scale analysis, but the infection-prediction targets
focus on predicting the location of risk areas, so the number of independent variables
and the maximum associations associated with infection must be considered for further
introduction into machine learning using FCR.

2.4. Forest-Based Classification and Regression (Analysis at the Location Level of Infected
Water Bodies)

• Definition of the FCR for liver fluke (Opisthorchis viverrini) infection prediction

The principle of the random forest is to create several models from a decision tree
(from 10 models to more than 1000 models), with each model receiving a different dataset,
which is a subset of all datasets. When making a prediction, let each decision tree make a
prediction of the dataset and calculate the prediction result by voting an output that is most
selected by the decision tree (in the case of classification) or finding the mean value from the
output of each decision tree (in the case of regression). The forest-based classification and
regression (FCR) tool trains a model based on known values (infected OV points) provided
as part of a training dataset. This prediction model can then be used to predict unknown
values in a prediction dataset that has the same associated independent variables. The tool
creates models and generates predictions using an adaptation of Leo Breiman’s random
forest algorithm [82], which is a supervised machine-learning method.

• Description of the pre-processing

Each decision tree model in the random forest is considered a weak learner, meaning
it is estimated that it is not a very good model, but when each decision tree is used to make
predictions together, the user will obtain a total model that is more competent and accurate
than the decision tree that makes a single prediction. The process of connecting OLS and
machine learning is shown in Figure 6.

• Dimension of the dataset

The location of the water bodies where the fish infected with liver flukes were found
was used as a set of points for machine learning, which is the boundary location of the
banks of the water bodies. This section presents the experimental results of the FCR model
used to predict spatial fluke infection. Sensitivity mapping, as previously stated, was used
to train and test the ability to predict the original model. The datasets were randomly
divided into training (60%) and testing (40%) sets.

• Processor for feature selection

In all datasets, training and testing were carried out. The number of survey points where
parasites were detected was 35–21 modeling points and 14 testing points, respectively—as
shown in Figure 7. In addition, to reduce the bias caused by sampling in the data-sampling
process, repeated sampling was performed over 100 runs, which is the standard value of
the FCR model of ArcGIS pro, including the learning setting: number of trees = 100, leaf
size = 5, and tree depth range = 1–5.

• Description of the different modeling tested and rationale behind the model construction

The experimental results of the explanatory variable range diagnostics FCR model
are reported in Table 3. Forecasting model integration uses a boosting method, with the
principle that multiple data classification models are created. Each model uses the same
set of training data to build it, each of which has an additional weighted value. Weighted
voting methods were used, and new data groups were assigned with the highest number
of votes (majority voting), which, in this study, used two methods: average and weighted.
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Table 3. The explanatory variable range diagnostics.

Explanatory Variable Range
Diagnostics Training Testing Share

Minimum Maximum Minimum Maximum Training a Testing b

Model 1
distance to stream lines 0.48 1055.51 133.04 610.29 1 0.45 *

Model 2
distance to stream lines 0.48 1055.51 594.64 610.29 1 0.01 *

distance to water resource 108.65 6054.45 970.21 1604.04 1 0.11 *

Model 3
distance to stream lines 0.48 1055.51 195.81 527.24 1 0.31 *

distance to water resource 108.65 6054.45 1319.44 1756.75 1 0.07 *
NDMI −0.13 0.14 0.04 0.1 1 0.20 *

Model 4
distance to stream lines 0.48 928.08 610.29 1055.51 0.88 * 0.34 *

distance to water resource 108.65 6054.45 1243.77 1604.04 1 0.06 *
NDMI −0.13 0.1 0.07 0.14 0.85 * 0.10 *
NDVI 0.05 0.16 0.17 0.18 0.82 * 0.00 *

(a) % of overlap between the ranges of the training data and the input explanatory variable. (b) % of overlap
between the ranges of the testing data and the training data. * Data ranges do not coincide. Training or testing is
occurring with incomplete data. Ranges of the training data and prediction data do not coincide, and the tool is
attempting to extrapolate.

• Validation protocol to analyze FCR models’ performance

Machine-learning-based FCR simulation was integrated into four models, which
describe the synthesis of the ranges of independent variables. We found that the degree of
overlap between the range of training data and the input explanatory variables of Model 1
has a share value of 1 and a test value of 0.45. The percentage of overlap between the
range of monitoring data and training data ranges from 0.00 to 0.45. These data show
that the location of the learning point can be the test point for the accuracy of the FCR
model. Model 1 uses independent variables as the distance to the stream lines, Model 2
uses independent variables as the distance to the stream lines and the distance to the water
bodies, Model 3 uses independent variables as the distance to the stream lines and the
distance to water bodies, as well as NDMI, and Model 4 uses independent variables as
the distance to the stream lines and the distance to the water bodies, as well as NDMI and
NDVI, respectively, which are used to simulate the spatial distribution of the infection. The
training range of Model 1 ranges from 0.48 m to 1055.51 m, and the testing ranges from
133.04 m to 610.29 m. The training share value can be used in all the same ways as in the
examples of Model 2 and Model 3, whereas Model 4 has only a secondary factor that can
use overlapping learning points.

3. Results
3.1. Factor Selected for OLS with Liver Fluke Infection (Watershed Level)

Comparing multiple alternative models increases the chance of selecting the most
suitable model for predictions [83,84]. Spatial factor correlation simulation involves the use
of an independent group of variables as an alternative to OLS modeling to visualize the
trends of tolerances at the small area unit level. The set of independent variables imported
into the models was selected using correlation analysis, and the variables X5 to X9 were
selected, simulated, and displayed, as shown in Table 4. An appropriate OLS model to
predict the percentage of infected people can be observed from the analysis results; R2 is
high. The variable is significant at a high level (i.e., the t statistics are very high or the
p value is very low) [84,85]. The results of the models in the table show a comparison of the
precision between the four models to visualize the difference in their accuracies [86].
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Table 4. The OLS alternative modeling results.

Alternative OLS Models
for OV-Predicted at the

Watershed Level

Independent
Variables Coefficients t-Stat p-Value a R2

Y (%OV1)
Intercept 0.465 4.373 *** 0.000 *** 0.524
X8 (ndvi) −1.534 −0.878 n/s 0.226 n/s
X9 (savi) −6.032 −2.212 n/s 0.125 n/s

Y (%OV2)

Intercept 4.528 1.975 *** 0.000 *** 0.672
X7 (ndmi) 1.125 0.769 *** 0.044 ***
X8 (ndvi) −3.116 −0.890 *** 0.023 ***
X9 (savi) −9.852 −2.326 n/s 3.024 n/s

Y (%OV3)

Intercept 62.042 3.031 *** 0.000 *** 0.713
X5 (stream) −5.047 −2.068 *** 0.048 ***
X7 (ndmi) 4.246 1.875 *** 0.034 ***
X8 (ndvi) −9.874 −2.661 *** 0.021 ***

Y (%OV4)

Intercept 57.410 0.979 *** 0.000 *** 0.681
X5 (stream) −0.0350 −3.462 *** 0.031 ***
X6 (temp) 20.210 0.734 n/s 1.263 n/s
X7 (ndmi) 7.220 0.540 *** 0.044 ***
X8 (ndvi) −1524.360 −0.548 *** 0.026 ***
X9 (savi) −2732.160 −2.356 n/s 0.895 n/s

*** = significant at 5% level. n/s = not significant.

An alternative model is proposed based on the observations of high values of R2 and
the acceptance or rejection of independent variables, as can be observed from the t statistics
and p value. The alternative model proposes four alternative models: Y (%OV1), Y (%OV2),
Y (%OV3), and Y (%OV4), as shown in Table 4. The OLS Model 1 Y (%OV1) imported two
independent variables, X8ndvi and X9savi, to test whether they were expected to be negative
per percentage of infected people. The results of spatial nonstationarity [18,20] and the R2

values were compared to the OLS models. The model shows negative coefficients at the
scales of −1.534 and −6.032, respectively, t statistic values of −0.878 and −2.212, and p
values of 0.226 and 0.125, indicating that both factors have not yet correlated significantly
with the percentage of infected people. Additionally, the model displays an R2 value for the
OLS model that is higher than 0.524. Both factors show an acceptable level of relationship
with R2 and, therefore, need to be tested in the second alternative model.

The second OLS model, Y (%OV2), shows the correlation coefficient of the factor X7
(ndmi) positively, but the X8 (ndvi) and X9 (savi) factors begin to show negative results,
indicating that the more areas of separation between vegetation cover, the lower the
percentage of infected people. The X9 (savi) factor showed statistical significance with a
t statistic (−2.326) that was greater than the other two factors and a p value (0.038) of less
than 0.05, which made it possible to find a tendency for the mid-range and less-than-peak
soil correction index factors to increase the chance of a percentage of people infected with
liver fluke. Alternative Models 3 and 4 incorporated the X5 (stream) factor, resulting in an
increase in R2 accuracy to 0.713 and 0.681. The coefficients of X5 (stream), X7 (ndmi), and
X8 (ndvi) reveal a t statistic and p value that are more significant than other variables and
show a negative trend together. An optimal OLS model for predicting the case percentage
was Model 3 Y (%OV3) because it could provide a confidence level greater than 71.3%,
and there were still not too many independent variables that could cause the prediction
results to be inaccurate. Even if Model 4 Y (%OV4) has a higher R2 value than Model 1 Y
(%OV1) and Model 2 Y (%OV2), it may cause duplication of the independent variable set
and coincidence, resulting in a higher R2 trade.

The standard residual index (SR) was used to determine the prediction accuracy of a
model [87] (as an index used to verify the accuracy of a model) by displaying the standard
value in intervals of 0.5 [20,25], as shown in Figure 8. Sub-basin units with SR values
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ranging from −0.5 to 0.5 are sub-basin areas where the OLS models can predict accurately
and have lower tolerances than other areas. The sub-basins Maikrabok, Nongphue, Nakaew,
and Klangmai, which show a range of −0.5 to 0.5, are shown in yellow in OLS Model 3
and have a tolerance of three units lower than the OLS models. This is also confirmed by
the SR results obtained from OLS Model 3 Y (%OV3). Regarding the testing of alternative
models to exclude highly correlated independent variables to reduce model collinearity in
practice, the use of surface temperature factors to analyze trends in liver fluke increases in
small river basins may be difficult due to frequent changes in the floodplain areas, which
may be unstable compared to other factors over a 3-year data period. Therefore, the best
model created is an independent, selective factor agent that is further applied to predict
the likelihood of liver fluke infection, where representatives of those factors that are highly
correlated to surface temperature are X7 (ndmi) and X8 (ndvi) and a group of X5 (stream)
factors and surface water bodies are used in the FCR model to predict infection areas along
the waterways that connect to the sub-basin.
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3.2. Mapping the Spatial OV Infection (Y, Dependent Variable)

Spatial subspace unit boundaries need to be created to define the amount of data.
In this study, by using digital elevation model (DEM) data with a cell size of 12.5 m to
generate the sub-basin layer data, the results of the analysis were obtained from 10 sub-
basin boundaries (sub-basins distributed according to the flow sequence level (3 to 6) from
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upstream to downstream at the marshes, as shown in Figure 9) and other descriptive
information of the sub-basin, such as its size. The DEM dataset was readjusted for spatial
height using the fill and sink function, which is a hydrological analysis method that uses
GIS processes to process the altitude data as realistically as possible and enable continuous
water flow analysis.
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The highest spatial height mean was 180 m at the river basin named Wanplachuem-1,
followed by the Wanplachuem-2 and Phonkaeyai basins. They have values of 174 and
172 m, respectively, with the upper basin of the Phon Na Kaeo district considered to have
this height. However, even though it is in the upper basin, there is a high percentage of
people infected with OV in these areas. Due to the multiple seasons, flooding causes surface
water to flood up to the upper basin, making it possible for intermediate host mollusks and
carp groups to move and feed in these areas.

The Jomjaeng, Poopim, and Phonnoi basins have a risk of infection that is greater
than 6.48% due to the low altitude of the area, allowing water to flood large areas of these
basins during the rainy season and increase the chances of central host habitat. The case
percentage data shown as points are converted into raster data with a heat map command
to use these raster data to find the average of the percentage infected and link it with other
independent variable data using raster images, as shown in Figure 10. The display of
the case percentage data shows the continuity of the number of infected people so that
the average calculation is equal for all sub-basins, but it will vary depending on the large
and small values of the points used to calculate the raster. In this case, the Z value is the
percentage of infected people in the village position. The radius used to create a raster map
using a heatmap covers from 2 km to 4 km so that the raster data can be connected to all
subtleties. The green areas show sparse percentages of infected people, and the red areas
show higher density and a high chance of encountering infected people. The OLS model
requires a continuity value of raster data, where the creation of the heatmaps of infected
people enables consistent analysis in terms of positional data and the other rasters of the
independent variables, which can generate trend graphs.
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4 km.

3.3. Mapping of the Independent Variables

The values of the indexes of the nine independent variables used to create mathe-
matical models from Equations (1)–(9) are shown as descriptive data values, as shown in
the results of the analysis in Figure 11a–i. An important step in the GIS process is used
in the creation of multi-rasters and vectors, and all methods of spatial data interpolation
were used in the preparation of independent variable sets. The percentage of cases was
very high in the Wanplachuem-1, Phonnoi, and Wanplachuem-2 sub-basins, with values
of 9.18, 7.84, and 6.489, respectively. The areas of the three watersheds are adjacent to
each other and are connected by an outlet. When observing almost all the values of the
index, it was found that the value of the Wanplachuem-2 basin was more valuable than
other basins due to the size of the denominator, which is a smaller area than in the other
basins. The spatial units of the sub-basin with similar index values for the X1 index for
Jomjaeng, Phonnoi, and Phonkaeyai are 14.7, 17.6, and 14.2, respectively. The island values
of X2 for Wanplachuem-2, Klangmai, and Nakaew are 24.1, 24.5, and 29.8, respectively. The
island groups of X3, X4, and X5 are in the same basins: Jomjaeng, Phonnoi, Phonkaeyai,
and Wanplachuem-1. The groups of remote-sensing indices are not much different, but
they need to be analyzed together with other factors in OLS modeling and screened for
the duplication of factors again using correlation analysis. Different groups of factor index
values require data standardization using mathematical models. Standardizing data to a
comparable range allows OLS models to increase the accuracy (of build-and-fit models)
better than using raw data directly to import models.

The results of the raster map data of the X1 variant were distributed within a buffer
distance of up to 500 m, distributed over most of the areas of all sub-basins, and the results
were similar to the X3 index values, but there was a difference in the upper basin areas
with low index values due to the lack of road networks. The X4 and X5 index map values
showed high scores scattered mainly in the lower basin and low values scattered in the
upper areas because the lower ones are close to large freshwater marshes. The X6 index
mainly shows the distribution of the intermediate index on the map; Figure 11f shows,
in yellow, a flat surface temperature in the range of 26–28 degrees Celsius, whereas the
high-temperature areas are shown in red and are mostly structures such as road and village
structures. The X7 index shows the distribution of high-level indices that are suitable
habitat substrate host areas, which are mainly areas near water bodies with index values
greater than 0.6 or more. The X8 and X9 indices are similarly distributed because they
are made up of the vegetation index, but the X9 index adds a constant value to make the
vegetation value more reflective, both of which can be used interchangeably. To ensure
accurate modeling, consistent results can be observed from the correlation, and the red area
of both indices indicates that they are suitable areas that are similar to the X7 index.
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X2 (index of soil drainage properties), (c) is X3 (the distance index from the road network, (d) is X4

(distance index from surface water sources), (e) is X5 (distance index from the flow accumulation
lines), (f) is X6 (index of average surface temperature), (g) is X7 (average surface moisture index),
(h) is X8 (average normalized difference vegetation index), and (i) is X9 (average soil-adjusted
vegetation index).

3.4. Spatial Prediction of OV-Infection Using Forest-Based Classification and Regression (FCR)
(Location Level)

The FCR model in this study provides a method that makes decisions for each model
independent of each other by using the same algorithm but allows each instance to learn
from different payloads using random selection. This mechanism was called bagging and
pasting; the difference is that bagging can randomly select the same item, but pasting does
not allow duplicates to be randomized at all. This results in more stable models and is
often more accurate than pasting.

The model for out-of-bag errors is shown in Table 5. The set of independent variables that
were introduced to FCR’s machine learning was used in all four factors based on the selection
results of the OLS model, with the highest R2 value being 0.713: distance to streams, distance to
water bodies, NDMI, and NDVI. The distance factor from the water resource was also included
in the simulation because the importance of similar factors of the water source was known. The
results showed that the number of cycles increased from 50 to 100, and the number of trees
in all MSE tests showed a decrease in every set of independent variables for the distance to
streams factor from 10.203 to 8.98, which equates to the addition of a set of four independent
variables, with the percentage of variation explaining between −46.689 and −29.111. When
considering the importance of each variable, it was found that the order of weight values for
distance to water, distance to stream lines, NDVI, and NDMI showed an importance of 23.18,
39.7, 20.32, and 22.79%, or 37, 22, 22, and 19%, respectively, as shown in Table 6. The four
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predictive simulations were created to confirm that the distance to the water resource variable
affects the percentage of infection in every test. When analyzed individually, it was found that
the distance to water resource factor, when analyzed with NDMI, yielded a slightly higher R2

value of 0.859 and a decrease of 0.849 when used in combination with both NDMI and NDVI.
Therefore, for the alternative models, when imported, only the distance to water resources and
distance to stream lines, which are slightly less important, can make the FCR model predict that
being closer to a water source will have a greater impact on the chance of finding fish infected
with liver flukes than fish found at distances beyond the edge of the bank.

Table 5. The model out-of-bag errors.

Model Out-of-Bag Errors Model 1 Model 2 Model 3 Model 4

Number of Trees 50 100 50 100 50 100 50 100
MSE 7.167 6.985 7.298 7.074 9.075 8.93 10.203 8.98
% of variation explained −3.432 −1.358 −5.511 −2.267 −33.117 −31.003 −46.689 −29.111

Table 6. The top variable in terms of importance.

Top Variable Importance Model 1 Model 2 Model 3 Model 4

Variables Importance % Importance % Importance % Importance %

Distance to stream lines 105.09 100 52.72 47 34.91 37 23.18 22
Distance to water resource 58.75 53 32.32 34 39.7 37

NDMI 27.89 29 20.32 19
NDVI 22.79 22

3.5. Spatial Prediction of OV-Infected

When only one independent factor with a high priority weight for the distance to
stream lines was imported, the results of the machine-learning dataset and regression
synthesis had an R2 value of 0.775, and when the other three factors were imported, the
R2 values were 0.853, 0.859, and 0.849, respectively, as shown in Table 7. The standard
error of Model 3 is the lowest at 0.043, and the highest is for Model 2, but these are not
considered to be significantly far apart. When observing the preliminary statistics, it is
evident that there is no difference between Model 2 and Model 4, but from the observation
of Model 1, only one variable of learning is imported, but this also provides a satisfactory
level of accuracy, indicating that the distance to stream lines affects machine learning.

Table 7. The training data: regression diagnostics.

Training Data: Regression Diagnostics Model 1 Model 2 Model 3 Model 4

R-Squared 0.775 0.853 0.859 0.849
p value 0 0 0 0

Standard Error 0.053 0.06 0.043 0.051
Predictions for the data used to train the model compared to the observed categories for those features.

Therefore, it was necessary to show all four models to see the trends of the changes in
the percentage of liver fluke infection. This was used to provide spatial confirmation of how
the location of infection risk in all four models can confirm location and severity. The loca-
tion used to predict infection is a point simulation based on the location of the fishing area
of the villagers who regularly use it, which was obtained from the inquiry. These locations
are linked to the spatial resolution data of the 10 m point Sentinel-2 satellite imagery.

The receiver operating characteristic (ROC) curve is a popular method that is used to
measure the accuracy of forecasts. The ROC curve is a graph with a correlation between the
y-axis (instead of sensitivity (true positive rate)) and the x-axis (instead of 1-specificity (false
positive rate)), as shown in Figure 12. As shown in Figure 12a–e or in the area under the ROC
curve, the ROC curve indicates the validity or reliability of the prediction model; the prediction
model that has the most space below the AUC (ROC curve) is considered the most effective.
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The results of Model 1 and Model 2 for FCR using resampling techniques could accurately
predict the percentage of infected fish in an accuracy range of 0.775 to 0.859, as shown in
Table 6. Figure 12a,b display the ROC, which is a popular method used to measure the accuracy
performance of forecasts. For FCR, Model 1 and Model 2 could predict the severity of the
percentage of infected fish, with an area value under the ROC curve of 0.964; both models had
the highest area value under the ROC curve of all the prediction models. A false positive rate
below 10% and a true positive rate above 90% also use a smaller number of model coaching data.
This makes the training time shorter for the models to predict the severity of the percentage
of infected fish but does not affect the space under the graph. The ROC curve of Model 3 and
Model 4 is also very high, and these models could be used for prediction as well.

The FCR simulation results of each model are shown in Figure 12, with Figure 12a
showing the simulation of the chance of infection of Model 1, which ranges from 2.027
to 6.222. The range with the highest percentage of infections ranges from more than 5%,
with 10 points showing the distribution in the sub-basins of Phonnoi, Nakaew, Maikrabok,
Nongphue, Phonkaeyai, Wanplachuem-1, and Wanplachuem-2, which are found to have
one point each. The Model 2 estimates show that the highest-risk locations have been
reduced to a high-risk level of infection, with 10 points reduced to 3 points, and 3 points
with high-risk levels are shown as orange dots, with the top 2 sub-basins still experiencing
the highest risk of infection: Phonnoi and Maikrabok, respectively, as shown in Figure 12b.
The predictions by Model 3 and Model 4 were similar in terms of the order of the same
three highest-infection-risk locations and the same sub-basins, Phonnoi and Maikrabok,
as shown in Figures 12c and 12d, respectively. However, the results of both models are
noteworthy in that the number of high-risk positions is second to the highest level, which
is 8 and 11 points. The predictive results of both models make it necessary to watch for
orange dots that have a chance of developing into red dots, although both models require
more than one independent variable, but infection development opportunities can be seen
from such simulations. Based on the predictions of the four models, it is evident that
the location showing a moderate risk level in the range of 3.001 to 4.000 was the location
with the largest number of distribution points, indicating that all sub-basins are at risk
of infection. The length of the stream line connecting the large marsh can flow for more
than 60 km. This shows the locations along the sub-river as the points used to simulate
the model’s risk level of 2% or more, and the model also shows the highest risk locations
displayed at the adjacent and shared boundaries of the sub-basin.

The final forecast was a positional simulation of villagers’ fishing sites along the
tributary streams that flow into the sub-basin within the boundaries of the district. The total
number of positions used to simulate the forecast was 103 points, as shown in Figure 13a–d.
It was a location used by locals and fishermen in the area to go fishing for consumption.
These positions, obtained through field inquiries and inspections, were located within 30 m
of the stream line layers and water bodies.
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4. Discussion
4.1. Redundancy of Independent Variable Sets Associated with Spatial Liver Infection

The groups of vector-type independent variables from X3 (road), X4 (water), and
X5 (stream) were duplicated from the analysis (buffer distance) and were subsequently
converted into raster data. The data sources may be different, both vector and raster, but
once the data layer has undergone manipulation, it is converted into a raster format so that
all can be compared. This approach to analyzing this group of data measures the distance
away from the vector data, and this was then generated using the Euclidean distance
function to determine the score range according to the distance of infection risk, making
this set of variables redundant. Before applying the three independent variables to the
model, only the representative factor X5 (stream) must be selected, but this is different from
the X1 (land use) and X2 (soil) sets, which were different types of datasets that determined
the scoring values of each type differently according to the relationship to infection. The
raster variable set created from satellite imagery indices is also redundant in some indices,
such as the X6 (temp), X8 (ndvi), and X9 (savi) variables. When the model is imported, it does
not increase accuracy, and when observed using correlation, it is automatically correlated,
whereas the X7 (ndmi) factor can also create a trend for the model. The best modeling result
is, therefore, the use of independent variables consisting of X5 (stream), X7 (ndmi), and X9
(savi). Although the results were lower than the bulk inputs in Model 4, the results of the R2,
t statistic, and p value statistics were sufficient to confirm the selection of the models and an
appropriate set of independent variables to predict liver fluke cases in small basin systems.
Mathematical modeling to adapt independent variable data into measurable standards is
very important in creating OLS models, which are models that provide precision results
based on the division of unit areas to suit the distribution of dependent variables.

Independent variable redundancy needs to be reduced in the number of variables so
that OLS models can still create models that maintain R2 values at acceptable levels [88].
Spatial correlation analysis was the method used to screen for independent variables [89]
in this study. The group of independent variables are classified into two groups: those
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variables generated from vector data, solving factors X1 to X5, which are characterized by
points, polylines, and polygons. Importing this type of data, which are analyzed together
with other variables, does not require first generating raster data and assigning score values
to different data ranges to measurable standards. Factors X6 to X9 are already raster data,
but they were calculated in the form of mathematical models to standardize the data so
that they could be correlated with the previous set of variables. Table 8 shows that factors
X3 to X5 are negatively correlated with the percentage of people infected with OV, which
suggests that the further the distance away from that set of factors, the lower the likelihood
of catching fish infected with flukes; however, on the contrary, the closer the distance, the
greater the risk of infection if the fish are consumed in a radius near water bodies. Factors
X1 and X2 show that the poorer the drainage, the greater the risk of infection, because the
soil can retain moisture better than well-drained soil, and the more agricultural land used
near irrigation canals, the more moisture the soil surface has to use when compared to
other types of land. When analyzing the correlation of vector factors, the factor X5 can
represent the factors X1 to X4 because it correlates with the percentage of infected people
−0.226. Factors X1 to X4 were 0.985, 0.838, 0.984, and 0.612, respectively.

In addition to screening the variables that were used to create the OLS model, namely
the set of independent variables X5 to X9, this set of variables was used to create correlation
graphs to analyze the regression of the model. To determine the properties of the regression
patterns, two methods of residual plot graph analysis were used. The first is residual plots,
which are plots of the values. Residuals are estimates of Y (% of OV)-fitted values and
should be randomly distributed when observations occur. The second method is to plot
the normal probability plots of the error coupled with the expected value. If the plot is
shaped close to a straight line, the discrepancy has a normal distribution. The X5 variable
set demonstrates the normal distribution of data compared to the variables according to
the section. Variables X6 to X9 have a vertical distribution in the dataset, which translates
into a narrow range of index values that can predict the percentage of infections over a
wide range, as shown in Figure 14.

Table 8. The correlation between the independent variables (X1 to X9) and dependent variables
(OV-infection percentages) for the analysis of OLS-modelled variable groups.

Y (% of
OV) X1 (Lu) X2 (Soil) X3

(Road)
X4

(Water)
X5

(Stream)
X6

(Temp)
X7

(Ndmi) X8 (Ndvi) X9 (Savi)

Y (% of
OV) 1.000 - - - - - - - - -

X1 −0.167 1.000 - - - - - - -
X2 −0.437 0.826 1.000 - - - - - - -
X3 −0.189 0.992 0.813 1.000 - - - - - -
X4 −0.402 0.599 0.739 0.635 1.000 - - - - -
X5 −0.226 0.985 0.838 0.984 0.612 1.000 - - - -
X6 0.173 0.116 0.184 0.106 0.109 0.067 1.000 - - -
X7 0.395 0.060 −0.143 −0.061 −0.258 −0.193 0.243 1.000 - -
X8 0.082 0.092 0.227 0.095 0.134 0.062 0.969 0.171 1.000 -
X9 0.079 0.097 0.242 0.103 0.144 0.074 0.950 0.150 0.997 1.000
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4.2. Limitations of Spatial OLS Model

The OLS model uses the Gaussian model, which uses the method of determining the
boundary distance from the location where an infected person is found. This generates
raster data and can be used to analyze trends in data changes, which provides a way to
increase the number of cells in the data and can be used to graph the trend of independent
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variables more efficiently than other models [82,83]. Ensuring the continuity of the surface
of the data is an advantage of the OLS model’s optimization approach. In addition, the
model screens independent variables that significantly correlate fluke infection with the t
statistic and p value indices to make the model compact. This can control the number of
factors and reduce redundancy. A major limitation of OLS is that it exaggerates positive and
negative predictions, making predictions impossible to implement. A large number of units
of space contributes to the accuracy of the model, with the general specification of 12 units,
and the more detailed the quality of the raster data, the greater the number of samples,
but also the more time it takes to process results. Data quality enhancement must begin
with the resolution of DEM data so that the number and boundaries of sub-basins can be
simulated corresponding to the actual flow. A limitation of OLS models is that independent
variable datasets must be created within the boundaries of appropriate spatial unit areas
for independent variables to create trends that can predict dependent variables. When
applying the OLS model to predicting the percentage of fluke infections in a small area, it
is necessary to create spatial units from the actual correlation formed by an independent
set of variables. In this study, the independent input of variables was recommended by the
Sakon Nakhon Provincial Public Health Office, a local agency that has been studying liver
fluke infection for a long time.

4.3. FCR Improvement Approach for Spatial Prediction

The FCR model used supervised learning in terms of the classification algorithm to
model liver fluke infection risk prediction. However, practicing straightforward predictive
models tends to bias predictive models due to the unbalanced nature of the data in the
sense that the number of locations where infected fish were found and where infected fish
were not found varied widely. For the number of infection locations, if unbalanced data are
not properly managed, the model predicts most of the sample data and does not recognize
the sample of minority data; that is, the model will likely choose to predict that the infection
is not severe. The FCR model in this study was able to import the model (predicted as
a non-binary data range) and used the capabilities of regression analysis to weigh the
independent variables. Improving the capabilities of the FCR model can take a variety of
practical approaches. The forest model should be trained using at least several hundred
features for the best results, and it is not an appropriate tool for very small datasets. The
tool may perform poorly when trying to predict using explanatory variables that are out of
range of the explanatory variables used to train the model. Forest-based models do not
extrapolate; they can only classify or predict according to the value range on which the
model was trained. When predicting a value based on explanatory variables much higher
or lower than the range of the original training dataset, the model will estimate the value
to be around the highest or lowest value in the original dataset.

4.4. The Importance of the Single Variables to the Models

Subarea division can classify independent variable factors to reduce redundancy and
increase heterogeneity by dividing them into sub-basins. It affects the division of the size
and number of the boundaries, units, and areas. The origin of this analysis affects the
overall accuracy of the OLS modeling sequence, which can help to reduce the number of
independent variables, but the model is not suitable for predicting infected water sources
due to the limitations that the results can be negative and exaggerated. The creation of
factor data as raster data makes it possible to increase the number of samples by measuring
the distance from the location infected with liver flukes, which is where fishermen often fish.
However, the creation of independent variables based on narrative data converted from
the experiences of residents and the knowledge of officials from public health authorities
has made this a model study that can predict liver fluke infection in similar watersheds.
The FCR model can predict the chance of liver fluke infection by using factors that are
related to the chance of infection in the sub-basin. The FCR test approach, which shows
variable importance, screens and selects distance variables from water sources as the most
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important factor in forecasting. Testing all four alternative models confirms that the factors
involved are both NDMI and NDVI. Therefore, the FCR forecasting approach can predict
the likelihood of infection by importing the relevant variables without using a large number
of independent variables to provide accurate prediction results. Determining high AUC
values is likely to indicate suitability to the training data. But considering the number of
checkpoint leads, as well as the grid size of raster data, this also contributes to the accuracy
of the model. In this study, a 10 m grid size was determined with 14 test points and
21 learning points when comparing the locations with a total of 35 case data. The smaller
this grid size is, the greater the chance of a lower performance in the actual predictive
scenario. The level of these AUCs is acceptable if the scope of the number of independent
variables is not too large and the impact of each variable can be assessed. The risk of liver
fluke infection in a small basin can be determined by using NDMI, NDVI, and the distance
to water resources to develop models; however, for that hypothesis to hold true, the tiny
basin needs to have a watershed outlet connected to a major body of water. Reducing the
amount of soil cover that collects surface moisture around the borders of water bodies
is necessary for practical control and a decrease in the risk of liver fluke infection, as it
provides habitat for the host.

5. Conclusions

The conclusions of the research can be summarized as three approaches to proper
spatial linear regression modeling to obtain independent variable factors related to infection.
We considered spatial forecasting at the position level by using machine-learning-based
FCR. Finally, the guidelines for local authorities for applying the results of the model can
be summarized as follows:

• An OLS model was developed in this study to track liver fluke infection. This spatial
statistical model is suitable for analysis at the local process level, and the results
were compared to confirm that Model 3 was more accurate and more appropriate
than Model 1, Model 2, and Model 4. However, to make full use of the model, the
spatial unit data layer should first be designed to separate the variables accordingly
and independently [90–92]. Often, OLS models provide low coefficients of decision
because sub-area unit assignments are not suitable. In this study, OLS could be used as
a prototype for a method for analyzing spatial relationships with liver fluke infections
by creating sub-basin units with continuous, adjacent boundaries. Local fluke case
data should be continuously collected so that a curve can be created between the
percentage of infected people and an independent set of variables. The factors used in
this study are only prototypes of OLS model testing; in more advanced studies, spatial
survey factors such as soil moisture in the field where mollusks are found should be
used. Mathematical modeling is used to adjust database measures so that they can
be measured together as an alternative approach to optimizing the prediction of the
model [22]. Finally, the results of this study can guide the creation of spatial models at
the scale of small watersheds to track spatial infections of liver flukes in other areas
with similar watershed characteristics.

• Improving prediction at the position level by using machine learning and the FCR
method: in order to improve performance when extracting values from explanatory
training rasters and calculate the distances by using explanatory training distance
features, consider training the model on 100% of the data without excluding data for
testing, and choose to create output trained features [27,44]. Although the default
number of trees parameter value is 100, this number is not data-driven. The number of
trees needed increases with the complexity of the relationships between the explana-
tory variables, the size of the dataset, and the variable used to predict, in addition
to variations in these variables. Increase the number of trees in the forest value and
keep track of the out-of-bags (OOBs) or classification errors [93]. It is recommended
to increase the number of trees by least three times up to at least 500 trees to best
evaluate model performance. Tool execution time is highly sensitive to the number
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of variables used per tree. Using a small number of variables per tree decreases the
chances of overfitting [27]; however, be sure to use many trees if the model is using a
small number of variables per tree to improve model performance. In order to create
a model that does not change in every run, a seed can be set in the random number
generator environment setting. There will still be randomness in the model, but that
randomness will be consistent between runs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijgi12120503/s1, Table S1. Descriptive accompanying data of
sub-basins for use in independent variable modeling and Google Earth Engine for download land
use in 2020 of Thailand.

Author Contributions: Conceptualization, Benjamabhorn Pumhirunroj and Patiwat Littidej; method-
ology, Benjamabhorn Pumhirunroj; testing, Thidarut Boonmars, Phusit Khamphilung, Atchara
Artchayasawat, Kanokwan Bootyothee and Benjamabhorn Pumhirunroj; writing—original draft
preparation, Patiwat Littidej; writing—review and editing, Patiwat Littidej and Donald Slack; super-
vision, Patiwat Littidej; project administration, Benjamabhorn Pumhirunroj and Patiwat Littidej. All
authors have read and agreed to the published version of the manuscript.

Funding: This research project was financially supported by Mahasarakham University in 2024 for
spatial analysis and GIS laboratory usage. This work was supported by the Fundamental Fund FY
2022, granted by the Thailand Science Research and Innovation and funding through Sakon Nakhon
Rajabhat University for the analysis of the percentage of people infected with liver flukes.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Patient consent was waived due to using aggregated data for sec-
ondary data analysis.

Data Availability Statement: The data are available upon request. The copyright of ArcGIS pro
version 2.9.0 is subscription ID: 6875220XXX, customer number: 389XXX, customer name: Ma-
hasarakham University. The datasets used and/or analyzed during the current study are available
from the corresponding author upon reasonable request.

Acknowledgments: The authors thank the anonymous reviewers for their valuable feedback on
the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Geadkaew-Krenc, A.; Krenc, D.; Thanongsaksrikul, J.; Grams, R.; Phadungsil, W.; Glab-ampai, K.; Chantree, P.; Martviset, P.

Production and Immunological Characterization of ScFv Specific to Epitope of Opisthorchis Viverrini Rhophilin-Associated Tail
Protein 1-like (OvROPN1L). Trop. Med. Infect. Dis. 2023, 8, 160. [CrossRef] [PubMed]

2. Perakanya, P.; Ungcharoen, R.; Worrabannakorn, S.; Ongarj, P.; Artchayasawat, A.; Boonmars, T.; Boueroy, P. Prevalence and Risk
Factors of Opisthorchis Viverrini Infection in Sakon Nakhon Province, Thailand. Trop. Med. Infect. Dis. 2022, 7, 313. [CrossRef]
[PubMed]

3. Sadaow, L.; Rodpai, R.; Janwan, P.; Boonroumkaew, P.; Sanpool, O.; Thanchomnang, T.; Yamasaki, H.; Ittiprasert, W.; Mann,
V.H.; Brindley, P.J.; et al. An Innovative Test for the Rapid Detection of Specific IgG Antibodies in Human Whole-Blood for the
Diagnosis of Opisthorchis Viverrini Infection. Trop. Med. Infect. Dis. 2022, 7, 308. [CrossRef] [PubMed]

4. Boonjaraspinyo, S.; Boonmars, T.; Ekobol, N.; Artchayasawat, A.; Sriraj, P.; Aukkanimart, R.; Pumhirunroj, B.; Sripan, P.; Songsri,
J.; Juasook, A.; et al. Prevalence and Associated Risk Factors of Intestinal Parasitic Infections: A Population-Based Study in Phra
Lap Sub-District, Mueang Khon Kaen District, Khon Kaen Province, Northeastern Thailand. Trop. Med. Infect. Dis. 2023, 8, 22.
[CrossRef]

5. Sripa, B.; Bethony, J.M.; Sithithaworn, P.; Kaewkes, S.; Mairiang, E.; Loukas, A.; Mulvenna, J.; Laha, T.; Hotez, P.J.; Brindley,
P.J. Opisthorchiasis and Opisthorchis-Associated Cholangiocarcinoma in Thailand and Laos. Acta Trop. 2011, 120, S158–S168.
[CrossRef]

6. Prasongwatana, J.; Laummaunwai, P.; Boonmars, T.; Pinlaor, S. Viable Metacercariae of Opisthorchis viverrini in Northeastern Thai
Cyprinid Fish Dishes—As Part of a Rational Program for Control of O. viverrini-Associated Cholangiocarcinoma. Parasitol. Res.
2013, 112, 1323–1327. [CrossRef]

7. Sripa, B.; Kaewkes, S.; Sithithaworn, P.; Mairiang, E.; Laha, T.; Smout, M.; Pairojkul, C.; Bhudhisawasdi, V.; Tesana, S.; Thinkamrop,
B.; et al. Liver Fluke Induces Cholangiocarcinoma. PLoS Med. 2007, 4, e201. [CrossRef]

https://www.mdpi.com/article/10.3390/ijgi12120503/s1
https://www.mdpi.com/article/10.3390/ijgi12120503/s1
https://doi.org/10.3390/tropicalmed8030160
https://www.ncbi.nlm.nih.gov/pubmed/36977161
https://doi.org/10.3390/tropicalmed7100313
https://www.ncbi.nlm.nih.gov/pubmed/36288054
https://doi.org/10.3390/tropicalmed7100308
https://www.ncbi.nlm.nih.gov/pubmed/36288049
https://doi.org/10.3390/tropicalmed8010022
https://doi.org/10.1016/j.actatropica.2010.07.006
https://doi.org/10.1007/s00436-012-3154-9
https://doi.org/10.1371/journal.pmed.0040201


ISPRS Int. J. Geo-Inf. 2023, 12, 503 33 of 36

8. Sripa, B.; Brindley, P.J.; Mulvenna, J.; Laha, T.; Smout, M.J.; Mairiang, E.; Bethony, J.M.; Loukas, A. The Tumorigenic Liver Fluke
Opisthorchis Viverrini–Multiple Pathways to Cancer. Trends Parasitol. 2012, 28, 395–407. [CrossRef]

9. Sripa, B.; Tangkawattana, S.; Laha, T.; Kaewkes, S.; Mallory, F.F.; Smith, J.F.; Wilcox, B.A. Toward Integrated Opisthorchiasis
Control in Northeast Thailand: The Lawa Project. Acta Trop. 2015, 141, 361–367. [CrossRef]

10. Haswell-Elkins, M.R.; Satarug, S.; Elkins, D.B. Opisthorchis Viverrini Infection in Northeast Thailand and Its Relationship to
Cholangiocarcinoma. J. Gastroenterol. Hepatol. 1992, 7, 538–548. [CrossRef]

11. Mairiang, E.; Elkins, D.B.; Mairiang, P.; Chaiyakum, J.; Chamadol, N.; Loapaiboon, V.; Posri, S.; Sithithaworn, P.; Haswell-Elkins,
M. Relationship between Intensity of Opisthorchis Viverrini Infection and Hepatobiliary Disease Detected by Ultrasonography. J.
Gastroenterol. Hepatol. 1992, 7, 17–21. [CrossRef] [PubMed]

12. Pumhirunroj, B.; Aukkanimart, R. Liver Fluke-Infected Cyprinoid Fish in Northeastern Thailand (2016–2017). Southeast Asian J.
Trop. Med. Public Health 2017, 51, 1–7.

13. Pinlaor, S.; Onsurathum, S.; Boonmars, T.; Pinlaor, P.; Hongsrichan, N.; Chaidee, A.; Haonon, O.; Limviroj, W.; Tesana, S.; Kaewkes,
S.; et al. Distribution and Abundance of Opisthorchis Viverrini Metacercariae in Cyprinid Fish in Northeastern Thailand. Korean J.
Parasitol. 2013, 51, 703–710. [CrossRef] [PubMed]

14. Suwannatrai, A.T.; Thinkhamrop, K.; Clements, A.C.A.; Kelly, M.; Suwannatrai, K.; Thinkhamrop, B.; Khuntikeo, N.; Gray, D.J.;
Wangdi, K. Bayesian Spatial Analysis of Cholangiocarcinoma in Northeast Thailand. Sci. Rep. 2019, 9, 14263. [CrossRef] [PubMed]

15. Hasegawa, S.; Ikai, I.; Fujii, H.; Hatano, E.; Shimahara, Y. Surgical Resection of Hilar Cholangiocarcinoma: Analysis of Survival
and Postoperative Complications. World J. Surg. 2007, 31, 1258–1265. [CrossRef] [PubMed]

16. Thinkhamrop, K.; Suwannatrai, A.T.; Chamadol, N.; Khuntikeo, N.; Thinkhamrop, B.; Sarakarn, P.; Gray, D.J.; Wangdi, K.;
Clements, A.C.A.; Kelly, M. Spatial Analysis of Hepatobiliary Abnormalities in a Population at High-Risk of Cholangiocarcinoma
in Thailand. Sci. Rep. 2020, 10, 16855. [CrossRef]

17. Pratumchart, K.; Suwannatrai, K.; Sereewong, C.; Thinkhamrop, K.; Chaiyos, J.; Boonmars, T.; Suwannatrai, A.T. Ecological Niche
Model Based on Maximum Entropy for Mapping Distribution of Bithynia Siamensis Goniomphalos, First Intermediate Host Snail
of Opisthorchis Viverrini in Thailand. Acta Trop. 2019, 193, 183–191. [CrossRef]

18. Sriamporn, S.; Pisani, P.; Pipitgool, V.; Suwanrungruang, K.; Kamsa-ard, S.; Parkin, D.M. Prevalence of Opisthorchis viverrini
infection and incidence of cholangiocarcinoma in Khon Kaen, Northeast Thailand. Trop. Med. Int. Health 2004, 9, 588–594.
[CrossRef]

19. Martviset, P.; Phadungsil, W.; Na-Bangchang, K.; Sungkhabut, W.; Panupornpong, T.; Prathaphan, P.; Torungkitmangmi, N.;
Chaimon, S.; Wangboon, C.; Jamklang, M.; et al. Current Prevalence and Geographic Distribution of Helminth Infections in the
Parasitic Endemic Areas of Rural Northeastern Thailand. BMC Public Health 2023, 23, 448. [CrossRef]

20. Littidej, P.; Buasri, N. Built-up Growth Impacts on Digital Elevation Model and Flood Risk Susceptibility Prediction in Muaeng
District, Nakhon Ratchasima (Thailand). Water 2019, 11, 1496. [CrossRef]

21. Littidej, P.; Uttha, T.; Pumhirunroj, B. Spatial Predictive Modeling of the Burning of Sugarcane Plots in Northeast Thailand with
Selection of Factor Sets Using a GWR Model and Machine Learning Based on an ANN-CA. Symmetry 2022, 14, 1989. [CrossRef]

22. Prasertsri, N.; Littidej, P. Spatial Environmental Modeling for Wildfire Progression Accelerating Extent Analysis Using Geo-
Informatics. Pol. J. Environ. Stud. 2020, 29, 3249–3261. [CrossRef]

23. Lu, B.; Charlton, M.; Fotheringham, A.S. Geographically Weighted Regression Using a Non-Euclidean Distance Metric with a
Study on London House Price Data. Procedia Environ. Sci. 2011, 7, 92–97. [CrossRef]

24. Lu, B.; Charlton, M.; Harris, P.; Fotheringham, A.S. Geographically Weighted Regression with a Non-Euclidean Distance Metric:
A Case Study Using Hedonic House Price Data. Int. J. Geogr. Inf. Sci. 2014, 28, 660–681. [CrossRef]

25. Fotheringham, A.; Charlton, M. Geographically Geographically Weighted Weighted Regression Regression A Stewart Fothering-
ham. Geogr. Anal. 2014, 28, 281–298.

26. Hussain, M.A.; Chen, Z.; Zheng, Y.; Shoaib, M.; Shah, S.U.; Ali, N.; Afzal, Z. Landslide Susceptibility Mapping Using Machine
Learning Algorithm Validated by Persistent Scatterer In-SAR Technique. Sensors 2022, 22, 3119. [CrossRef] [PubMed]

27. Achour, Y.; Pourghasemi, H.R. How Do Machine Learning Techniques Help in Increasing Accuracy of Landslide Susceptibility
Maps? Geosci. Front. 2020, 11, 871–883. [CrossRef]

28. Kumar, R.; Anbalagan, R. Landslide Susceptibility Mapping Using Analytical Hierarchy Process (AHP) in Tehri Reservoir Rim
Region, Uttarakhand. J. Geol. Soc. India 2016, 87, 271–286. [CrossRef]

29. Tengtrairat, N.; Woo, W.L.; Parathai, P.; Aryupong, C.; Jitsangiam, P.; Rinchumphu, D. Automated Landslide-Risk Prediction
Using Web GIS and Machine Learning Models. Sensors 2021, 21, 4620. [CrossRef]

30. Park, S.; Choi, C.; Kim, B.; Kim, J. Landslide Susceptibility Mapping Using Frequency Ratio, Analytic Hierarchy Process, Logistic
Regression, and Artificial Neural Network Methods at the Inje Area, Korea. Environ. Earth Sci. 2013, 68, 1443–1464. [CrossRef]

31. Tien Bui, D.; Pradhan, B.; Lofman, O.; Revhaug, I. Landslide Susceptibility Assessment in Vietnam Using Support Vector
Machines, Decision Tree, and Naïve Bayes Models. Math. Probl. Eng. 2012, 2012, 974638. [CrossRef]

32. Mandal, S.; Mandal, K. Modeling and Mapping Landslide Susceptibility Zones Using GIS Based Multivariate Binary Logistic
Regression (LR) Model in the Rorachu River Basin of Eastern Sikkim Himalaya, India. Model. Earth Syst. Environ. 2018, 4, 69–88.
[CrossRef]

33. Pourghasemi, H.R.; Rahmati, O. Prediction of the Landslide Susceptibility: Which Algorithm, Which Precision? Catena 2018, 162,
177–192. [CrossRef]

https://doi.org/10.1016/j.pt.2012.07.006
https://doi.org/10.1016/j.actatropica.2014.07.017
https://doi.org/10.1111/j.1440-1746.1992.tb01035.x
https://doi.org/10.1111/j.1440-1746.1992.tb00928.x
https://www.ncbi.nlm.nih.gov/pubmed/1311966
https://doi.org/10.3347/kjp.2013.51.6.703
https://www.ncbi.nlm.nih.gov/pubmed/24516277
https://doi.org/10.1038/s41598-019-50476-7
https://www.ncbi.nlm.nih.gov/pubmed/31582774
https://doi.org/10.1007/s00268-007-9001-y
https://www.ncbi.nlm.nih.gov/pubmed/17453285
https://doi.org/10.1038/s41598-020-73771-0
https://doi.org/10.1016/j.actatropica.2019.03.004
https://doi.org/10.1111/j.1365-3156.2004.01234.x
https://doi.org/10.1186/s12889-023-15378-4
https://doi.org/10.3390/w11071496
https://doi.org/10.3390/sym14101989
https://doi.org/10.15244/pjoes/115175
https://doi.org/10.1016/j.proenv.2011.07.017
https://doi.org/10.1080/13658816.2013.865739
https://doi.org/10.3390/s22093119
https://www.ncbi.nlm.nih.gov/pubmed/35590807
https://doi.org/10.1016/j.gsf.2019.10.001
https://doi.org/10.1007/s12594-016-0395-8
https://doi.org/10.3390/s21134620
https://doi.org/10.1007/s12665-012-1842-5
https://doi.org/10.1155/2012/974638
https://doi.org/10.1007/s40808-018-0426-0
https://doi.org/10.1016/j.catena.2017.11.022


ISPRS Int. J. Geo-Inf. 2023, 12, 503 34 of 36

34. Youssef, A.M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Al-Katheeri, M.M. Landslide Susceptibility Mapping Using Random Forest,
Boosted Regression Tree, Classification and Regression Tree, and General Linear Models and Comparison of Their Performance
at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 2016, 13, 839–856. [CrossRef]

35. Rossi, M.; Guzzetti, F.; Reichenbach, P.; Mondini, A.C.; Peruccacci, S. Optimal Landslide Susceptibility Zonation Based on
Multiple Forecasts. Geomorphology 2010, 114, 129–142. [CrossRef]

36. Park, S.; Kim, J. Landslide Susceptibility Mapping Based on Random Forest and Boosted Regression Tree Models, and a
Comparison of Their Performance. Appl. Sci. 2019, 9, 942. [CrossRef]

37. Sevgen, E.; Kocaman, S.; Nefeslioglu, H.A.; Gokceoglu, C. Photogrammetric Techniques for Landslide Susceptibility Mapping
with Logistic Regression. Sensors 2019, 19, 3940. [CrossRef]

38. Pérez-Díaz, P.; Martín-Dorta, N.; Gutiérrez-García, F.J. Construction Labour Measurement in Reinforced Concrete Floating
Caissons in Maritime Ports. Civ. Eng. J. 2022, 8, 195–208. [CrossRef]

39. Hussain, M.A.; Chen, Z.; Wang, R.; Shoaib, M. Ps-Insar-Based Validated Landslide Susceptibility Mapping along Karakorum
Highway, Pakistan. Remote Sens. 2021, 13, 4129. [CrossRef]

40. Taalab, K.; Cheng, T.; Zhang, Y. Mapping Landslide Susceptibility and Types Using Random Forest. Big Earth Data 2018, 2,
159–178. [CrossRef]

41. Conoscenti, C.; Ciaccio, M.; Caraballo-Arias, N.A.; Gómez-Gutiérrez, Á.; Rotigliano, E.; Agnesi, V. Assessment of Susceptibility to
Earth-Flow Landslide Using Logistic Regression and Multivariate Adaptive Regression Splines: A Case of the Belice River Basin
(Western Sicily, Italy). Geomorphology 2015, 242, 49–64. [CrossRef]

42. Felicísimo, Á.M.; Cuartero, A.; Remondo, J.; Quirós, E. Mapping Landslide Susceptibility with Logistic Regression, Multiple
Adaptive Regression Splines, Classification and Regression Trees, and Maximum Entropy Methods: A Comparative Study.
Landslides 2013, 10, 175–189. [CrossRef]

43. Vorpahl, P.; Elsenbeer, H.; Märker, M.; Schröder, B. How Can Statistical Models Help to Determine Driving Factors of Landslides?
Ecol. Model. 2012, 239, 27–39. [CrossRef]

44. Ghasemian, B.; Shahabi, H.; Shirzadi, A.; Al-Ansari, N.; Jaafari, A.; Kress, V.; Renoud, S.; Ramadhan, A.; Geertsema, M. A Robust
Deep-Learning Model for Landslide Susceptibility Mapping. Sensors 2022, 22, 1573. [CrossRef] [PubMed]

45. Ma, J.; Wang, Y.; Niu, X.; Jiang, S.; Liu, Z. A Comparative Study of Mutual Information-Based Input Variable Selection Strategies
for the Displacement Prediction of Seepage-Driven Landslides Using Optimized Support Vector Regression. Stoch. Environ. Res.
Risk Assess. 2022, 36, 3109–3129. [CrossRef]

46. Kalantar, B.; Pradhan, B.; Naghibi, S.A.; Motevalli, A.; Mansor, S. Assessment of the Effects of Training Data Selection on the
Landslide Susceptibility Mapping: A Comparison between Support Vector Machine (SVM), Logistic Regression (LR) and Artificial
Neural Networks (ANN). Geomat. Nat. Hazards Risk 2018, 9, 49–69. [CrossRef]

47. Pham, B.T.; Tien Bui, D.; Pourghasemi, H.R.; Indra, P.; Dholakia, M.B. Landslide Susceptibility Assesssment in the Uttarakhand
Area (India) Using GIS: A Comparison Study of Prediction Capability of Naïve Bayes, Multilayer Perceptron Neural Networks,
and Functional Trees Methods. Theor. Appl. Climatol. 2017, 128, 255–273. [CrossRef]

48. Pham, B.T.; Pradhan, B.; Tien Bui, D.; Prakash, I.; Dholakia, M.B. A Comparative Study of Different Machine Learning Methods
for Landslide Susceptibility Assessment: A Case Study of Uttarakhand Area (India). Environ. Model. Softw. 2016, 84, 240–250.
[CrossRef]

49. Mehrabi, M.; Pradhan, B.; Moayedi, H. Optimizing an Adaptive Neuro-Fuzzy Inference System for Spatial Prediction of Landslide
Susceptibility Using Four State-of-the-Art Metaheuristic Techniques. Sensors 2020, 20, 1723. [CrossRef]

50. Dehnavi, A.; Aghdam, I.N.; Pradhan, B.; Morshed Varzandeh, M.H. A New Hybrid Model Using Step-Wise Weight Assessment
Ratio Analysis (SWARA) Technique and Adaptive Neuro-Fuzzy Inference System (ANFIS) for Regional Landslide Hazard
Assessment in Iran. Catena 2015, 135, 122–148. [CrossRef]

51. Aghdam, I.N.; Varzandeh, M.H.M.; Pradhan, B. Landslide Susceptibility Mapping Using an Ensemble Statistical Index (Wi) and
Adaptive Neuro-Fuzzy Inference System (ANFIS) Model at Alborz Mountains (Iran). Environ. Earth Sci. 2016, 75, 553. [CrossRef]

52. Kumar, R.; Anbalagan, R. Landslide Susceptibility Zonation in Part of Tehri Reservoir Region Using Frequency Ratio, Fuzzy
Logic and GIS. J. Earth Syst. Sci. 2015, 124, 431–448. [CrossRef]

53. Charandabi, S.E.; Kamyar, K. Prediction of Cryptocurrency Price Index Using Artificial Neural Networks: A Survey of the
Literature. Eur. J. Bus. Manag. Res. 2021, 6, 17–20. [CrossRef]

54. Roshani, M.; Sattari, M.A.; Muhammad Ali, P.J.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Nazemi, E. Application of GMDH
Neural Network Technique to Improve Measuring Precision of a Simplified Photon Attenuation Based Two-Phase Flowmeter.
Flow Meas. Instrum. 2020, 75, 101804. [CrossRef]

55. Moayedi, H.; Abdolreza, O.; Bui, D.T.; Foong, L.K. Spatial Landslide Susceptibility Assessment Based on Novel Neural-
Metaheuristic Geographic Information System Based Ensembles. Sensors 2019, 19, 4698. [CrossRef] [PubMed]

56. Bui, D.T.; Moayedi, H.; Kalantar, B.; Osouli, A.; Pradhan, B.; Nguyen, H.; Rashid, A.S.A. A Novel Swarm Intelligence—Harris
Hawks Optimization for Spatial Assessment of Landslide Susceptibility. Sensors 2019, 19, 3590. [CrossRef] [PubMed]

57. Arnone, E.; Francipane, A.; Scarbaci, A.; Puglisi, C.; Noto, L.V. Effect of Raster Resolution and Polygon-Conversion Algorithm on
Landslide Susceptibility Mapping. Environ. Model. Softw. 2016, 84, 467–481. [CrossRef]

58. Aditian, A.; Kubota, T.; Shinohara, Y. Comparison of GIS-Based Landslide Susceptibility Models Using Frequency Ratio, Logistic
Regression, and Artificial Neural Network in a Tertiary Region of Ambon, Indonesia. Geomorphology 2018, 318, 101–111. [CrossRef]

https://doi.org/10.1007/s10346-015-0614-1
https://doi.org/10.1016/j.geomorph.2009.06.020
https://doi.org/10.3390/app9050942
https://doi.org/10.3390/s19183940
https://doi.org/10.28991/CEJ-2022-08-02-01
https://doi.org/10.3390/rs13204129
https://doi.org/10.1080/20964471.2018.1472392
https://doi.org/10.1016/j.geomorph.2014.09.020
https://doi.org/10.1007/s10346-012-0320-1
https://doi.org/10.1016/j.ecolmodel.2011.12.007
https://doi.org/10.3390/s22041573
https://www.ncbi.nlm.nih.gov/pubmed/35214473
https://doi.org/10.1007/s00477-022-02183-5
https://doi.org/10.1080/19475705.2017.1407368
https://doi.org/10.1007/s00704-015-1702-9
https://doi.org/10.1016/j.envsoft.2016.07.005
https://doi.org/10.3390/s20061723
https://doi.org/10.1016/j.catena.2015.07.020
https://doi.org/10.1007/s12665-015-5233-6
https://doi.org/10.1007/s12040-015-0536-2
https://doi.org/10.24018/ejbmr.2021.6.6.1138
https://doi.org/10.1016/j.flowmeasinst.2020.101804
https://doi.org/10.3390/s19214698
https://www.ncbi.nlm.nih.gov/pubmed/31671801
https://doi.org/10.3390/s19163590
https://www.ncbi.nlm.nih.gov/pubmed/31426552
https://doi.org/10.1016/j.envsoft.2016.07.016
https://doi.org/10.1016/j.geomorph.2018.06.006


ISPRS Int. J. Geo-Inf. 2023, 12, 503 35 of 36

59. Kornejady, A.; Ownegh, M.; Bahremand, A. Landslide Susceptibility Assessment Using Maximum Entropy Model with Two
Different Data Sampling Methods. Catena 2017, 152, 144–162. [CrossRef]

60. Park, N.-W. Using Maximum Entropy Modeling for Landslide Susceptibility Mapping with Multiple Geoenvironmental Data
Sets. Environ. Earth Sci. 2015, 73, 937–949. [CrossRef]

61. Dang, V.H.; Hoang, N.D.; Nguyen, L.M.D.; Bui, D.T.; Samui, P. A Novel GIS-Based Random Forest Machine Algorithm for the
Spatial Prediction of Shallow Landslide Susceptibility. Forests 2020, 11, 118. [CrossRef]

62. Wu, X.; Ren, F.; Niu, R. Landslide Susceptibility Assessment Using Object Mapping Units, Decision Tree, and Support Vector
Machine Models in the Three Gorges of China. Environ. Earth Sci. 2014, 71, 4725–4738. [CrossRef]

63. Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine Learning Methods
for Landslide Susceptibility Studies: A Comparative Overview of Algorithm Performance. Earth Sci. Rev. 2020, 207, 103225.
[CrossRef]

64. Sahin, E.K. Comparative Analysis of Gradient Boosting Algorithms for Landslide Susceptibility Mapping. Geocarto Int. 2022, 37,
2441–2465. [CrossRef]

65. Nohani, E.; Moharrami, M.; Sharafi, S.; Khosravi, K.; Pradhan, B.; Pham, B.T.; Lee, S.; Melesse, A.M. Landslide Susceptibility
Mapping Using Different GIS-Based Bivariate Models. Water 2019, 11, 1402. [CrossRef]

66. Pourghasemi, H.R.; Gayen, A.; Panahi, M.; Rezaie, F.; Blaschke, T. Multi-Hazard Probability Assessment and Mapping in Iran. Sci.
Total Environ. 2019, 692, 556–571. [CrossRef]

67. Yan, F.; Zhang, Q.; Ye, S.; Ren, B. A Novel Hybrid Approach for Landslide Susceptibility Mapping Integrating Analytical Hierarchy
Process and Normalized Frequency Ratio Methods with the Cloud Model. Geomorphology 2019, 327, 170–187. [CrossRef]

68. Suwannahitatorn, P.; Webster, J.; Riley, S.; Mungthin, M.; Donnelly, C.A. Uncooked Fish Consumption among Those at Risk of
Opisthorchis Viverrini Infection in Central Thailand. PLoS ONE 2019, 14, e0211540. [CrossRef]

69. Sripa, B.; Kaewkes, S.; Intapan, P.M.; Maleewong, W.; Brindley, P.J. Chapter 11—Food-Borne Trematodiases in Southeast Asia:
Epidemiology, Pathology, Clinical Manifestation and Control. In Important Helminth Infections in Southeast Asia: Diversity and
Potential for Control and Elimination, Part A; Zhou, X.-N., Bergquist, R., Olveda, R., Utzinger, J.B.T.-A., Eds.; Academic Press:
Cambridge, MA, USA, 2010; Volume 72, pp. 305–350. ISBN 0065-308X.

70. Qian, M.-B.; Utzinger, J.; Keiser, J.; Zhou, X.-N. Clonorchiasis. Lancet 2016, 387, 800–810. [CrossRef]
71. Brindley, P.J.; Bachini, M.; Ilyas, S.I.; Khan, S.A.; Loukas, A.; Sirica, A.E.; Teh, B.T.; Wongkham, S.; Gores, G.J. Cholangiocarcinoma.

Nat. Rev. Dis. Prim. 2021, 7, 65. [CrossRef]
72. Sakon Nakhon Provincial Public Health Office (SKKO). Annual Report 2021. 2021. Available online: https://skko.moph.go.th/

dward/web/index.php?module=skko (accessed on 20 July 2021).
73. Dao, T.T.H.; Bui, T.V.; Abatih, E.N.; Gabriël, S.; Nguyen, T.T.G.; Huynh, Q.H.; Van Nguyen, C.; Dorny, P. Opisthorchis Viverrini

Infections and Associated Risk Factors in a Lowland Area of Binh Dinh Province, Central Vietnam. Acta Trop. 2016, 157, 151–157.
[CrossRef] [PubMed]

74. Ruantip, S.; Eamudomkarn, C.; Kopolrat, K.Y.; Sithithaworn, J.; Laha, T.; Sithithaworn, P. Analysis of Daily Variation for 3 and for
30 Days of Parasite-Specific IgG in Urine for Diagnosis of Strongyloidiasis by Enzyme-Linked Immunosorbent Assay. Acta Trop.
2021, 218, 105896. [CrossRef]

75. Boondit, J.; Suwannahitatorn, P.; Siripattanapipong, S.; Leelayoova, S.; Mungthin, M.; Tan-Ariya, P.; Piyaraj, P.; Naaglor, T.;
Ruang-Areerate, T. An Epidemiological Survey of Opisthorchis viverrine Infection in a Lightly Infected Community, Eastern
Thailand. Am. J. Trop. Med. Hyg. 2020, 102, 838–843. [CrossRef] [PubMed]

76. Saenna, P.; Hurst, C.; Echaubard, P.; Wilcox, B.A.; Sripa, B. Fish sharing as a risk factor for Opisthorchis viverrini infection:
Evidence from two villages in north-eastern Thailand. Infect. Dis. Poverty 2017, 6, 66. [CrossRef] [PubMed]

77. Sakon Nakhon Provincial Public Health Office (SKKO). Annual Report 2022. 2022. Available online: https://pnkhospital.net/
index.php/2017-02-14-07-03-03/category/15-2022-06-17-04-30-23 (accessed on 1 August 2023).

78. Office, 8th Health District. Annual Report 2021. 2021. Available online: https://r8way.moph.go.th/r8way/index/ (accessed on
17 June 2021).

79. Honjo, S.; Srivatanakul, P.; Sriplung, H.; Kikukawa, H.; Hanai, S.; Uchida, K.; Todoroki, T.; Jedpiyawongse, A.; Kittiwatanachot, P.;
Sripa, B.; et al. Genetic and Environmental Determinants of Risk for Cholangiocarcinoma via Opisthorchis Viverrini in a Densely
Infested Area in Nakhon Phanom, Northeast Thailand. Int. J. Cancer 2005, 117, 854–860. [CrossRef]

80. Office, 8th Health District. Annual Report 2022. 2022. Available online: https://r8way.moph.go.th/r8-primary/ (accessed on 20
June 2022).

81. Zhao, T.-T.; Feng, Y.-J.; Doanh, P.N.; Sayasone, S.; Khieu, V.; Nithikathkul, C.; Qian, M.-B.; Hao, Y.-T.; Lai, Y.-S. Model-Based
Spatial-Temporal Mapping of Opisthorchiasis in Endemic Countries of Southeast Asia. Elife 2021, 10, e59755. [CrossRef]

82. Arabameri, A.; Yamani, M.; Pradhan, B.; Melesse, A.; Shirani, K.; Tien Bui, D. Novel Ensembles of COPRAS Multi-Criteria
Decision-Making with Logistic Regression, Boosted Regression Tree, and Random Forest for Spatial Prediction of Gully Erosion
Susceptibility. Sci. Total Environ. 2019, 688, 903–916. [CrossRef]

83. Brunton, L.A.; Alexander, N.; Wint, W.; Ashton, A.; Broughan, J.M. Using Geographically Weighted Regression to Explore the
Spatially Heterogeneous Spread of Bovine Tuberculosis in England and Wales. Stoch. Environ. Res. Risk Assess. 2017, 31, 339–352.
[CrossRef]

https://doi.org/10.1016/j.catena.2017.01.010
https://doi.org/10.1007/s12665-014-3442-z
https://doi.org/10.3390/f11010118
https://doi.org/10.1007/s12665-013-2863-4
https://doi.org/10.1016/j.earscirev.2020.103225
https://doi.org/10.1080/10106049.2020.1831623
https://doi.org/10.3390/w11071402
https://doi.org/10.1016/j.scitotenv.2019.07.203
https://doi.org/10.1016/j.geomorph.2018.10.024
https://doi.org/10.1371/journal.pone.0211540
https://doi.org/10.1016/S0140-6736(15)60313-0
https://doi.org/10.1038/s41572-021-00300-2
https://skko.moph.go.th/dward/web/index.php?module=skko
https://skko.moph.go.th/dward/web/index.php?module=skko
https://doi.org/10.1016/j.actatropica.2016.01.029
https://www.ncbi.nlm.nih.gov/pubmed/26872984
https://doi.org/10.1016/j.actatropica.2021.105896
https://doi.org/10.4269/ajtmh.19-0864
https://www.ncbi.nlm.nih.gov/pubmed/32043456
https://doi.org/10.1186/s40249-017-0281-7
https://www.ncbi.nlm.nih.gov/pubmed/28372560
https://pnkhospital.net/index.php/2017-02-14-07-03-03/category/15-2022-06-17-04-30-23
https://pnkhospital.net/index.php/2017-02-14-07-03-03/category/15-2022-06-17-04-30-23
https://r8way.moph.go.th/r8way/index/
https://doi.org/10.1002/ijc.21146
https://r8way.moph.go.th/r8-primary/
https://doi.org/10.7554/eLife.59755
https://doi.org/10.1016/j.scitotenv.2019.06.205
https://doi.org/10.1007/s00477-016-1320-9


ISPRS Int. J. Geo-Inf. 2023, 12, 503 36 of 36

84. Rujirakul, R.; Ueng-arporn, N.; Kaewpitoon, S.; Loyd, R.J.; Kaewthani, S.; Kaewpitoon, N. GIS-Based Spatial Statistical Analysis
of Risk Areas for Liver Flukes in Surin Province of Thailand. Asian Pac. J. Cancer Prev. 2015, 16, 2323–2326. [CrossRef]

85. Brunsdon, C.; Fotheringham, S.; Charlton, M. Geographically Weighted Regression-Modelling Spatial Non-Stationarity. J. R. Stat.
Soc. Ser. D Stat. 1998, 47, 431–443.

86. Comber, A.; Brunsdon, C.; Charlton, M.; Dong, G.; Harris, R.; Lu, B.; Lü, Y.; Murakami, D.; Nakaya, T.; Wang, Y.; et al. A Route
Map for Successful Applications of Geographically Weighted Regression. Geogr. Anal. 2023, 55, 155–178. [CrossRef]

87. Lu, B.; Hu, Y.; Murakami, D.; Brunsdon, C.; Comber, A.; Charlton, M.; Harris, P. High-Performance Solutions of Geographically
Weighted Regression in R. Geo-Spat. Inf. Sci. 2022, 25, 536–549. [CrossRef]

88. Reza, M.; Miri, S.; Javidan, R. A Hybrid Data Mining Approach for Intrusion Detection on Imbalanced NSL-KDD Dataset. Int. J.
Adv. Comput. Sci. Appl. 2016, 7, 070603. [CrossRef]

89. Forrer, A.; Sayasone, S.; Vounatsou, P.; Vonghachack, Y.; Bouakhasith, D.; Vogt, S.; Glaser, R.; Utzinger, J.; Akkhavong, K.;
Odermatt, P. Spatial Distribution of, and Risk Factors for, Opisthorchis Viverrini Infection in Southern Lao PDR. PLoS Negl. Trop.
Dis. 2012, 6, e1481. [CrossRef]

90. Xia, J.; Jiang, S.; Peng, H.-J. Association between Liver Fluke Infection and Hepatobiliary Pathological Changes: A Systematic
Review and Meta-Analysis. PLoS ONE 2015, 10, e0132673. [CrossRef]

91. Leong, Y.Y.; Yue, J.C. A Modification to Geographically Weighted Regression. Int. J. Health Geogr. 2017, 16, 11. [CrossRef]
92. Isazade, V.; Qasimi, A.B.; Dong, P.; Kaplan, G.; Isazade, E. Integration of Moran’s I, Geographically Weighted Regression (GWR),

and Ordinary Least Square (OLS) Models in Spatiotemporal Modeling of COVID-19 Outbreak in Qom and Mazandaran Provinces,
Iran. Model. Earth Syst. Environ. 2023, 9, 3923–3937. [CrossRef]

93. Kim, J.-C.; Lee, S.; Jung, H.-S.; Lee, S. Landslide Susceptibility Mapping Using Random Forest and Boosted Tree Models in
Pyeong-Chang, Korea. Geocarto Int. 2018, 33, 1000–1015. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.7314/APJCP.2015.16.6.2323
https://doi.org/10.1111/gean.12316
https://doi.org/10.1080/10095020.2022.2064244
https://doi.org/10.14569/IJACSA.2016.070603
https://doi.org/10.1371/journal.pntd.0001481
https://doi.org/10.1371/journal.pone.0132673
https://doi.org/10.1186/s12942-017-0085-9
https://doi.org/10.1007/s40808-023-01729-y
https://doi.org/10.1080/10106049.2017.1323964

	Introduction 
	The Study Area 
	Datasets and Analyses 

	Materials and Methods 
	Ordinary Least Square (OLS) Approach for Spatial Modeling (Analysis at the Level of Infected in Sub-Basins) 
	Independent Variable Modeling 
	Data Preparation for OLS and FCR Models 
	Forest-Based Classification and Regression (Analysis at the Location Level of Infected Water Bodies) 

	Results 
	Factor Selected for OLS with Liver Fluke Infection (Watershed Level) 
	Mapping the Spatial OV Infection (Y, Dependent Variable) 
	Mapping of the Independent Variables 
	Spatial Prediction of OV-Infection Using Forest-Based Classification and Regression (FCR) (Location Level) 
	Spatial Prediction of OV-Infected 

	Discussion 
	Redundancy of Independent Variable Sets Associated with Spatial Liver Infection 
	Limitations of Spatial OLS Model 
	FCR Improvement Approach for Spatial Prediction 
	The Importance of the Single Variables to the Models 

	Conclusions 
	References

