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Abstract: Flood inundation causes socioeconomic losses for coastal tourism under climate extremes,
progressively attracting global attention. Predicting, mapping, and evaluating the flood inundation
risk (FIR) is important for coastal tourism. This study developed a spatial tourism-aimed framework
by integrating a Weighted k Nearest Neighbors (WkNN) algorithm, geographic information systems,
and environmental indexes, such as precipitation and soil. These model inputs were standardized
and weighted using inverse distance calculation and integrated into WkNN to infer the regional
probability and distribution of the FIR. Zhejiang province, China, was selected as a case study. The
evaluation results were mapped to denote the likelihood of an FIR, which was then validated by the
historical Maximum Inundation Extent (MIE) extracted from the World Environment Situation Room.
The results indicated that 80.59% of the WkNN results reasonably confirmed the MIE. Among the
matched areas, 80.14%, 90.13%, 65.50%, and 84.14% of the predicted categories using WkNN perfectly
coincided with MIE at high, medium, low, and very low risks, respectively. For the entire study area,
approximately 2.85%, 64.83%, 10.8%, and 21.51% are covered by a high, medium, low, and very low
risk of flood inundation. Precipitation and elevation negatively contribute to a high-medium risk.
Drainage systems positively alleviate the regional stress of the FIR. The results of the evaluation
illustrate that in most inland areas, some tourism facilities are located in high-medium areas of
the FIR. However, most tourism facilities in coastal cities are at low or very low risk, especially
from Hangzhou-centered northern coastal areas to southern Wenzhou areas. The results can help
policymakers make appropriate strategies to protect coastal tourism from flood inundation. Moreover,
the evaluation accuracy of WkNN is higher than that of kNN in FIR. The WkNN-based framework
provides a reasonable method to yield reliable results for assessing FIR. The framework can also be
extended to other risk-related research under climate change.

Keywords: climate change; sensitivity analysis; evaluation accuracy; hazard; year return period;
overall accuracy

1. Introduction

Coastal areas gather a large number of human activities and facilities, which is the
most active economic zone in the world [1], and tourism is a particularly important part of
these areas [2]. For instance, the tourism industry employed 10% of the world’s workforce
(about 300 million people) in 2016, and this percentage may reach 11.4% by 2027 [3]. In
2018, a total of about 1.4 billion tourists were recorded globally [4]. However, tourism
also suffers diverse natural disasters, such as floods, since it mostly relies on the natural
environment, like being near water [5]. For example, flash floods caused 11 deaths and
forced 4000 tourists to evacuate from Jordan in November 2018 [6]. A devastating flash
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flood caused by heavy rainfall struck Yesanpo, a nature-centered tourist destination near
Beijing, leaving over 15,000 visitors trapped overnight in July 2012 [7].

Globally, flood inundation is recognized as one of the most common natural disasters,
and it triggers property damage and even casualties—all of which have been recorded in the
past decades [8,9]. Statistically, floods constitute 43% of the total number of natural disasters
and 47% of the number of weather-related disasters. Floods affected 2.3 billion people and
caused USD 662 billion in damages from 1995 to 2015 [10]. Approximately 16,000 lives
have been lost in flash floods in China between 2000 and 2018, which accounts for 74% of
all flood-related mortalities [7]. In 2021, about 400 disastrous events were recorded by the
Emergency Event Database (https://www.emdat.be (accessed on 11 January 2023)), and
floods dominated 223 occurrences. The most severe one was the Henan flood in China,
which caused 352 deaths, affected 14.5 million people, and resulted in USD 16.5 billion in
economic losses (https://reliefweb.int/report/world/2021-disasters-numbers (accessed
on 11 January 2023)).

Coastal areas are not only the most developed but are also extraordinarily flood-prone
places since their flood frequencies and densities are higher than others under extreme
climates, such as tropic cyclones and typhoons [3,11–13]. In 2006, the Sang Mei super
typhoon caused 153 deaths in Wenzhou, Zhejiang province, bringing about RMB 11 billion
in direct economic losses [14]. In 2013, flood inundation, which was triggered by typhoons,
affected eight million residents and resulted in about RMB 33 billion in straight financial
losses in Ningbo, Zhejiang province [15]. Therefore, predicting and understating the
potential flood inundation risk (FIR) for tourism in coastal areas via minimizing possible
harm is of great importance for regional sustainable development.

Based on the aforementioned information, abundant approaches have been employed
in the flood tourism field to find suitable ways of mitigating the negative impacts of floods
on tourism. Local knowledge has been effectively used to improve resilience [16] and the
quality of preparation against flood disasters in tourism areas [17,18]. Additionally, climate
change models with socio-economic data [19], taxable sales records [20], etc., were combined
in the estimation of economic losses for tourism. Geographic Information Systems (GISs) are
better at integrating various models and types of data, such as raster and vector [21]. These
are suitable tools for deriving regional indicators, evaluating their impacts on hotels [22]
and properties [23], and evaluating spatial accessibility in the FIR [24]. A GIS was further
united with Remote Sensing (RS) and hydrological and hydrodynamic flood simulation
models such as FLO-2D [25] and HAZUS-MH [26] to assess flood scenarios for tourism
facilities [2,27]. Moreover, some comparatively advanced algorithms in machine learning,
such as Bayesian Networks [28,29] and the AHP-SA model [21,30], have been successfully
used in flood risk evaluations as well. These methods deeply explored the mechanism of
flood disasters by integrating multiple factors, such as rainfall, soil, and rivers. However,
difficulties in modeling the FIR for tourism across large areas may be encountered due
to model complexity and advanced, professional mathematical knowledge. Additionally,
the computational cost needs to be considered for complex models in long-term spatial
data evaluations.

In our previous investigation, k-Nearest Neighbors (kNN) was proposed and used
to assess the FIR for coastal tourism [31]. The results demonstrated that kNN is an easy
but efficient computer algorithm since it has fewer parameters and simple model training,
which makes it faster in the calculation and prediction of classification. Also, it has been
widely used in a few studies for purposes such as the classification of missing data, risk
evaluation, and prediction [31–33]. While the kNN method has some merits, some problems
need to be further explored and solved. For example, weights among objects are not fully
considered, which may lead to poor classification performance.

Therefore, this study continually extends our previous kNN-based research investiga-
tion for tourism by using distance-weighted methods to improve the evaluation accuracy
(EA) and performance of the kNN method. Consequently, the aims and innovations of this
paper can be summarized in the following points:

https://www.emdat.be
https://reliefweb.int/report/world/2021-disasters-numbers
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1. We improved the performance of the kNN algorithm with a distance-weighted method
and demonstrated that the Weighed kNN (WkNN) can gain a higher accuracy predic-
tion than kNN;

2. We developed and applied the WkNN-based framework with spatial technologies
into flood risk assessment for tourism in coastal areas;

3. Due to the limitation of the spatially gridded data, the World Environment Situation
Room (WESR) was first used to validate the flood risk for coastal areas, and it was
demonstrated that the WESR can be successfully used in flood risk evaluation.

2. Framework Development
2.1. Basic Principle of kNN

The basic principle of kNN assumes that a query or examined object is similar to k
nearest sample neighbors, or that they at least have similar characteristics. The core of kNN
is based on the similarity or distance between two objects, which means that the properties
or classification of query points are more affected by the closest objects than those farther
away (please further refer to Liu, Liu, and Tan [31]). Based on this basis, there are mainly
two steps to classify the categories of the examined objects:

1. Calculate the pairwise distance between the examined objects in the testing datasets
and the k nearest sample neighbors in the training datasets;

2. Vote the categories of the k nearest samples to confirm the classifications of the
examined objects.

The distance quantified the similarity between the examine-and-sample objects. Usu-
ally, the lower the distance, the higher the similarity. Many methods are used in kNN
to calculate the objects’ distances, such as the Manhattan Distance [34], Minkowski Dis-
tance [35], and Chebyshev Distance [36]. Among them, the Euclidean Distance [37] is a
popular and frequently used method. It refers to the distance between objects in Euclidean
space, which can be described as

dkj =

√
∑k

i = 1

(
xk − xj

)2 (1)

where xj represents the features of the examined objects, xk represents the known cate-
gories of the sample neighbors, dkj represents the distances, and k means the number of
nearby neighbors.

K values have significant impacts on the classification results of kNN. Larger k values
may cause a complex kNN model and overfitting results, or they may cause a simple model
and underfitting results in classification [38]. Thus, a proper k value may be between two
extremes and should be discussed in model building. Traditionally, k neighbors can be
found in training datasets that are nearer to an examined object in the testing datasets. The
category of a testing dataset will be determined by the following classified decision rules:

cj = argmax ∑
xi∈Nk(x)

I(yi = c), i = 1, 2, ..., k (2)

where ci represents the predicted categories, Nk(x) represents the k nearby neighbors, and
I is the indicator function, that is, when yi = c, I = 1; otherwise, I = 0.

Equations (1) and (2) show that the predicted categories of the examined objects are
mainly determined by the categories of the majority of k samples. However, the weights
or importance between the examined objects and neighbors are ignored, which makes
the classification accuracy lower. Therefore, distance-based weights can be considered to
modify and improve the accuracy of kNN.

2.2. Weighted kNN (WkNN)

Weights refer to the importance or contribution of factors to a system. Many ap-
proaches can be engaged to calculate the weight, such as entropy methods [39], the analytic
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hierarchy process [30], and a principal component analysis [40]. However, these methods
become stuck in the complex process of knowledge and calculation. In the study, kNN’s
weight can be simply expressed and calculated using an inverse relationship to the Eu-
clidean Distance (Equation (3)), which means the larger the distance, the smaller the weight.

wkj =
1

dkj
(3)

Then, Equation (2) can be described as

cj = argmax ∑ xi∈Nk(x) I(yi = c) ∗ wkj, i = 1, 2, ..., k (4)

Equation (3) shows Inverse Distance Weighting, where the weight of a neighbor is
inversely proportional to its distance from the query objects. Equation (4) shows that WkNN
introduces the concept of assigning weights to the neighboring data points based on their
proximity to the query point. These weights are used to influence the final classification or
prediction. As a result, closer neighbors have a greater influence on the prediction, while
farther neighbors have a reduced impact.

2.3. Framework Conceptualization

After summarizing similar research investigations, a WkNN-based spatial framework
of an FIR assessment for coastal tourism is conceptualized and constructed. The framework
can be divided into three parts: data collection (input), model construction (process), and
classification and evaluation (output) (Figure 1).

The first module mainly collects spatiotemporal data and flood-related index deriva-
tion. The data consists of three spatial branches: climate, environment, and validation
data. Several indexes are derived from the flood-induced factors, which range from the
mean annual rainfall to the drainage density. The flood hazard data of different year return
periods (YRPs) are collected to create the Maximum Inundation Extension (MIE) with
historical inundated times, which verifies the evaluation results of the WkNN model.

The second module is the center part of the framework. Following data collection, all
spatial indexes are standardized into datasets with four categories: very low risk, low risk,
medium risk, and high risk. The standardized datasets within the extent of the MIE are
divided into two parts: 70% is the training dataset and 30% is the testing dataset [41]. This
is not an inflexible rule. It can vary depending on the size of the dataset and the problem.
Usually, the larger portion of the data is allocated to training because the model needs to
learn from a significant amount of information. A larger training set can help the model to
capture the underlying patterns and relationships in the data.

KNN and WkNN are employed to calculate the categories of random records from
training datasets with nearby k-training datasets. The inferred results are compared with
their existing categories in the training dataset, which produces a confusion matrix and
overall accuracy (OA). The WkNN model with the highest OA value will be extended to
whole areas. A sensitivity analysis is conducted to explore the relationship between the
inputs and outputs of the model.

The third model is used to map and evaluate the likelihood of the FIR and to assess
the tourism facilities that are exposed in the FIR.
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in Zhejiang and China, which is heavily and widely influenced by the wet season [45–47]. 
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the area suffer direct mean annual losses (about RMB 10 billion), especially in its southeast 
coastal areas. Newspapers are extremely important data sources for data collection and 

Figure 1. Conceptual framework of WkNN, which includes data collection, processing, model
construction, validation, accuracy evaluation, and flood risk mapping.

3. Case Study
3.1. Study Area

Zhejiang province (118–122.2◦ E, 27–31.2◦ N), China was selected as a case study. The
province sits on the southeast coast of the Yangtze River Delta and at the land-and-sea
junction. It faces the East China Sea and slopes from southwest to northeast [15,42]. In the
area, about 74.63% of the area is occupied by mountains and hills, in which relatively steep
terrain and extreme precipitation will easily cause flood inundation with the limitation of
river flows and fast water accumulation [43]. Moreover, the whole area is deeply affected
by a subtropical monsoon climate, which brings heavy rainfall between June and October.
Its eastern area is especially frequently impacted by typhoons, which regularly originate
between June and October [44]. This period happens to be the best tourist season in
Zhejiang and China, which is heavily and widely influenced by the wet season [45–47].

The superior location and special environment make it spread superior tourism re-
sources (e.g., West Lake) (Figure 2a) over 11 main cities (Figure 2b), which attract millions of
domestic and foreign tourists every year. In 2014, its tourism income occupied 15.7% (about
RMB 630 billion) of the provincial GDP (about RMB 4015 billion). However, Zhejiang also
experienced a higher FIR, caused by sea levels, typhoons, and tropical cyclones due to
complex environmental conditions under risky climate change.
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hotels, (b) mean annual rainfall (1951–2007) over 11 cities and two main levels of roads, (c) Digital 
Elevation Model at 30 m resolution, (d) soil types and contents, (e) land use and land cover, (f) 
drainage system, (g) soil erosion, and (h) 1-in-50 YRP example of various flood year return period. 

3.2. Flood-Derived Spatial Data Collection and Processing 
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on the occurrence and distribution of flood inundation with domain knowledge [21,48,49]. 
Flood hazard is defined as a deriving factor for the FIR, such as extreme rainfall. Exposure 

Figure 2. Spatial distribution of collected data. (a) Various tourism facilities including parks and
hotels, (b) mean annual rainfall (1951–2007) over 11 cities and two main levels of roads, (c) Digital El-
evation Model at 30 m resolution, (d) soil types and contents, (e) land use and land cover, (f) drainage
system, (g) soil erosion, and (h) 1-in-50 YRP example of various flood year return period.

Historical records show that typhoons and tropical cyclones brought heavy rainfall
and floods over the study area during the past 60 years from 1950 to 2009, which made the
area suffer direct mean annual losses (about RMB 10 billion), especially in its southeast
coastal areas. Newspapers are extremely important data sources for data collection and
verification. They can be employed as truly historical data records since their reliability and
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timeliness are relatively high. Therefore, historical flood disaster data for the study between
1950 and 2022 were collected and analyzed from Zhejiang Daily (https://zjrb.zjol.com.cn
(accessed on 2 October 2023)). The statistical results show that flood disaster events have
negative impacts on Zhejiang province and its tourism facilities. For example, more than
250 and 219 km of roads were washed away by continuous rainfall in Jiaxing City in
July 1983. In June 1989, the transmission line in Jingning County was interrupted for
25 h, and two hydropower stations were shut down by rainstorms, causing a temporary
shutdown of industries in the county. The highway in the Yunhe area between Jingning and
Yunhe collapsed seriously, and houses, warehouses, and shops were flooded by continuous
rainfall and floods. In July 1999, more than 900 enterprises ceased production and were
semi-suspended, of which 94.6 percent of those with sales revenues of more than RMB
5 million were affected by the flood inundation disaster in Changxing County. In 2006, the
Sang Mei super typhoon triggered 153 deaths in Wenzhou, bringing about RMB 11 billion
in direct economic losses [14]. In 2013, typhoon-triggering flood inundation affected
eight million residents, and it caused about RMB 33 billion of straight financial losses
in Ningbo [15]. Additionally, Zhejiang has a 6500 km coastline and its average sea level
has risen 98 mm during the past 30 years, and it is projected to speed up under extreme
climates with destructive potential. All of them severely influence tourism operations,
socioeconomic income, and even people’s lives [42]. Hence, the continually historical
flood damage in the area has underscored an urgent need to assess the FIR to manage
flood disasters and promote the stable and sustainable development of Zhejiang’s coastal
tourism economy.

3.2. Flood-Derived Spatial Data Collection and Processing

Flood risk and evaluation is a comprehensive system, arising from flood hazard,
exposure, and disaster-prone environments at a particular location [18]. The criteria from
the three parts have been systematically selected and derived in light of their influences
on the occurrence and distribution of flood inundation with domain knowledge [21,48,49].
Flood hazard is defined as a deriving factor for the FIR, such as extreme rainfall. Exposure
refers to the degree or extent of persons, environments, or assets (e.g., tourism facilities)
that are likely to be located in flood-prone areas. Other factors, including topography,
hydrology, land use, and soil, are defined as disaster-prone environments. They were
extracted and standardized via data processing and analysis in a GIS environment, and all
of these factors worked as spatial inputs for the WkNN-centered framework to reason the
FIR in the future.

3.2.1. Rainfall

Rainfall is a direct factor and has a significant impact on the occurrence and distribu-
tion of flood inundation. It can commonly be divided into two main types: short-period
intensive rainfall and prolonged extensive rainfall. Due to the limitation of data in some
countries, such as China, this study extracts the annual mean precipitation, which has a
notable influence on flood events [50], from Asian Precipitation—Highly Resolved Observa-
tional Data Integration Towards Evaluation (APHRODITE) (at 25 km resolution) between
1951 and 2007 as rainfall indices [51]. The APHRODITE has been illustrated to match the
accurate features of rain belts in China [31,52,53]. The extracted APHRODITE dataset was
interpolated into gridded rainfall data with Inverse Distance Weighting and clipped within
the study area in ArcGIS version 10.4 [54] (Figures 2b and 3a).

https://zjrb.zjol.com.cn
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Figure 3. Standard risk evaluation inputs into WkNN model. (a) Mean annual rainfall, (b) elevation,
(c) slope, (d) soil water retention, (e) drainage proximity, (f) drainage density, (g) soil erosion,
(h) inferred spatial results of WkNN, (i) inferred spatial results of kNN, (j) WESR data, and extracted
spatial results of WkNN (k) and kNN (l) in WESR extent.
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3.2.2. Topographic Features

Topography is the key driver for flood formation and redistribution (Figure 2c). Gen-
erally, a lower area has a fairly higher flood risk since it can easily be inundated by
surrounding water. Instead, a higher area has a better drainage capacity. In this study,
two indices were extracted to represent topography. They are elevation (Figure 3b) and
slope (Figure 3c) [55]. Elevation is the height above a fixed reference point, regularly the
mean sea level. The area with a lower elevation is easily inundated by flood water from
higher ones, and vice versa [31]. Slope is the steepness or the degree of incline of a surface.
A steeper surface has a lower likelihood of flood inundation since water easily runs to
low-lying land. Both indices were produced from DEM at a 30 m resolution from the United
States Geological Survey (https://earthexplorer.usgs.gov (accessed on 15 February 2023))
and Geospatial Data Cloud in China (https://www.gscloud.cn/sources/index?pid=302
(accessed on 18 February 2023)).

3.2.3. Soil Water Retention (SWR)

Soil water retention affects the rate at which water can infiltrate the ground. Differ-
ent types of soil have diverse capacities to hold or infiltrate water, which are mutually
determined by the soil porosity and vegetation on the surface. Usually, drier soil caused
by lengthy and terrible droughts needs more water to bring about flood inundation, but
moist or wet surfaces are more easily prone to accumulate flood water. Meanwhile, the
probability of flood hazards decreases with an increase in soil infiltration [54]. In flood
investigations, the soil infiltration rates can be reflected by the Hydrologic Soil Group
(HSG). It can be further classified into four subgroups based on the infiltration rates. Group
A has the highest rate under sandy characteristics, such as sandy loam. Subgroup D has
the lowest infiltration rates and clay features, such as silty clay or clay. Group B and Group
C have moderate to slow rates, which consist of (silt) loam and sandy clay loam.

The soil storage indicates the amount of water that is stored in the soil, which decides
the occurrence of flood inundation. The potential maximum Soil Water Retention (SWR)
can reflect how much water is in the soil, and it can be calculated with a hydrological
modeling method that is driven by the Soil Conversation Service Curve Number (SCS-
CN) [56,57]. The SCS-CN values were jointly calculated using hydrological features, the
soil type (Figure 2d), and land use (Figure 2e, Table 1) [58], and they were referenced from
the list of Soil Conservation Service [59]. The CN values can be calculated by intersecting
the HSG, soil type, and land cover. Based on the CN approach, the SWR (Figure 3d) in cells
can be calculated by using

SWRi = SWR0

(
100
CNi

− 1
)

(5)

where CNi ∈ (0, 100) is the CN value of an ith cell, and SWR0 = 254 for units of millimeters.

Table 1. CN values under soil type.

Soil Type A B C D

Farmland 72 82 88 92
Forest 36 60 73 79
Grass 39 61 74 80
Bush 36 60 74 80

Wetland 32 58 72 79
Man-made land 89 92 94 95

Barren 72 82 88 90
Water 100 100 100 100

https://earthexplorer.usgs.gov
https://www.gscloud.cn/sources/index?pid=302
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3.2.4. Drainage System

A drainage system (Figure 2f) needs to be considered in the FIR since it determines
the formation and distribution of flood inundation. Occasionally, overflowing floods may
happen over banks in drainage systems such as rivers under extreme rainfall. Frequently,
two main indices of drainage systems determine the distribution of flood inundation on
the earth’s surface. They are the drainage proximity (Figure 3e) and drainage density
(Figure 3f). The proximity denotes the distance to the nearest rivers or other water bodies,
and the drainage density refers to the lengths of rivers per unit area. Based on our previous
research [31], the areas near drainage networks within 200 m are assigned as areas with a
high FIR, and the risk level decreases with the increase in distance [60]. The two factors
were attained from the Global River Database with Multiple Buffer operators and the Line
Density function using a 1 km radius in a GIS [61,62].

3.2.5. Soil Erosion

Soil erosion has a greater impact on the form and distribution of flood inundation,
which can increase the risk of flood inundation [63] since soil erosion can remove the topsoil
layer, which is often the most fertile and porous part of the soil. When this layer is lost,
the soil’s ability to absorb and retain water is diminished. As a result, during rainfall
events, water is more likely to run off the surface rather than infiltrate into the ground.
This increased runoff can contribute to flash floods and more significant flood events. Soil
erosion refers to the natural process of soil being moved from one location to another by
natural environmental factors (e.g., water) and human activities such as deforestation,
overgrazing, and improper agricultural practices [64]. Under the same rainfall conditions,
areas with severe soil erosion are much more likely to be inundated by flood inundation
than areas with well-preserved surface vegetation since a bare surface has a lower capacity
to control water. In this study, soil data at a 1 km resolution were accessed from the
Geographical Information Monitoring Cloud Platform (http://www.dsac.cn (accessed on
21 February 2023)) and processed in ArcGIS 10.4 (Figures 2g and 3g).

3.2.6. Detection of Maximum Inundation Extent

Remote Sensing (RS) has been applied in many flood-related investigations for many
years. Its images are more easily acquired, but they have some restrictions. For instance,
Moderate Resolution Imaging Spectroradiometers (MODIS) have higher temporal reso-
lutions but lower spatial resolutions (500 m), and they are commonly negatively affected
by cloud cover, which may cause them to miss out on flash rainfall events and corre-
sponding flood disasters. Necessarily, other spatial data sources should be found to
replace RS images in the FIR. The World Environment Situation Room platform (WESR,
https://wesr.unepgrid.ch/?project=MX-XVK-HPH-OGN-HVE-GGN&language=en (ac-
cessed on 24 February 2023)) delivers practicable replacements for the FIR. It provides
global dynamic data and systematic tools from different sources, as well as visualization
tools that enable users to interact with and explore the data online [65]. It also assists users
in observing and analyzing environmental issues and trends and in formulating effective
environmental policies and protections. WESR products have been illustrated and em-
ployed in scientific investigations in data-scarce regions as well as in developing countries,
which can be extremely helpful in increasing the preparedness and awareness of the popu-
lation and reducing catastrophic impacts [66]. In the flood risk field, the WESR provides
six Year Return Periods (YRPs) at 1 km resolution. They are 1-in-25, 1-in-50 (Figure 2h),
1-in-100, 1-in-200, 1-in-500, and 1-in-1000 YRPs. All data were cross-checked with satellite
flood footprints from various data sources and showed high accuracy. The values of cells
in YRP maps were reassigned again if a cell value was greater than 0, they were assigned
as 1; otherwise, they were assigned as 0. The reassigned maps were overlaid to derive an
inundation frequency map as a Maximum Inundation Extension (MIE; Figure 3j). In MIE,
the cell values range from 0 to 6, representing a very low risk to a high risk. High risk
means extremely vulnerable and frequent inundation from 1-in-25 to 1-in-1000 YPR floods.

http://www.dsac.cn
https://wesr.unepgrid.ch/?project=MX-XVK-HPH-OGN-HVE-GGN&language=en


ISPRS Int. J. Geo-Inf. 2023, 12, 463 11 of 18

MIE was selected as the reference imagery to verify the inferred maps derived from kNN
and WkNN.

3.2.7. Criteria Standardization

To improve the efficiency of the calculation, all of the spatial input data were converted
into 1 to 4, which represent a very low risk to a high risk using specific values (Figure 3a–g).
There are many methods used to standardize the criterion indices, such as domain knowl-
edge and Natural Breaks (Jenks). In this study, all input criteria were standardized using
Natural Breaks (Jenks) method in ArcGIS and R programming. Natural Breaks (Jenks)
refers to divisions or cutoff points in data that occur naturally or intuitively, based on
the characteristics of the data, and it is well employed in the FIR [28,29]. In addition, all
spatial datasets were then projected, resampled to 1 km grid cells, clipped to the study area,
and registered, so all input grids accurately overlaid with the same projection, cell size,
and extent.

4. Results and Discussion

A flood risk map was plotted as a derived result of the spatial evaluation framework
for the FIR. The flood risk was divided into four levels: high risk (red), medium risk
(orange), low risk (yellow), and very low risk (green).

4.1. Result Verification

The innovative WkNN-based spatial framework effectively produced the spatial dis-
tribution of the FIR for the whole study area. To validate the evaluation accuracy (EA) of
the WkNN model, an accuracy comparison was conducted between the spatially inferred
results (Figure 3k) extracted from Figure 3h against the MIE (Figure 3j). Overall, 80.59% of
the WkNN results reasonably confirmed the actual MIE, where the cell value > 0. Among
the matched areas, 80.14%, 90.13%, 65.50%, and 84.14% of the predicted categories in the
WkNN area (Figure 3k) were well matched with the MIE area (Figure 3j) in high, medium,
low, and very low risk, respectively. This reflects that the WkNN results (Figure 3h) are
sound and reasonable. The remaining mistakes could be explained by the uncertainties and
a little bit of inaccuracy in the WESR data in certain areas. Moreover, it should be noted
that the predicted risk extent is larger than the WESR data. The reason for this may be that
the extension of the WESR data is insufficient, which can be vividly shown in the empty
circle in the northeast area, and some areas do not have data (Figure 3j).

4.2. Sensitivity Analysis

A sensitivity analysis is essential to explore the relationships between the inputs and
outputs of models, which can picture the performances, structures, and uncertainty of
models. For WkNN-based models, the sampling datasets and the k values determine the
EA of models and inferred outcomes.

4.2.1. Sensitivity Analysis in Relation to Sampling Times

This study explored the relationship between sampling times and the tendency of EA
under k values. The overall accuracy (OA) was chosen to evaluate the performances of
kNN and WkNN against the MIE. The OA denotes the proportion of correct predictions
made by models or systems over the total number of predictions [67,68], which can directly
reflect the EA, and it is easy to understand and use. Figure 4A shows that the larger the
k value, the higher the OA accuracy since the EA curve distribution of blue points (k = 5)
is significantly lower than the EA curve distribution of green points (k = 95). The 5 and
95 values were selected randomly and are roughly equal to the square root of the training
datasets, respectively (8947) [38]. Under different sampling times (from 1 to 500), the range
of both OAs (in blue and green) is relatively larger, which shows that the kNN method is
unstable. However, compared with kNN, the WkNN method (in red) shows comparative
robustness since the OA range of the WkNN model is aggregated around the medium
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value (about 0.58) when taking the same k values (k = 5 and k = 95), which additionally
demonstrates that the predicted performance of WkNN is higher than that of kNN.
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4.2.2. Sensitivity Analysis in Relation to k Values

K values play key roles in model performance. An appropriate k value determines
the robust and predicted results of the kNN models. Conversely, inappropriate k values
will cause the problem of bias-various tradeoffs [38]. Therefore, this study explored and
compared the performances and influences of k values in kNN and WkNN and selected the
optimal k values (the highest value in the OA) to infer the FIR for the whole study area.
In this study, the range of k values from 1 to 800 covers the square root (95 and 315) of the
observations (8947) and the whole study dataset (98,709). The results show that the OA of
kNN, which ranges from 0.43 to 0.58, is lower than the OA of WkNN, which ranges from
0.57 to 0.60. Similarly, the trend in the EA of WkNN is reasonably stable than that of kNN.
Overall, the OA increases with the growth of k values, particularly, and it shows non-linear
increases when the k values are between 1 and 200 (Figure 4B). When the k values are
between 200 and 400, the OA presents a declining trend, but after 400, the value of the EA
increases slowly. All of these demonstrate that the k values have significant impacts on
kNN and WkNN, but the latter performs more robustly.

4.3. Comparison of WkNN with kNN

The evaluation results of WkNN (Figure 3h) using Equation (4) were demonstrated using
a comparison with those of a published spatial-based kNN method (Figure 3i) [31] using
Equation (1). The comparison shows that WkNN is better than kNN, such as in sampled areas
1 to 3, because their results are more similar to the reference MIE (Figure 3j) in visualization.
Also, three areas were sampled in the north (area 4 in a grey rectangle), west (area 5 in
a blue rectangle), and southeast (area 6 in a purple rectangle) to compare the evaluation
accuracy (EA) between WkNN (Figure 3k) and kNN (Figure 3l) against the MIE (Figure 3j).
Area 4 shows that the inferred WkNN’s results accurately match the pattern of the MIE
with values of >0. However, kNN shows opposite results in some areas, which means there
is a high risk in the MIE, but a low risk or even very low risk is in the kNN results. These
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mismatches have also occurred in other regions, such as in areas 5 and 6. All of these reflect
that the WkNN method has a higher prediction accuracy than kNN.

4.4. Risk Distribution Analysis

The resulting map (Figure 3h) illustrates the extent and distribution of the FIR in the
whole study area. The statistics of each flood category from high risk to very low risk were
conducted, which demonstrates that about half of the area is classified as medium-high FIR
risk. Around 2.85% of the whole area is covered by high risk, 64.83% is medium risk, 10.8%
is low risk, and 21.52% is very low risk. High-risk areas can be observed, particularly in the
southwestern area that is affected by elevation (57.63 km2) and precipitation (36.13 km2).
The result further demonstrates that elevation is the key factor in the form and redistribution
of flooding inundation. Elevation can contribute to flash flooding in mountainous regions.
Heavy rainfall or rapid rainstorms at higher elevations can lead to the sudden release of
large volumes of water downstream, causing flash floods in lower-lying areas. Meanwhile,
heavy rainfall over a short period can overwhelm the capacity of rivers and stormwater
systems to handle the water, leading to flash floods. Moreover, high-risk areas are scattered
across the eastern part, which is heavily affected by slope (about 32.77 km2) and SWR
(about 24.86 km2). In areas with a steep slope, such as mountainous or hilly regions, water
flows downhill more rapidly. When heavy rainfall occurs in these areas, the water can
quickly run off the slopes and accumulate in lower-lying regions, potentially causing flash
floods. The steepness of the terrain can lead to a high runoff speed and increased water
volume downstream. Soils with high water retention, such as clay soils in the study area,
may have slower infiltration rates. This can lead to increased surface run-off during heavy
rainfall events, which may contribute to flash flooding if the rainfall rate exceeds the soil’s
infiltration capacity.

In the northern area, there is also a high-risk area under lower evaluation. Most
areas are covered by medium risk in flood inundation, which is larger than high risk,
since compared with medium flood risk, high flood risk rarely happens, unless there are
extraordinary climate events and fragile environments, such as extreme rainfall and bare
ground. A medium risk is mutually affected by multiple factors over the center area.
Elevation (152.55 km2) and precipitation (76.84 km2) contribute greatly to the central part
across the west to the east. In the fringe of the study area, medium risk is mainly affected
by the drainage density and proximity. The high-medium area demonstrates that elevation
and precipitation are the two extremely important factors for the FIR. Slope, erosion, and
proximity make similar contributions to high-medium risk since their areas are 32.77 km2

and 73.45 km2 in high risk and medium risk, separately. The river density and SWR have
little contribution to high-medium FIR. Based on prior experience [49], a high density of
rivers or areas nearer to the rivers should have high or medium flood risks, but actually,
these areas have low or very low flood risks in the study. This is mainly because drainage
systems carry more flood into the sea and mitigate the stress of flood inundation pressure in
the study area. Also, larger cities, such as Hangzhou, are mainly located in low-risk or very-
low-risk areas, which vividly demonstrates that man-made water conservancy facilities
play a huge role in protecting socioeconomic development and alleviating flood risk.

Figure 5 shows the tourism facilities that are exposed in the predicted FIR. To highlight
tourism facilities with high-medium risk levels, the facilities with higher risk levels will
have bigger point sizes. This illustrates that in most inland areas, some tourism facilities
are located in high-medium-risk areas of flood inundation, especially hotels (Figure 5a),
medical treatment institutions (Figure 5b), and restaurants (Figure 5e). This is because
high-risk areas are often scenic and attractive due to their proximity to water bodies, such
as rivers, lakes, or the ocean. Some flood-prone areas may have historical or cultural
significance, such as old towns or heritage sites. All of these factors determine that the
number of medical treatment institutions is higher than other facilities in high-risk areas
for responding to disaster relief and rescue. Therefore, it can easily be understood that
medical facilities in high-risk areas will play key roles in effectively mitigating or even
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preventing the negative impact of flood inundation on tourism facilities and in saving
lives. Additionally, parks (Figure 5c) and parking places (Figure 5d) are mainly located in
low-risk or very-low-risk areas since most of them are in urban areas. Additionally, the
study area has a wonderful road system (Figure 5f) at the national-provincial levels. The
majority of roads are located in medium- or low-risk areas of flood inundation, which not
only helps to develop tourism resources but also helps to efficiently carry out disaster relief
and post-disaster reconstruction.
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Airports play important roles in modern tourism, such as providing an easier way
for tourists to travel and increasing tourist arrivals. In the study area, although airports
are impacted by flood inundation, most of them are located in low or very low FIR areas
(Figure 5f). There are only four airports covered by a medium FIR, including Zhoushan
Putuoshan Airport (Number 3), Ningbo LiShe International Airport (Number 4), Yiwu
Airport (Number 5), and Lishui Airport (Number 8), since these airports are located in
medium-high-risk areas with high risks of precipitation, elevation, and SWR. Two airports,
Jiaxing Nanhu Airport (Number 1) and Quzhou Airport (Number 6) are located in low
FIR areas. The other three airports, Hangzhou Xiaoshan International Airport (Number 2),
Taizhou Luqiao Airport (Number 7), and Wenzhou Longwan International Airport (Num-
ber 9), are situated in very low-risk areas. These airports in low- or very-low-risk areas
are of great importance in evacuating passengers in the case of flood inundation disasters
under extremes.

Notably, most tourism facilities in coastal cities are in low- or very-low-risk areas,
especially from the Hangzhou-centered northern coastal areas to the southern Wenzhou
areas. Figures 3h and 5 demonstrate that tourist facilities and road infrastructure are
at a low-risk level in the cities and nearby areas. This illustrates that local departments
have conducted a lot of practical and efficient work on disaster prevention and mitigation
in coastal flood-prone areas. This can prove that engineering measures play key roles
in protecting socioeconomic activities, including tourism, which can provide a valuable
reference for the vast coastal areas around the world.
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5. Conclusions

This study develops an innovative spatial framework, which integrates Weighted
kNN (WkNN), Geographic Information Systems (GISs), and other flood-relative indices to
infer, map, and evaluate the distribution of the Flood Inundation Risk (FIR) for tourism. It
was illustrated using a Chinese case study, particularly of Zhejiang province, where the
flood inundation risk is highly related to environmental variabilities and extreme weather
events, such as typhoons, which bring about long-term or intensive rainfall. All of these
environmental criteria from rainfall to soil have diverse and complicated contributions to
flood hazards. The WESR was used as the predicted result validation for tourism in the
FIR for the first time. The improved WkNN was developed based on the traditional kNN
method, combined with GIS, and employed in the FIR assessment. In WkNN, the weights
were calculated as inversely proportional to the distance between the query points and their
k nearest neighbors. A GIS was used as a spatial tool to derive flood-influenced indices and
process the number of spatial factors with multitemporal and multispatial resolution from
different sources. The evaluation results show that precipitation and elevation make huge
contributions to high-medium risk, and drainage systems positively alleviate the regional
stress of the FIR.

The WkNN-based framework was effectively carried out in the case study and obtained
reasonable outcomes, which further demonstrated that WkNN is superior to kNN in the
evaluation accuracy (EA) and flood risk analysis. Meanwhile, k values are still significant
parameters for kNN and WkNN. Suitable k values will improve the performances of models
in the EA. The WkNN outcomes can match the WESR data well, which can deliver the
fundamentals for flood disaster prevention and mitigation for tourism in a coastal area and
assist decision makers in adopting effective measures to prevent and mitigate the negative
impacts of flood disasters.

The innovative spatial framework was programmed and repeatable with GIS, R, and
Python programming, which can be flexibly used in other disaster-related investigations,
and they are also not limited by the number of model inputs. The evaluation results will
make corresponding changes responsive to different input indices. However, there are
some limitations that this study did not consider. For example, due to the limitation of data
sources, this study did not fully use Remote Sensing imagery, such as Synthetic Aperture
Radar, in the flood risk assessment. Additionally, this study did not assess the adverse
economic consequences of flooding on the tourism industry. As a further step, we plan to
probe deeply into these fields and provide more precise assessments.
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