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Abstract: Urban crimes are not homogeneously distributed but exhibit spatial heterogeneity across a
range of spatial scales. Meanwhile, while geographic space shapes human activities, it is also closely
related to multiscale characteristics. Previous studies have explored the influence of underlying
geographic space on crime occurrence from the mechanistic perspective, treating geographic space as
a collection of points or lines, neglecting the multiscale nature of the spatial heterogeneity of crime
and underlying geographic space. Therefore, inspired by the recent concept of “living structure”
in geographic information science, this study applied a multiscale analysis method to explore the
association between underlying geographic space and crime distribution. Firstly, the multiscale
heterogeneity is described while simultaneously considering both the statistical and geometrical
characteristics. Then, the spatial association rule mining approach is adopted to quantitatively
measure the association between crime occurrence and geographic space at multiple scales. Finally,
the effectiveness of the proposed methods is evaluated by crime incidents in the city of Philadelphia.
Experimental results show that crime heterogeneity is indeed closely related with the spatial scales. It
is also proven that the influence of underlying geographic space on crime heterogeneity varies with
the spatial scales. This study may enrich the methodology in crime pattern and crime explanation
analysis, and it provides useful insights for effective crime prevention.

Keywords: spatial association analysis; spatial heterogeneity; multiple scale association; environmental
criminology; living structure

1. Introduction

Understanding the spatial patterns of crime incidents and the relationship with related
factors are two core issues in crime analysis [1]. As the distribution of crime incidents is
neither random nor homogeneous, the spatial heterogeneity should be considered in crime
analysis. By investigating previous studies, it can be learned that spatial heterogeneity has
the following three implications. First, the spatial heterogeneity of crime can be termed as
spatial aggregation or clusters of crime incidents [2]. In other words, the spatial distribution
of crime is not randomly distributed but often clustered in some places or regions [3–5].
For example, previous studies proved that approximately 50% of crime incidents occurred
at only 4.5% of the street segments [4,6]. Second, spatial heterogeneity also refers to the
variation in relationships across space [7]. Both the direction and strength of the relationship
between a response variable (e.g., the crime occurrence) and predictor variables (e.g., the
population) may vary with space position [8]. To deal with the spatial heterogeneity in
spatial modelling, a widely used model is the geographically weighted regression (GWR)
model, which allows the relationship between a response variable and predictor variables
to vary across space [9,10]. Third, spatial heterogeneity also refers to the inconsistency
related with the multiple scales. That is, spatial patterns or relationships analyzed on small
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spatial units are inconsistent with the results on larger units. Therefore, to investigate the
spatial heterogeneity, a fundamental question is to evaluate the impact of spatial units or
the scale of analysis [11]. Currently, research on spatial heterogeneity in crime analysis
mainly concerns the uneven distribution at the single spatial scale, and the multiscale
nature of spatial heterogeneity is seldom considered in studying associated factors for
crime occurrence.

Meanwhile, to figure out explanatory factors for the heterogeneous distribution of
crime, both theories and models have been developed in past decades. Classical theories
include the rational choice theory, routine activities theory, crime pattern theory and geo-
metric theory of crime [12–14]. The similarities of these theories are the exploration of the
association among crime occurrences, spatial context and human perception. For instance,
the geometric theory of crime suggests that the occurrence of crime is likely to happen in
situations where an offender’s awareness space overlaps with the areas of criminal oppor-
tunities. It emphasizes the influence of the spatial context; that is, offenders tend to commit
crimes if they believe the environment provides good opportunities. Researchers also have
established some models to quantitatively measure the association between crime occur-
rence and possible related factors [15–17]. In general, the related factors can be categorized
into different dimensions, including spatial environment, socioeconomic condition, human
activity (mobility) and visual perception about the environment. Instead of being indepen-
dent of each other, there is a complex association among factors in different dimensions.
The complexity mainly lies in two aspects. First, spatial environment is highly correlated
with factors in other dimensions, for instance, human mobility. As an important component
of spatial environment, the underlying geographic space affects, even shapes, the human
activities and urban forms [18,19]. Second, the crime is heterogeneously distributed and
the spatial heterogeneity for crime is associated with the multiscale problem. Therefore, the
relationship between crime and related factors may vary with scales. With the accessibility
of multimodal geospatial data (e.g., the road network, point of interest, socio-economic and
street view images), existing research could model the relationship between crime risks
and environment via a mixture of multiple factors. However, these studies seldom answer
a basic question, i.e., to what extent and at what scale can the heterogeneous distribution of
crime be explained by the underlying geographic space? Therefore, the current study aims
to explore the multiscale association between the underlying geographic space and the
heterogeneity of crime distribution by answering the following questions: (1) How can the
spatial heterogeneity of crime be quantitatively measured while considering the multiscale
nature of spatial data? (2) Given a particular scale, to what extent can the heterogeneity of
crime be explained by the underlying geographic space?

This paper is structured as follows. The first section briefly describes the implications
of spatial heterogeneity of crime distribution and its related influencing factors. In the
second section, a systemic review of related research is presented. In the third section, the
material and our methodology are described. Then, the results and discussion are jointly
presented. Finally, the conclusion of this study is presented.

2. Related Work

From the perspective of environmental criminology, crime occurrence is a geographic
phenomenon. Therefore, spatial properties should be considered in crime analysis. Two
well-known spatial properties are spatial dependence and spatial heterogeneity [7,20].
These spatial properties are related with both distribution and relationship (or association).

2.1. Crime Distribution Pattern

Understanding the spatial pattern of crime is the first step for crime analysis and
crime prevention. The basic objective of spatial crime pattern analysis is to find spatial
patterns of crime distribution and then use these patterns to help identify the root causes
of the crimes and generate strategies for crime prevention [21,22]. One aim of crime
distribution pattern analysis is to figure out the spatial dependence structure of crime
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occurrence. For discrete crime incidents, spatial dependence can be reflected by spatial
clusters or concentrations of crime incidents. The spatial heterogeneity related with crime
distribution usually refers to the uneven distribution of crime incidents [2]. In this sense,
spatial heterogeneity and spatial dependence have a similar meaning, and both spatial
dependence and spatial heterogeneity are related with the “law of crime concentration”
which states that the majority of crime incidents are distributed in only a small proportion
of the spatial units or street segments [4,6]. To figure out the spatial heterogeneity in
crime distribution, a widely used approach is spatial hotspot analysis, which aims to
pick up spatial areas with higher-than-average incidences of crime [23]. Generally, there
are two strategies to detect the spatial hotspots, i.e., the count-based and distance-based
methods. For count-based methods, the crime incidents should be aggregated on the
specified spatial units, then the spatial statistics such as local Moran’s I and Getis-Ord
Gi* can be applied [24,25]. The distance-based methods are applied to locations of crime
incidents directly and can tell whether the crime incidents are clustered at a given analysis
scale (i.e., the distance). Commonly used distance-based methods include the spatial scan
statistics, nearest neighbor, Ripley’s K and pairwise correlation [26–28]. The advantage
of count-based methods is that the position of clustered crime can be easily identified via
the spatial visualization. However, the distribution pattern of crime is only explored on
a single scale. While the distance-based methods (e.g., Ripley’s K) can tell whether the
crime incidences are clustered at different scales (by setting different distances), they cannot
reveal the relationship among different analysis distance. Essentially, a spatial distribution
pattern revealed by the distance-based methods is still analyzed at a single scale.

2.2. Crime Association Analysis

Crime pattern analysis just tells where the crime incidences are clustered, the possible
influencing factors for the concentration are not clear. In general, influencing factors for
crime occurrence may be categorized into four dimensions, i.e., the spatial environment,
socioeconomic condition, human activity (mobility) and visual perception about the envi-
ronment. The concept of spatial environment mainly focuses on the “physical” property
of the environment, including the street network [18], typical urban facilities [17] and
spatial configurations [29,30]. All these physical properties should be placed in the “space”
category, which is therefore termed as underlying geographic space in this study. The
socioeconomic conditions focus more on social or economic characteristics of the environ-
ment at a special scale, for example, the number of businesses, employees or income at
neighborhood level [31,32]. With the availability of mobile phone data or trajectory data,
the influence of human activity (or mobility) on crime also is widely investigated [33,34].
Recently, with the development of deep learning and street view image, the influence of
visual perception (e.g., living, boring, and disorder) of the environment on crime can also
be measured [15,35–37]. It should be noted that environment-related and human-related
factors are not independent but correlated with each other, especially with the underlying
geographic space. For example, as the skeleton of urban form, the street structure affects,
even shapes, the human activities, while human activities are closely related to criminal
events [18,19]. Previous studies mainly explored the influence of street structure on crime
from a single “network” perspective, focusing on the influence of street permeability on
human presence or crime occurrence; because street permeability may increase human
presence, and both are closely related to public surveillance and criminal activities [8].
However, there is no consensus on the relationship between street structure and crime,
and some studies have shown that street permeability can promote crime risk while other
studies have drawn the opposite conclusion (i.e., variation in relationships) [38,39]. In
addition, the network-based analysis adopted a mechanistic view which treats the geo-
graphic space as a collection of lifeless lines at single spatial scale. In geographic space,
entities are connected to other things to constitute even larger entities. For example, a set
of streets or buildings constitutes a neighborhood, a set of neighborhoods constitutes a
city [40]. In other words, representing geographic space as a hierarchy of recursive sub-
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spaces could pose more meaning in space cognition and crime understanding [40,41]. How-
ever, the influence of the multiscale nature of geographic space on crime occurrence is not
seldom evaluated.

When exploring the associated factors for crime distribution, spatial heterogeneity
also should be considered, i.e., the variation in relationships across space or scales [7,42].
Currently, different models have been established to explore factors for crime distribution,
including the geographically weighted regression (GWR) model and its variants [9,10],
negative binomial (NB) regression models, spatial conjunctive analysis of case configura-
tions (CACC) [30] and spatial co-location pattern mining (SCP) methods [17]. Even though
GWR is widely used to solve spatial heterogeneity by allowing the relationships between
independent and dependent variables to vary by locality, the model is actually based on
the linear additive assumption. Meanwhile, it does not work with multipoint data. As for
the CACC and SCP methods, the principle of the methods is to discover the co-occurrence
of crime and related facilities by constructing a spatial neighborhood, which is achieved by
setting a distance threshold. They do not depend on the linear additive assumption and
can be applied to explore the complex interaction between crime and multiple facilities.
By setting different distance thresholds, spatial association between crime and related
factors can be analyzed at multiple scales. However, just like Ripley’s K function, spatial
association is analyzed at a single scale, in essence.

2.3. Scale and Spatial Heterogeneity

In fact, the “scale” is an important concept in geography and related science, including
environmental criminology. Generally, “scale” refers to both the data scale and analysis
scale. While data scale usually is reflected by the data grain and data extent, the analysis
scale refers to the spatial units or distances in spatial analysis [43]. In geography, scale
matters: changing the analysis scale (e.g., the spatial units) may lead to unexpected or even
substantial changes in the results. The scale-related inconsistency is a manifestation of
spatial heterogeneity. To solve the multiscale problem, a common practice is to perform
analysis at multiple scales of analysis [44]. For example, the widely used Ripley’s K function
is believed to describe the spatial clustering pattern at multiple scales, which means the
function is calculated on the same dataset with different analysis scales (i.e., distances).
Although the scale-related problem is also affected by the spatial data distribution (i.e.,
the data scale), there is seldom research dealing with multiscale analysis regarding the
data scale.

As illustrated in the introduction section, spatial heterogeneity has more implications
than spatial dependence. Besides non-stationary distribution and variation in relation-
ship, spatial heterogeneity in crime analysis is also related with the multiscale problem.
In environmental criminology, the scale-related spatial heterogeneity refers to the fact
that there are safe places within bad neighborhoods and dangerous places within good
neighborhoods [45]. In previous studies, the spatial heterogeneity in crime analysis mainly
concerns the influence of the spatial scale of the analysis (e.g., the spatial units), which in
fact refers to the modifiable areal unit problem (MAUP) in geography [11,46]. To deal with
the scale-related spatial heterogeneity, the basis is to define an indicator quantifying the
degree of spatial heterogeneity and then to find the appropriate spatial scale of the analysis.
For example, Andresen proposes a testing methodology that aims to identify the changes
in spatial crime patterns at multiple analysis scales [11,47]. In fact, spatial heterogeneity is
also closely related to data distribution. Spatial heterogeneity is a global property and exists
across multiple data scales [48]. Currently, although spatial heterogeneity is frequently
mentioned in crime analysis, studies seldom describe the spatial heterogeneity of crime
while considering the multiscale nature of spatial data distribution.

2.4. Critical Analysis and Main Contributions

In summary, spatial heterogeneity is a key issue in both crime distribution pattern
and association analysis. Spatial heterogeneity has several implications, including the non-
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stationary distribution, variation in relationship and scale-related inconsistency. Previous
research in exploring spatial heterogeneity mainly focuses on the nonstationary distribution,
neglecting the multiscale nature of spatial heterogeneity. Although methods such as the
Ripley’s K function and GWR can deal with spatial heterogeneity to some extent, they only
consider the spatial heterogeneity caused by the analysis scale (i.e., the analysis distance),
neglecting the spatial heterogeneity related with the data scale. However, how to quantify
the spatial heterogeneity of crime while considering its multiscale nature is seldom studied
in previous research.

In addition, the multiscale nature of spatial heterogeneity also makes it complicated
to figure out the associated factors. In previous studies, to explore the related factors for
heterogeneous crime distribution, factors in different dimensions are investigated, includ-
ing the environment, socioeconomic condition, human activity and human perception.
However, despite the complex association between crime and different factors, the influ-
ence of underlying geographic space on heterogeneous crime distribution is still not fully
evaluated. That is, to answer the question, “to what extent can the heterogeneity of crime
be explained by underlying geographic space?”.

To address the above issue, this study adopts a multiscale method to explore the asso-
ciation between underlying geographic space and the heterogeneity of crime distribution.
The main contributions of this study could be summarized in two aspects. Firstly, we adopt
a truly multiscale representation method to quantitatively describe the heterogeneity of
crime distribution. Secondly, the association between the underlying geographic space and
crime are measured at multiple scales.

3. Methodology and Data
3.1. Methodology

In this study, we borrowed the recently proposed concepts of “living structure”, “natu-
ral cities” and “topological representation” in geographic information science [40,41,49]. In
the domain of geographic information science, spatial data are often represented by a raster
or vector data format, and geographic space is abstracted as either a large set of pixels or
a variety of points, lines and polygons. Recently, some research argued that geographic
space is just a collection of numerous lifeless pieces (e.g., pixels, points and lines) under
conventional geographic representations, which pose little meaning in space cognition. In
real geographic space, entities are connected to other things, to constitute even larger things,
forming a hierarchy of recursive entities or subspaces (e.g., the street, neighborhood and
city). Under such a worldview, the world is an unbroken whole that possesses a physical
structure, called a “living structure”. The living structure can be represented as a hierarchy
of recursive subspaces, which is a truly multiscale representation for geographic space. The
concepts of natural cities refer to spatial patches adaptively portrayed by the density of
spatial features (e.g., the street nodes, points of interest, etc.) and head/tail breaks [50],
which are different from conventional concepts of cities defined by census authorities. The
detailed process of generating natural cities can be found in Jiang’s research [51]. The living
structure is closely related to natural cities, referring to the fact that the spatial centers of
natural cities support each other and form an organic whole. Topological representation
is the method used to describe the living structure, which aims to build up a supporting
relationship for hierarchical natural cities using a complex network. The detailed descrip-
tion for living structure generation and topological representation can be found in related
studies [40,41,51].

To achieve the research goal of this study, two kinds of geographic data were adopted,
i.e., crime incidents and street nodes. The analysis of the heterogeneity of crime distribution
is based on crime incidents and the underlying geographic space, which can be generated
by the street nodes. Specifically, crime heterogeneity can be analyzed from two aspects.
First, the aggregation of crime is checked by random distribution testing (e.g., the spatial
statistic described in Section 2.1), although the distribution of crime incidents often violates
the random distribution and exhibits a clustering tendency. In addition, the heterogene-
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ity is also described by a scaling analysis method while considering both the statistical
and geometrical distribution [40,41]. The key idea of scaling analysis is to describe the
geographic distribution from multiple scales, specifically, by representing the geographic
distribution as a hierarchy of recursive clusters or subspaces. To explore the influence of
multiscale geographic space on crime, “living structure” and “natural cities” are generated
by the street nodes, then geographic space can be represented as a hierarchy of recursive
subspaces [41]. Finally, the correlation between crime distribution and underlying natural
cities could be analyzed at multiple scales. The general research strategy of this study is
shown in Figure 1.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 6 of 18 
 

 

be generated by the street nodes. Specifically, crime heterogeneity can be analyzed from 

two aspects. First, the aggregation of crime is checked by random distribution testing (e.g., 

the spatial statistic described in Section 2.1), although the distribution of crime incidents 

often violates the random distribution and exhibits a clustering tendency. In addition, the 

heterogeneity is also described by a scaling analysis method while considering both the 

statistical and geometrical distribution [40,41]. The key idea of scaling analysis is to de-

scribe the geographic distribution from multiple scales, specifically, by representing the 

geographic distribution as a hierarchy of recursive clusters or subspaces. To explore the 

influence of multiscale geographic space on crime, “living structure” and “natural cities” 

are generated by the street nodes, then geographic space can be represented as a hierarchy 

of recursive subspaces [41]. Finally, the correlation between crime distribution and under-

lying natural cities could be analyzed at multiple scales. The general research strategy of 

this study is shown in Figure 1.  

Street Nodes

Scaling analysis and 

substructure generation

Scaling analysis

Statistical aspect geometrical aspect 

Crime incidents

Scale-1 Scale-2

Multiscale spaces

Correlation 

analysis

Random distribution ?

No

Yes

 

Figure 1. Research strategy of this study. 

3.1.1. Scaling Analysis for Spatial Heterogeneity 

In this study, scaling analysis is used to describe the spatial heterogeneity. It consists 

of two aspects: scaling analysis about the statistical distribution and scaling representation 

about the geometric distribution.  

1. Scaling analysis on the statistical distribution 

Scaling analysis on the statistical distribution aims to describe the skewed distribu-

tion of geographic events. Two common skewed distributions are the power law distribu-

tion [48] and the heavy-tailed distribution [50]. A simple way to detect a power law dis-

tribution is by creating a log–log plot of the data. If the data follows the power law distri-

bution, a descending line will appear on the log–log plot. In real application, a more robust 

approach to judge the power law distribution is by calculating two parameters, i.e., the 

power law exponent α and the goodness-of-fit index p-value [52]. Formally, the power law 

exponent α is calculated as follows: 

1

1 min

1 ln
n

i

i

x
n

x


−

=

  
= +   

  


 

(1) 

where the xmin is the smallest value in the data. The α falling in the range (1, 3) indicates a 

power law distribution. In addition, a goodness-of-fit index p-value is used to measure 

how well the data fits a power law distribution. The minimum p-value is zero and indi-

cates the non-power law distribution, while the maximum p-value (i.e., 1) indicates a per-

fect power law distribution. In practice, a p-value threshold should be given to judge an 

Figure 1. Research strategy of this study.

3.1.1. Scaling Analysis for Spatial Heterogeneity

In this study, scaling analysis is used to describe the spatial heterogeneity. It consists
of two aspects: scaling analysis about the statistical distribution and scaling representation
about the geometric distribution.

1. Scaling analysis on the statistical distribution

Scaling analysis on the statistical distribution aims to describe the skewed distribution
of geographic events. Two common skewed distributions are the power law distribu-
tion [48] and the heavy-tailed distribution [50]. A simple way to detect a power law
distribution is by creating a log–log plot of the data. If the data follows the power law
distribution, a descending line will appear on the log–log plot. In real application, a more
robust approach to judge the power law distribution is by calculating two parameters, i.e.,
the power law exponent α and the goodness-of-fit index p-value [52]. Formally, the power
law exponent α is calculated as follows:

α = 1 + n

[
n

∑
i=1

ln
(

xi
xmin

)]−1

(1)

where the xmin is the smallest value in the data. The α falling in the range (1, 3) indicates a
power law distribution. In addition, a goodness-of-fit index p-value is used to measure how
well the data fits a power law distribution. The minimum p-value is zero and indicates the
non-power law distribution, while the maximum p-value (i.e., 1) indicates a perfect power
law distribution. In practice, a p-value threshold should be given to judge an acceptable
power law distribution. Following the practices in previous research [18], the p-value
threshold is set as 0.01.

Another way to describe the skewed distribution is based on the head/tail breaks,
which divides the data values into two classes (i.e., the head part and tail part) around
the mean. For a skewed distribution, the proportion of values in the head and tail would
be imbalanced. The head/tail breaks partition continues iteratively until the head part
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values are no longer heavy-tailed. The number of head/tail partitions can also be used to
measure the data skewness. Jiang et al., defined the ht-index, to measure the heterogeneity
of data distribution, as the number of head/tail partitions plus one [50]. Compared with
the power law distribution, the ht-index can describe a wider range of distributions (e.g.,
the exponential distribution). Therefore, in this study, the scaling analysis on statistical
distribution is measured by three parameters: the power law exponent α, the goodness-of-
fit index p-value and the ht-index value ht.

2. Scaling analysis on geometric distribution

The scaling analysis on geometric distribution aims to identify hierarchical geographic
clusters and the topological relationship. Illustration of related concepts (“natural cities”,
“living structure” and the topological representation) can be found in Figure 2. In the figure,
geographic clusters (e.g., crime clusters) are firstly represented by their geometric centers
and then divided into different hierarchical levels according to size or importance. Then,
for each hierarchy, these geometric centers are used to generate the Thiessen polygons
to partition the study region. Finally, a complex network can be constructed based on
polygon–polygon relationships, i.e., small polygons point to large ones at the same level,
and contained polygons point to containing polygons across two consecutive levels (as
illustrated in Figure 2c). In this way, the spatial heterogeneity can be modelled by incorpo-
rating the scale property. The topological representation not only tells “where the clusters
are”, but also tells “how important this center is” and “why the center is important” by
revealing the hierarchy information and its topology relationship. To quantitatively mea-
sure the liveness (or importance) of nodes in the complex network, both the city sizes and
Google’s PageRank (PR) scores can be used. More specifically, the sizes measure the degree
of livingness in the current status, and the PR score measures the degree of livingness in
the future.
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Figure 2. Illustration of the topological representation. (a) 15 points are categorized in three hi-
erarchical levels, indicated by different colors, i.e., red, yellow and blue for first to third levels;
(b) points in same hierarchical level are used to partition the space by generating Thiessen polygons;
and the boundaries of Thiessen polygon partitions are represented by lines in corresponding color;
(c) topological representation, i.e., a complex network is constructed based on polygon–polygon
relationships, and links in the network are represented by gray lines with arrows.

3.1.2. Multiscale Association between Geographic Space and Crime Distribution

Based on the scaling analysis method, both the crime distribution and street nodes
can be divided into several hierarchies based on the concept of natural cities and scaling
analysis approach. Since natural cities refer to spatial patches adaptively portrayed by the
density of spatial features, they have different meanings when applied to different data.
For crime distribution, the derived natural cities describe the crime clusters in different
hierarchies. For street nodes, natural cities describe a hierarchy of geographic subspaces
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with varying degrees of livingness. Based on the multiscale crime hotspots and underlying
subspace, the correlation between spatial environment and crime can be analyzed. In
previous research, a Pearson’s correlation coefficient was applied to analyze correlations at
the different scales [40,51]. Inspired by the development of spatio-temporal data mining
techniques, the clustered spatial co-location rule [53] is adopted to describe the association
between spatial environment and crime distribution in this study. Given X and Y as sets of
layers, a clustered spatial co-location rule is defined as follows:

X ⇒ Y(CS, CC) (2)

where X and Y are termed as antecedent and consequent, separately. The CS is termed the
“clustered support”, defined as the ratio of the area of the cluster (region) that satisfies both
X and Y to the total area of the subspace (i.e., X). The “clustered confidence” (CC) is defined
as the ratio of the area satisfying both X and Y to the total area of the cluster region of Y.
From the definition, the clustered support measures the percentage of subspace overlapping
with the crime clusters, while the clustered confidence indicates the percentage of crime
clusters explained by the subspace. Together, the two indicators in the clustered spatial
co-location rule could explain the correlation among different spatial features without
normal distribution or linear relationship assumption.

3.2. Data Description

In this study, both the crime and street node data in the city of Philadelphia are
collected. Both the crime data and street nodes data can be accessed from the Philadelphia
Police Department (https://www.opendataphilly.org/, accessed on 1 June 2022). Located
in southeastern Pennsylvania, Philadelphia is an economic and cultural anchor of the
greater Delaware Valley, with a population of 1,580,863 (based on 2017 census-estimated
results). The crime occurrence in Philadelphia consistently ranks above the national average,
which is a major concern for the government of the city of Philadelphia. In this study, we
mainly focus on crime occurrences in the years of 2019, considering the dramatic changes
(e.g., regarding the social inequality) caused by COVID-19. During this period, there are
25,427 street nodes and 159,313 crime incidents in total, which is mainly composed of
violent crimes (e.g., robbery) and property crimes (e.g., theft). The distribution of the study
region and crime data are shown in Figure 3. The numbers of crime incidents are so huge
that it is difficult to identify specific spatial patterns. However, the distribution of crime
and street nodes are highly similar by simple visual comparation.
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4. Results and Discussions
4.1. Scaling Analysis for the Heterogeneity of Crime Distribution

First, whether the crime distribution follows random distribution is tested. To do
that, the crime incidents are first mapped to the spatial grid with a size of 600 × 600 m.
The selection of grid size is based on experience in previous studies [17,21]. Then, Local
Moran’s I is adopted to check the clustering tendency of crime incidents. The Local
Moran’s I can identify both the spatial clusters and spatial outliers. It also distinguishes
between a statistically significant cluster of high values (i.e., High-High cluster), cluster
of low values (i.e., Low-Low cluster), outliers in which a high value is surrounded by
low values (i.e., High-Low outlier), and outliers in which a low value is surrounded
primarily by high values (i.e., Low-High outlier). The result of Local Moran’s I is shown in
Figure 4. The results once again prove the fact that the spatial distribution of crime is not
randomly distributed. The concentration of crime incidents may be related with spatial
environmental factors.
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To further explore the multiscale heterogeneity, the scaling analysis approach is ap-
plied. Specifically, the Delaunay triangulation network is first generated based on the crime
incidents. Then, the head/tail break is applied to divide edges of the network into head and
tail parts based on an edge’s length. Following the practices in previous studies [40], the
head/tail proportion is set as 0.4. Finally, the edges in the tail parts (high-density regions)
are transformed into polygons and then merged to generate the natural cities. In this sense,
the natural cities correspond to the clusters of crime distribution and can be regarded as
the crime hotspots. The operation process described above can be recursively applied and
hierarchical crime hotspots can be generated. As illustrated in Figure 5, crime hotspots
at different levels of scale are in a nested relationship, i.e., Level III ⊂ Level II ⊂ Level I.
It can be learned that crime events are heterogeneously distributed at different scales. A
deeper look into a hotspot on a larger scale (e.g., the largest hotspot in Philadelphia) will
reveal that the crime distribution inside the hot spot is still heterogeneous. To quantitatively
describe the multiscale heterogeneity of crime distribution, the related measuring indexes
are calculated and presented in Table 1 and Figure 6.
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Figure 5. Spatial distribution of natural city for crime distribution. (a) Level I: Philadelphia and its
natural cities (the largest natural city is termed Level II), (b) natural cities at Level II (the largest one
is termed Level III), and (c) natural cities at Level III.

Table 1. Measuring indexes for multiscale crime hotspots.

Ht #NC #NC_head %NC_head MaxArea MeanArea #crime %crime_head

Level I 5 2943 114 3.87 10.556 0.021 159313 69.2
Level II 4 711 88 12.38 0.616 0.003 19194 56.14
Level III 3 71 12 16.9 0.034 0.002 4539 73.23

Ht: ht-index; #NC: number of natural cities; #NC_head: number of natural cities in head; %NC_head: percent of
natural cities in head; MaxArea: maximum area of the natural cities (km2); MeanArea: average area of the natural
cities (km2); #crime: number of crime incidents; and %crime_head: percentage of crime in head part.
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In Table 1, the “natural cities” describe the clusters of crime incidents. As shown
in the Table, the crime distribution in all three levels is heterogeneous, which can be
reflected by the ht-index value. Usually, an ht-index above 3 will indicate the heterogeneous
distribution [40]. The heterogeneity of crime distribution also can be reflected by the number
of crime clusters (i.e., columns 4 and 5) and their areas (i.e., columns 6 and 7). Although
the head/tail break is around the mean area of clusters, the percentage in the head part is
always less than 20%. Meanwhile, the maximum area of the crime cluster is far away from
the average area, which also indicates the skewness of the distribution. The last column
in the table indicates that the small proportion of crime clusters covering the majority of
crime incidents, which is consistent with the statement about the law of concentrations of
crime at place [6].

As shown in Figure 6, the areas of crime hotspots at different scales fit the power-law
distribution well, with α falling in the range (1, 3) and a p-value above 0.01. The similarity
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among different scales demonstrates the fractal nature of geographic phenomena; that is,
the distribution of geographic phenomena appears similar in spatial pattern at various
scales. As one major spatial property of geographic phenomena (e.g., crime events), spatial
heterogeneity also exists across multiple scales. In previous research, however, the crime
heterogeneity often is analyzed at a single scale, for example, by spatial statistics such as
Local Moran’s I, which is illustrated in Figure 4. By comparing Figures 4 and 5, it can
be learned that the scaling analysis can describe the crime heterogeneity more accurately.
Without considering the scale effect, non-hotspot regions at fine scale may be incorrectly
identified as hotspot regions at coarse scale.

Finally, the scaling analysis on geometric distribution is implemented. All derived
hotspots are abstracted as individual points and put into different hierarchical levels based
on their sizes and the head/tail breaks. Then, these points of different hierarchical levels
are used to create Thiessen polygons, and the topological representation for hierarchical
hotspots is shown in Figure 7. In Figure 7, crime hotspots in different scale are represented
by their geometric centers, and the hierarchy of hotspots are reflected by both the color
and size of the centers. From Figure 7, it is easy to identify the location and significance
of crime hotspots in each level by simply checking the size of their centers. In addition,
the distribution of crime hotspots is not random, but exhibiting the property of a living
structure, i.e., there are far more small centers than large ones and centers in different
levels support each other to form the final complex and coherent structure. Specifically, the
clusters in the high level are in fact related with and supported by a set of clusters at low
levels. If the crime occurrence is influenced by the spatial environment, then the formation
of the complex structure may be related with the complex underlying spatial structures.
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partitions for crime hotspots (represented by their geometric centers) at level 1; (b) the hierarchy of
levels and Thiessen polygon partitions for crime hotspots at level 2; and (c) the hierarchy of levels
and Thiessen polygon partitions for crime hotspots at level 3.

4.2. Multiscale Association between Crime and Spatial Environment

The association analysis between crime and underlying geographic space is analyzed
at multiple scales. To do that, the street nodes are further used to generate natural cities at
different levels of scale, and then the multiscale natural cities are regarded as the fundamen-
tal subspace where crime events occur. The reason behind the operation is that underlying
geographic space determines human mobility or human activities, and human mobility
is a critical factor for crime occurrence which has been widely verified by environmental
criminal theories [12–14]. The hierarchical subspace generated by street nodes is shown
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in Figure 8. By a visual comparison of Figures 5 and 8, it can be found that there is a high
similarity between the distribution of crime hotspots and the underlying subspaces. To
quantify the correlation, we overlap the crime distribution and the generated hierarchical
subspace, which is shown in Figure 9. Then, the clustered spatial co-location rule is ap-
plied to measure the spatial correlation. In this study, we mainly concern the influence of
underlying geographic space on crime distribution; therefore, only two kinds of factors
are considered, i.e., the underlying subspace and crime hotspots. Specifically, the clustered
spatial co-location rule is simply expressed as “underlying space→ crime distribution”,
while treating the subspace as antecedent and crime distribution as consequent. The related
indexes in the rules are in Table 2.
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Table 2. Correlation explained by clustered association rules.

Subspace
Area (km2)

Hotspots Area
(km2)

Overlapped Area
(km2) CS CC

Level 1 120.017 62.441 53.967 44.97% 86.43%
Level 2 15.636 11.325 4.819 30.82% 42.55%
Level 3 2.036 1.114 0.654 32.12% 58.71%

In the Table 2, CS is short for clustered support and CC is short for clustered confidence,
which have been defined in Formulate 2 in Section 3.1.2. Specifically, the CS measures the
percentage of subspace overlapping with the crime clusters and CC indicates the percentage
of crime clusters explained by the subspace. For example, the first row in the Table can
interpreted as “without any other auxiliary data, given the subspace described in Figure 8a,
more than 86 percent of crime distribution can be explained by the subspace, and these
crimes are distributed in nearly 45 percent of area in the subspace”. From the table, it can
be learned that the underlying subspace described by natural cities have a good correlation
with crime distribution. In Level 1, the underlying subspace can explain about 86 percent
of crime hotspots. That is to say, the spatial heterogeneity of crime on a large scale (e.g.,
the whole city level) is mainly explained by the physical structure of spatial environment,
which is represented by geographic subspaces (i.e., natural cities) in this study. These
subspaces are closely related to the density of existing spatial features, for instance, the
street nodes or points of interest. If we want to predict the distribution of crime at this scale,
there may be no need for too much auxiliary data, for example, the street view images.
In Level 2 and Level 3, the underlying subspace can explain 42.55% and 58.71% of the
crime clusters. That indicates a declined association between geographic space and crime
occurrence. That means, if we try to figure out the influencing factors for crime occurrence
at a small scale, we may need more related data, for example, socioeconomic data or street
view data. In addition, the association between geographic space and crime distribution
declines in a non-liner manner when spatial scale changes, which manifests a complex
mechanism between influencing factors and crime occurrence. Specifically, the influence of
spatial environment on crime varies with the spatial scale of underlying geographic space.

In this study, we also compare the Pearson’s correlation coefficients at natural cities
(generated by street nodes) level, following the practices in previous studies [46]. The results
are listed in Table 3. In the table, the ‘Size/Crime’ and ‘Life/Crime’ columns indicate the
correlation between crime and size and PageRank score of natural cities. It can be learned
that both the size and configuration (i.e., the support relationship) of these natural cities are
positively correlated with crime distribution. The ‘Street node/Crime’ column indicates the
correlation between counts of street nodes and crime incidents, and the last two columns
measure the percent of street nodes and crime incidents falling in natural cities. As shown
in Table 3, the correlation between street nodes and crime distribution is higher than 0.8
in all three levels. However, Pearson’s correlation coefficients only consider the statistical
information in the natural cities, without considering both the data distribution (e.g., the
normal or power law) and the spatial adjacent relationship (i.e., whether street nodes
are collocated with crime incidents). Therefore, the Pearson’s correlation at natural cities
level will, in fact, overstate the correlation between street nodes and crime distribution.
Considering the spatial overlap, the correlation between crime and street nodes would
decline, as shown in the last column in Table 2. Even so, subspace generated by street
nodes can predict the crime hotspots well, especially at large scale (e.g., the Level 1).
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Table 3. Pearson Correlation at natural cities.

Size/Crime Life/Crime Street Node/Crime %Street Node %Crime

Level 1 0.993 ** 0.937 ** 0.995 ** 0.87 0.74
Level 2 0.864 ** 0.858 ** 0.834 ** 0.74 0.37
Level 3 0.930 ** 0.961 ** 0.905 ** 0.88 0.54

**: Statistically significant at the level of 0.01.

4.3. Discussion

This study adopts a multiscale analysis method to quantitatively measure the hetero-
geneity of crime distribution. The multiscale method extends the current criminological
research regarding crime pattern analysis. Most previous studies only explore crime het-
erogeneity from the mechanistic perspective, which treats geographic space as a collection
of points or lines and then analyzes the crime distribution at single scale. In this study,
inspired by a recent theory about “living structure” in geographic information science, we
adopt another worldview, which represents geographic space as a hierarchy of recursive
subspaces. The new representation of geographic space can pose more meaning in space
cognition and crime understanding. In addition, by applying the scaling analysis on both
the statistical and geometric distribution of crime, the crime heterogeneity can be fully
measured. Based on the methodology in this study, we can answer questions such as “how
are the crime incidents distributed at different spatial scales?” and “where are the crime
clusters given a specific spatial scale?” The analysis on crime heterogeneity proves that
the crime distribution is also often characterized by the 80–20 principle; that is, most of
the crime incidents are distributed in a few hotspot areas. The heterogeneous distribution
can be found at different spatial scales. This study also explores the multiple associations
between crime hotspots and underlying geographic space (i.e., subspace generated by street
nodes). The results show that the underlying subspace can explain the crime concentration
well, especially at a large scale. As illustrated in Table 2, the subspace generated by street
nodes can explain about 86% of the crime clusters at the city scale. In fact, it is not surprising
that only the street nodes explain crime distribution to such an extent. Such results can be
easily explained by existing environmental criminal theories. For example, routine activity
theory believes that crimes would occur at the intersection of motivated offenders, suitable
targets and the absence of capable guardians. All these factors may be related with human
mobility. As the skeleton of the city, streets are closely related with urban vitality and
even shape human movements, which further creates crime opportunities. However, most
crimes actually occur in micro-spatial scenes, which may be influenced by surrounding
facilities (e.g., crime generator or attractor), perception of the built environment (e.g., the
disorder and decay) and even the natural environment condition (e.g., raining) [54]. As a
result, street nodes explain crime distribution to a lesser extent on a fine scale. Establishing
a more precise relationship between crime and spatial environment may depend on other
types of data (e.g., the street view images).

We believe that the multiple associations between underlying geographic space and
crime heterogeneity are helpful for crime analysis in practice, including crime pattern
analysis, crime explanation and even crime prevention. Most previous studies mainly focus
on spatial dependence at a specific scale in crime pattern analysis, while this study extends
the previous work by exploring uneven distribution at multiple scales. In addition, the
multiscale heterogeneity of crime also reminds practitioners that the spatial scale effect
should be considered when exploring the influencing factors. Specifically speaking, the
major influencing factors may be different at different spatial scales. Correspondingly, the
scale effect should also be considered when making crime prevention decisions. The results
in this study suggest that effective crime prevention measures should pay more attention
to a small portion of data on a fine scale.
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5. Conclusions

As a major characteristic of spatial data, spatial heterogeneity should never be ne-
glected in geographic information science and related disciplines, for example, environ-
mental criminology. Although it is widely accepted that crime incidents are usually hetero-
geneously distributed, most previous studies focus on the uneven distribution at a specific
spatial scale. In this study, we summarize several implications of spatial heterogeneity, and
point out that multiscale issues should also be considered in studying crime heterogeneity.
Therefore, this study developed a multiscale analysis method to quantitatively measure
the heterogeneity of crime distribution while simultaneously considering the statistical
and geometrical characteristics of crime distribution. Then, inspired by the spatial data
mining technique, the clustered spatial co-location rule mining approach was applied to
explore a multiscale association between crime distribution and the underlying geographic
space. Experimental results showed that the proposed approach can reflect the multiscale
nature of crime heterogeneity well and effectively detect the hierarchical crime hotspots.
The multiscale analysis on the association between crime and underlying geographic space
reveals that the living structures or subspaces generated by street nodes play a key role in
determining human mobility and crime distribution.

In the geographic big data era, the growth of data type and data volume provides geo-
graphic research with both opportunities and challenges. On one hand, more information
and various relationships can be extracted, which is helpful to understanding the complex
geographic phenomena. On the other hand, the increasing geographic data volume may
make it difficult to identify dominant spatial patterns if the spatial scales are neglected.
In this study, crime incidents over a full year were investigated. Without considering the
multiscale effect, existing crime pattern analysis may find it difficult to precisely describe
the crime heterogeneity and its influencing factors. The multiscale analysis method in this
study could develop new penetrating insights on crime pattern and crime explanation
analysis. However, we admit that this study still has some limitations. The main limitation
lies in the limited data types. In this study, we only consider two types of data, that is,
the crime incidents and street nodes. However, crime occurrence is affected by a variety
of factors and there are complex interactions between environment and crime occurrence.
Therefore, the underlying geographic space alone cannot fully explain crime occurrence. In
future studies, more environmental factors (e.g., socioeconomics) should be added to quan-
titatively measure their influence on crime occurrence. In addition, more cities and even
countries should be considered to prove the multiscale association between underlying
geographic space and crime heterogeneity.
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