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Abstract: Dhaka city is experiencing rapid land cover changes, and the effects of climate change are
highly visible. Investigating their combined influence on runoff patterns is vital for sustainable urban
planning and water resources management. In this work, multi-date land cover classification was
performed using a random forest (RF) algorithm. To validate accuracy of land cover classification, an
assessment was conducted by employing kappa coefficient, which ranged from 85 to 96%, indicating
a high agreement between classified images and the reference dataset. Future land cover changes
were forecasted with cellular automata-artificial neural network (CA-ANN) model. Further, soil
conservation service -curve number (SCS-CN) rainfall-runoff model combined with CMIP6 climate
data was employed to assess how changes in land cover impact runoff within Dhaka metropolitan
development plan (DMDP) area. Over the study period (2020–2100), substantial transformations
of land cover were observed, i.e., built-up areas expanded to 1146.47 km2 at the end of 2100, while
agricultural areas and bare land diminished considerably. Consequently, monsoon runoff increased
from 350.14 to 368.24 mm, indicating elevated hydrological responses. These findings emphasized an
intricate interplay between urban dynamics and climatic shifts in shaping runoff patterns, under-
scoring urgency of incorporating these factors into urban planning strategies for sustainable water
resources management in a rapidly growing city such as Dhaka.

Keywords: CA-ANN; SCS-CN method; CMIP6; land cover; runoff

1. Introduction

Assessing runoff pattern is crucial in hydrology to understand complex interactions
between land cover changes, climatic variations, and resulting alterations in water flow
patterns [1,2]. Runoff, the portion of precipitation that flows over land into waterbodies,
plays a pivotal role in ecosystem dynamics, water resource management, and landscape
stability [3,4]. As human activities and climatic conditions intertwined, it is imperative
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to unravel complex relationships between land use alteration, climate change, and their
combined effects on runoff [5,6].

The field of runoff assessment has witnessed substantial growth over the past few
decades [7–9]. Researchers have extensively explored the impacts of land cover changes,
including urbanization, deforestation, and agricultural expansion, on hydrological pro-
cesses [10,11]. Simultaneously, the effects of climate change on precipitation patterns,
temperature, and evapotranspiration rates have been well-documented [12]. However,
understanding how these factors synergistically interact to shape runoff dynamics re-
mains a challenge. Divergent hypotheses exist, with some studies suggesting that land
cover changes dominate runoff alterations, while others emphasize overriding influence of
climate changes [13].

Land cover change and its effect on runoff patterns has substantial implications for
Dhaka. Urbanization involves conversion of natural landscapes into built environments,
leading to increased impervious surfaces that hinder water infiltration and amplify surface
runoff during rainfall events [14]. It often leads to loss of greenspaces and natural habitats,
which provide essential services such as temperature regulation, air purification, and
biodiversity conservation [15]. Analyzing how shifts in land cover affect these services
helps realize the value of preserving greenery within urban landscapes [16]. Importantly,
the interaction between land cover and runoff is exacerbated by the specter of climate
change. Integrating climate change projections with land cover assessments provides a
holistic view of future runoff patterns, enabling adaptive strategies to mitigate worst effects
of changing hydrological regimes [17].

Many works have delved into the consequences of land use and land cover (LULC)
changes linked to urbanization, particularly their impacts on hydrological dynamics and
initiation of runoff [18]. Urban expansion typically involves the proliferation of imper-
meable surfaces, widely acknowledged as the primary driver behind escalated runoff
across urban landscape [19,20]. This phenomenon manifests as heightened peak flow rates,
accelerated runoff reaction times, and modifications in hydrological patterns and overall
water equilibrium [21]. The soil conservation service-curve number (SCS-CN), alternatively
recognized by the US natural resources conservation service curve number (NRCS-CN)
method, stands as a preeminent technique for evaluating the impact of LULC changes on
hydrological responses [22,23]. It comprehensively encompasses influential factors con-
tributing to runoff generation, encompassing soil attributes, land use variations, and land
management practices, all encapsulated within a single CN parameter [24]. The SCS-CN
method focuses on delineating the impact of urbanization on runoff behaviors.

This study addresses key questions concerning the projected interactions between
LULC changes, climatic shift, and resulting hydrological responses. The first research
question aims to understand the efficacy of cellular automata-artificial neural network (CA-
ANN) model, operationalized through QGIS MOLUSCE plugin, in projecting future LULC
changes within DMDP area. Accurate projection of LULC changes is pivotal as it underpins
subsequent analyses of hydrological dynamics [25–27]. The second research question per-
tains to combined effects of the projected LULC changes, simulated via CA-ANN model,
and climate data extracted from Centre National de Recherches Météorologiques Coupled
Model version 6.1 (CNRM-CM6-1) model under shared socioeconomic pathway 1-2.6
(SSP1-2.6) scenario. A key aim is to understand how these intertwined factors influence
Dhaka’s runoff patterns and hydrological behaviors for the year 2100. To achieve these
research questions, this study has several objectives. First, CA-ANN model will be devel-
oped and implemented through QGIS MOLUSCE plugin to simulate LULC trends. This
approach leverages model’s complexity and spatial capabilities to ensure accurate projec-
tions. Second, CMIP6 climate data, specifically from CNRM-CM6-1 model under SSP1-2.6
scenario, will be employed for climate projections, with stringent data preprocessing to
ensure robustness. Third, by integrating projected LULC changes with climatic variables,
runoff dynamics will be simulated using hydrological modeling techniques, i.e., to reveal
how runoff behaviors are associated with the combined impact of LULC transformation
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and climate change. Lastly, the study will assess the implications of altered runoff patterns
for water resource management, including water availability and flood risks.

A unique value of this study lies in its detailed examination of specific case of Dhaka
city, a rapidly growing urban center in a well-known climate hotspot. By offering quantita-
tive assessments of future runoff projections and their potential hydrological impacts, this
study provides actionable insights into potential flood risks, water management strategies,
and sustainable urban planning practices. Incorporation of machine learning techniques
and climate modeling enhances the robustness of the findings, contributing advancing
hydrological modeling methodologies. Given the pressing global challenges posed by
urbanization and climate change, researchers in the fields of urban hydrology, climate sci-
ence, and sustainable urban planning would be benefitted from this work for its innovative
methodologies, specific regional focus, and the potential for generalizable insights that can
be applied to similar urban contexts elsewhere.

2. Materials and Methods
2.1. The Study Area

Dhaka City, an important hub of Bangladesh, is a captivating microcosm of the com-
plex interplay between urbanization, climatic factors, and hydrological dynamics [28,29].
Spanning around 1490 km2, Dhaka’s geographical landscape is characterized by its flat
terrain (Figure 1), which contributes to its susceptibility to flooding, particularly during the
monsoon season when heavy rainfall is typical [30]. The city’s urbanization journey has
been marked by rapid population growth and expansion of built environments, resulting
in significant changes in its land use patterns [31]. This urban sprawl entails converting
agricultural and natural covers into concrete jungles, leading to the proliferation of impervi-
ous surfaces that disrupt the natural hydrological cycle [32]. As a result, understanding the
shifts in runoff patterns, groundwater recharge rates, and overall hydrological equilibrium
becomes pivotal in the context of Dhaka’s growing risk to climatic challenges [33].
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With distinct wet and dry seasons, Dhaka’s climatic context amplifies its hydrological
complexities. Monsoon brings intense rainfall, overwhelm city’s drainage systems and
exacerbating waterlogging and flooding [34,35]. The city’s infrastructure, characterized
by formal and informal settlements, is intricately connected to its hydrological response.
Moreover, Dhaka’s status as Bangladesh’s political, economic, and cultural hub further
underscores urgency of studying its hydrological dynamics [36]. Insights drawn from this
study can contribute to tailored solutions for its water management and broader discussions
on sustainable urbanization, climate adaptation strategies, and preservation of urban water
in similar contexts elsewhere [37].

2.2. Land Use and Land Cover Analysis

In this study, the robustness of random forest (RF) algorithm was harnessed via google
earth engine (GEE) (https://code.earthengine.google.com/; accessed on 20 June 2022) to
produce LULC maps of different periods (e.g., 2000, 2010, and 2020). The process involved
utilizing calibrated top-of-atmosphere (TOA) reflectance data derived from Landsat 7
(2000 and 2010) and Landsat 8 (2020). Subsequently, leveraging JavaScript application
programming interface (API) within GEE, images were analyzed [38]. The analysis in-
volved processing of a total of 30 Landsat images, comprising 20 Landsat 7 and 10 Landsat
8 images, each selected to have cloud coverage of <10%. These images were utilized to
examine annual changes in six land cover classes (Table 1): waterbody, vegetation, built-up,
agricultural land, wetland, and bare land, for the years 2000, 2010, and 2020. Utilizing a
meticulously curated dataset of 1450 samples, representing diverse land cover categories,
RF algorithm was selected due to its inherent strengths in handling complex relationships
within data and its ability to mitigate overfitting through its ensemble learning frame-
work [39]. Diverging from conventional approaches, this study exploited spectral bands
and integrated additional data dimensions. Inclusion of soil-adjusted vegetation index
(SAVI), normalized difference vegetation index (NDVI), normalized difference built-up in-
dex (NDBI), and normalized difference water index (NDWI) enriched classification process
by encompassing ecological nuances beyond pure spectral information (Table 2) [40].

Table 1. Major LULC categories.

LULC Class Description

Waterbody River, permanent open water, lakes, ponds, and canals
Vegetation Trees, natural vegetation, mixed forest, gardens, parks and playgrounds, and grassland

Built-up Residential and non-residential buildings, commercial and industrial buildings, and any type
of infrastructure

Agricultural land Crop, open field, fallow land, and mixed forest land
Wetland Permanent/seasonal wetlands, exposed soils in the riverine area, wetland, and newly accreted land
Bare soil Sand, bare land, and landfill sites

Table 2. Computed spectrometric indices and their formulae [38,41].

Name Formula

NDVI (NIR−Red)/(NIR + Red)
NDWI (Green−NIR)/(Green + NIR)
NDBI (SWIR−NIR)/(SWIR + NIR)
SAVI ((NIR−Red)/(NIR + Red + L)) × (1 + L)

Note: NIR: near infrared, SWIR: shortwave infrared, L = 0.428.

By partitioning the dataset into 70% training and 30% testing, the ensemble approach
of RF ensures a robust and accurate classification outcome, essential for understanding
complex land cover dynamics. Furthermore, its capability to incorporate spectral indices
reflect growing trend of data fusion in remote sensing, leading to informative classifica-
tion outcomes.

https://code.earthengine.google.com/
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2.3. Future LULC Simulation and Projection

CA-ANN model, implemented via QGIS MOLUSCE plugin, was pivotal in developing
future LULC maps [42,43]. To construct future LULC, data from 2000, 2010, and 2020 were
employed (cf. Section 2.2). Moreover, projected LULC data were created for 2030, 2050,
2070, and 2100. This temporal framework allowed examining potential LULC changes
over multiple periods. Spatial variables, encompassing digital elevation model (DEM),
slope, distance to rivers and distance to roads (Table 3), were incorporated into the model
to enhance its accuracy and predictive power [44]. DEM offers topographical variations
within the study area, contributing to the understanding of how elevation and slope
differences could influence land cover changes [45]. Inclusion of distance to roads and
rivers signifies the impact of accessibility, human interventions of natural surfaces and
water availability, transportation corridors, and environmental regulations on land use
decisions [46]. To evaluate strength of the associations between spatial variables and
projected LULC changes, Pearson’s correlation coefficient was employed. A workflow of
the study is shown in Figure 2.

Table 3. Factors used in simulating and predicting LULC.

Factors Source Remarks

Elevation
Shuttle Radar Topography Mission (SRTM) digital elevation model

(30 m, DEM: https://earthexplorer.usgs.gov/;
accessed on 5 June 2022)

NA

Slope
Shuttle Radar Topography Mission (SRTM) digital elevation model

(30 m, DEM: https://earthexplorer.usgs.gov/;
accessed on 5 June 2022)

NA

Distance to rivers
LGED river network:

https://data.humdata.org/dataset/bangladesh-water-courses;
accessed on 5 June 2022

Reclassify using the Euclidean
distance

Distance to roads
LGED road network:

https://data.humdata.org/dataset/bangladesh-water-courses;
accessed on 5 June 2022

Reclassify using the Euclidean
distance

2.4. Model Validation

Utilizing LULC datasets for 2000 and 2010, along with explanatory variables and
transition matrices, we performed projections to predict LULC for the year 2020. To
ascertain fidelity of the model and validate prediction accuracy, the MOLUSCE plugin
provided a kappa statistic and facilitated a comparison between two maps, e.g., base LULC
with projected LULC [47]. The ANN learning process was governed by specific parameters
(Table 4) chosen to project LULC for 2020. With useful outcomes, this was extended to
predict LULC maps for 2030, 2050, 2070, and 2100.

Table 4. Hyper-parameter configuration space for the ANN algorithm in CA-ANN model.

Iteration Neighborhood
Value Learning Rate Hidden Layer Momentum

120 3 × 3 pixels 0.001 10 0.04

2.5. Annual Rate of LULC Conversion

To determine annual rate of alteration (ROA) for individual land use types, disparity
between concluding year and the initial year, representing the extent of change between
corresponding years, was divided by initial year and duration of time. To evaluate spa-
tiotemporal magnitude and pace of transformations within LULC categories, Equation (1)
was employed [48,49].

ROA(%) =
YC − YI
YI × t

× 100 (1)

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://data.humdata.org/dataset/bangladesh-water-courses
https://data.humdata.org/dataset/bangladesh-water-courses
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where “YI” and “YC” stand for initial and final year in sq. km, respectively, while “t”
denotes the time interval.
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2.6. Rainfall-Runoff Modeling

Developed by the United States Department of Agriculture’s Natural Resources Con-
servation Service, SCS-CN method offers a useful way to evaluate runoff potential in
diverse terrain [50]. Central to SCS-CN method is the curve number (CN), a parameter
that encapsulates interplay of land use, soil characteristics, and land cover in influencing
runoff [51]. Ranging from 0 to 100, CN value signifies hydrological response in a given area,
with lower values indicating enhanced infiltration and reduced runoff potential, while
higher values denote elevated runoff potential [52].

The process of calculating runoff involves several critical steps, necessitating an inte-
gration of soil type, precipitation data, LULC information, and hydrological parameters.
Initially, to quantify runoff, it’s imperative to acquire precise soil type and precipitation
data relevant to specific area of interest. The precipitation data is adjusted based on the
antecedent moisture condition (AMC) criteria (AMC I, AMC II, and AMC III). Subsequently,
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inverse distance weighting (IDW) technique was leveraged, and precipitation maps are
generated, each corresponding to distinct AMC conditions [53]. Furthermore, hydrologic
soil group (HSG), CN, and weighted CN are derived for each LULC class based on the
corresponding soil type. Likewise, precipitation data (e.g., 2000, 2010, 2020) linked to AMC
and year is processed using the fishnet, where values are extracted through geospatial tools.
The following steps were considered to calculate runoff depth [54]:

CN =
25, 400
S + 254

(2)

where CN is Curve Number and S is potential maximum retention after runoff begins.

(i) Compute CN and weighted CNW value for the study, accounting for the proportion of
different land use types.

CNW =
∑ AiCNi

∑ Ai
(3)

where CNW is weighted curve number, CNi is curve number for a particular domain,
Ai is the area of the domain.

(ii) Consider initial abstraction, rainfall required to wet the surface before runoff com-
mences, given by:

IA = 0.2 × P (4)

where IA is initial abstraction, and P is the total rainfall depth.
(iii) Estimate the potential maximum retention (S) using the following equation:

S =
25, 400

CN
− 254 (5)

where S is the potential maximum retention, and CN is curve number.
(iv) Calculate effective rainfall (R) by subtracting initial abstraction from total rainfall

depth (P).
(v) Compute direct runoff (Q) using SCS-CN equation:

Q =
(R − 0.2S)2

R + 0.8S
(6)

2.7. Climate Modeling for Future Runoff Prediaction

CNRM-CM6-1 represents a configuration within CNRM-CM6 model family, one of the
participating climate models in CMIP6 [55,56]. This configuration is aligned with the shared
socioeconomic pathway 1-2.6 (SSP1-2.6), a scenario that envisions a future characterized
by sustainable development with relatively low greenhouse gas (GHGs) emissions. SSP1-
2.6 scenario outlines a pathway that strives to achieve a resilient and environmentally
conscious trajectory, aiming to limit global warming and its associated impacts [57].

CMIP6 serves as a crucial platform for modeling and simulating various climate
scenarios, encompassing changes in GHGs, land use, and other relevant factors [58,59].
The CNRM-CM6-1 SSP1-2.6 configuration, in particular, offers insights into how climate
may evolve under conditions that prioritize sustainable practices and reduced emissions.
Researchers and policymakers utilize these model outputs to project potential future
climatic conditions and their implications, aiding in the formulation of strategies to address
climate change, adapt to its effects, and inform global climate policies [60].

This study utilized simple quantile mapping (SQM) method to rectify biases in climate
model outputs, particularly from CMIP6 general circulation models (GCMs) [61]. SQM
aligns cumulative distribution functions (CDFs) of model simulations with observed data.
In this approach, SQM function takes both model and observed data, calculates percentiles
for each, and creates an interpolation function to correct bias [62]. By addressing discrep-
ancies between observed and simulated CDFs, this method improves accuracy of future
simulations for specific percentiles, enhancing overall reliability and relevance [63].
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3. Results
3.1. Land Cover Classification and Accuracy Assessment

The outcomes of RF classifier have yielded useful predictions for LULC classes across
three distinct time periods: 2000, 2010, and 2020 (Figures 3 and 4). The results demonstrate
dynamic nature of various LULC categories. Waterbody category exhibited fluctuations,
with values ranging from 45.94 km2 in 2000 to 85.71 km2 in 2010, before decreasing to
61.86 km2 in 2020. The fluctuation in waterbody extent, with an increase observed from 2000
to 2020 followed by a projected decrease by 2100, can be attributed to a complex interplay
of natural and human-induced factors. Natural variability, including climate cycles and
long-term trends, may have contributed to initial expansion of waterbodies, driven by
favorable conditions like increased rainfall. However, in the ensuing decades, various
human activities such as urbanization, land development, and alterations in land use
practices could have led to a decline in the spatial extent of waterbodies. Additionally, long-
term impacts of climate change, which can affect precipitation patterns and temperature,
might play a role in altering availability and size of waterbodies. Vegetation witnessed
substantial expansion from 206.69 km2 in 2000 to 411.58 km2 in 2010, followed by a slight
reduction to 351.34 km2 in 2020. Built-up areas exhibited consistent growth, escalating
from 239.31 km2 in 2000 to 446.49 km2 in 2010, and further to 484.74 km2 in 2020. We
acknowledge that urban development indeed occurs in stages, and it is influenced by
various factors, including resource availability and environmental conditions. Agricultural
land experienced variations, with a peak of 398.29 km2 in 2000, followed by a decline
to 207.14 km2 in 2010, and a subsequent increase to 288.61 km2 in 2020. Wetland areas
dwindled from 371.01 km2 in 2000 to 115.93 km2 in 2010, and further to 94.03 km2 in 2020.
Similarly, bare soil cover witnessed slight fluctuations, with values of 227.23 km2 in 2000,
221.61 km2 in 2010, and 207.88 km2 in 2020.
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Accuracy assessment of LULC classification across 2000, 2010, and 2020 demonstrates
a consistent improvement in predictive performance. In 2000, an overall accuracy of
93.65% and a kappa value of 0.85 indicate high agreement between predicted and actual
categories. In 2010, accuracy increased to 97.04% with a kappa value of 0.94. Notably,
2020 witnessed further advancement, yielding an overall accuracy of 98.55% and a kappa
value of 0.96. These upward trends affirm model’s proficiency and underscore reliability of
classification methodology.

3.2. Land Cover Future Projection and Model Validation

Figures 5 and 6 show a depiction of future LULC projections, derived from CA-ANN
model. It elucidates evolving dynamics across distinct LULC classes: waterbodies exhibit a
gradual reduction from 70.14 km2 in 2020 to 51.53 km2 in 2100; vegetation class indicates
a growth of 475.95 km2 in 2030 before tapering off; built-up areas consistently expand
from 480.24 km2 in 2020 to 1146.47 km2 in 2100; agricultural land experiences fluctuations,
declining to 6.81 km2 by 2100; wetlands contract from 95.83 km2 in 2020 to 3.31 km2 in
2100; and bare soil diminishes from 201.59 km2 in 2020 to 27.69 km2 in 2100.

Validation of future LULC demonstrates a kappa value of 0.95 for its ANN component
and 0.75 for validation. Subsequent years reveal a predictive accuracy of kappa of 0.70 in
2030, 0.68 in 2050, 0.66 in 2070, and 0.65 in 2100. It’s important to note that these kappa
values were automatically calculated within the CA-ANN model, representing a quantified
measure of the model’s performance. In addition, these values indicate the degree of
agreement between model’s predictions and validation. The validation process serves as
a crucial step in gauging the model’s reliability and its capacity to provide meaningful
insights into potential land use dynamics in the years ahead.
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3.3. Annual Rate of Conversion for the Projected LULC

Figure 7 illustrates changes in areas of projected LULC classes over various temporal
spans (2020–2030, 2020–2050, 2020–2070, and 2020–2100). It shows waterbodies would
have a positive rate in the first interval (7.7193 km2) but gradually decrease in subsequent
periods. Vegetation experiences growth (124.785 km2) in the earlier timeframe, followed by
a decline in later times. Conversely, built-up areas consistently expand across all periods,
with significant rate (ranging from 160.042 km2 to 666.233 km2). Agricultural land and
wetlands demonstrate decreasing rates over time. Bare soil areas also exhibit decreasing
rates, indicating diminishing bare areas. Overall, these projected annual rates of conversion
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shed light on the change dynamics of LULC categories, underscoring shifts in urbanization,
vegetation, and other key land cover types (Figure 7 and Table 5).
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Table 5. Annual rate of alteration (%) of projected LULC in various temporal intervals.

LULC Class
2020–2030 2020–2050 2020–2070 2020–2100

% % % %

Waterbody 1.10 0.37 −0.37 −0.23
Vegetation 3.55 1.18 −0.23 −0.14

Built-up 3.33 1.11 0.85 0.53
Agricultural land −4.67 −1.56 −1.29 −0.80

Wetland −5.61 −1.87 −1.82 −1.14
Bare soil −5.13 −1.71 −1.33 −0.83

3.4. Assessing Rainfall-Runoff

Figure 8 shows results of runoff projections for different seasons and time periods. This
highlights the potential changes in runoff under future scenarios, with baseline calculations
relying on historical data and future predictions driven by CNRM-CM6-1 SSP1-2.6 model
within CMIP6 GCMs. During the winter season (December to February), it indicates
minimal runoff for the year 2020 and 2030, with values of zero, while in 2050, 2070, and
2100, runoff gradually increases, with values of 0.39 mm, 1.2 mm, and 1.9 mm, respectively,
for the ‘High’ runoff category. Similarly, for the ‘Low’ runoff category, the values also
follow the same pattern. The pre- and post-monsoon seasons runoff show variability,
with the ‘High’ and ‘Low’ runoff categories displaying fluctuations across different time
periods. Notably, in 2030 and 2070, the ‘High’ runoff values would rise, while in other
years, different trends are observed. For the monsoon season, both ‘High’ and ‘Low’ runoff
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categories experience changing patterns. The values depict variations over the years,
suggesting complex shifts in monsoon-related runoff dynamics.
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These runoff projections illustrate potential future scenarios under climate change
using SCS-CN model and CNRM-CM6-1 SSP1-2.6 model of CMIP6 GCMs. This approach
offers insights into potential hydrological impacts, aiding in preparedness and adaptation
strategies for managing near depleting water resources. The significant variations in runoff
simulation results at different stages indeed raise questions about driving factors promoting
these changes. While we did not explicitly model precipitation changes in this study, we
recognize its crucial role in influencing runoff. The observed differences in runoff between
stages may be attributed to several factors, which were implicit in our model but not
examined. These factors include variations in land use patterns, urbanization, and potential
alterations in soil properties due to land development.

4. Discussion and Conclusions

In the context of a rapidly urbanizing world and shifting climate patterns, understand-
ing the interplay between urban dynamics and hydrological responses holds global and
regional importance. Globally, urbanization is altering landscapes, impacting hydrology,
and necessitating sustainable planning. Dhaka city has challenges of urban growth, cli-
mate vulnerability, and water scarcity [64–66]. This study deciphered these interactions,
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offering insights applicable beyond Dhaka. Its findings can guide urban planning, flood
management, and climate resilience strategies in similar urban centers across South Asia
and beyond, addressing broader concerns of water resource sustainability in the face of
urban expansion and changing climate conditions [67].

The results of this study can contribute to the understanding of how urbanization,
climate change, and land cover alterations collectively shape runoff patterns in the city [68].
The findings are well-aligned with previous research and hypotheses, showcasing both
incremental and interactive effects of these factors on hydrological dynamics. Observed
urbanization, in line with previous studies [69–71], has led to substantial changes in land
cover, especially built-up area expansion and reduction of agricultural and bare lands. This
corresponds to the anticipated outcomes of urban growth and land development, affirming
sensitivity of land cover transformations to urban dynamics.

The use of advanced modeling techniques, such as random forest algorithm for land
cover classification, not only enhanced our understanding of urban dynamics but also
served as a transferable approach for other urban environments grappling with similar
challenges [72]. The validation of this classification method using kappa coefficient aligns
with in literature regarding robustness of machine learning in capturing complex land
cover patterns. Moreover, integration of cellular automata-artificial neural network (CA-
ANN), coupled with MOLUSCE plugin, contributed to a comprehensive toolkit for future
land cover projections [73]. This method has the potential to be extrapolated to diverse
urban contexts, enabling accurate predictions and offering insights into the future of urban
landscapes [74]. The application of the soil conservation service-curve number (SCS-CN)
rainfall-runoff model with CMIP6 climate data amplifies the study’s broader relevance [75].
By assessing the influence of land cover changes on runoff, the method provided a blueprint
for evaluating hydrological responses in other urban areas experiencing rapid h urbaniza-
tion and climatic shifts [76]. Integration of climate data from CMIP6 GCMs aligns with
emerging practice of using global climate models to explore local impacts [77].

The synergistic impacts of urbanization and climate change on runoff, as highlighted
in this study, echoed the findings of previous studies [78], where hydrological response was
influenced by both land use changes and climatic variations. The increased monsoon season
runoff signifies heightened hydrological sensitivity, mirroring the results of hydrological
models applied to other contexts [79].

From a broader perspective, this research underscored the necessity of integrating
urban planning strategies for climate resilience and water resource management. The
findings emphasized that successful management of urban growth necessitates a holistic
approach that factors in both land cover dynamics and evolving climate scenarios. These
insights resonate with broader discourse on sustainable urban development [80,81]. The
implications of this work extend to potential policy formulations aimed at mitigating
adverse hydrological impacts stemming from urbanization and climate change. Further,
this study underscored the need for adaptive urban planning strategies that account for
hydrological responses, with implications for stormwater management, flood mitigation,
and infrastructure development.

Future research could delve deeper into exploring complicated causal relationships
between urbanization, land cover changes, and runoff patterns. More comprehensive
modeling approaches could also incorporate socio-economic variables to better capture
multifaceted nature of urbanization dynamics and their hydrological implications. Ad-
ditionally, analyzing the potential for green infrastructure and nature-based solutions
to mitigate hydrological impacts could offer actionable insights for urban planners and
policymakers. In this study, our focus was exclusively on CNRM-CM6-1 SSP1-2.6 model.
However, for future investigations, a broader scope could include multiple climate models
and scenarios. This approach would facilitate an inter-model and scenario comparison,
enabling the derivation of more robust and comprehensive findings. Furthermore, it’s
important to acknowledge that, in the current study, validation of runoff predictions was
not conducted due to limitations of ground data. However, this limitation could be ad-
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dressed in subsequent research, potentially enhancing credibility and reliability of the
results. Such future studies could significantly contribute to refinement and expansion
of our understanding of complex relationships between land cover, climate change, and
hydrological responses in urban environments.

In conclusion, this study effectively bridged the gap between urbanization, climate
change, and hydrological responses in Dhaka city. The findings provided a valuable
lens through which urban planning strategies can be refined to ensure sustainable water
resource management amidst evolving urban dynamics and changing climatic conditions.
This research sets the stage for more holistic and proactive approaches to address urban
hydrological challenges, offering a blueprint for other cities facing similar transformations
and uncertainties.

Author Contributions: Conceptualization, Mahfuzur Rahman; methodology, Mahfuzur Rahman;
software, Mahfuzur Rahman and Matiur Rahman Raju; validation, Mahfuzur Rahman, Md. Monirul
Islam, Hyeong-Joo Kim, Shamsher Sadiq, Mehtab Alam, Ningsheng Chen, Md. Alamgir Hossain and
Ashraf Dewan; formal analysis, Mahfuzur Rahman, Taslima Siddiqua, Md. Al Mamun and Md. Ashiq
Hossen Gazi; investigation, Mahfuzur Rahman, Md. Monirul Islam, Hyeong-Joo Kim, Shamsher
Sadiq and Mehtab Alam; resources, Mahfuzur Rahman; data curation, Taslima Siddiqua, Md. Al
Mamun, Md. Ashiq Hossen Gazi and Matiur Rahman Raju; writing—original draft preparation,
Mahfuzur Rahman; writing—review & editing, Md. Monirul Islam, Hyeong-Joo Kim, Shamsher
Sadiq, Mehtab Alam, Taslima Siddiqua, Md. Al Mamun, Md. Ashiq Hossen Gazi, Matiur Rahman
Raju, Ningsheng Chen, Md. Alamgir Hossain and Ashraf Dewan; visualization, Md. Monirul
Islam, Hyeong-Joo Kim, Ningsheng Chen, Md. Alamgir Hossain and Ashraf Dewan; supervision,
Md. Monirul Islam, Hyeong-Joo Kim, Ningsheng Chen and Ashraf Dewan; project administration,
Hyeong-Joo Kim; funding acquisition, Hyeong-Joo Kim. All authors have read and agreed to the
published version of the manuscript.

Funding: The Basic Science Research Program supported this research through the National Research
Foundation of Korea, funded by the Ministry of Education (NRF-2021R1A6A1A03045185).

Data Availability Statement: Data can be available upon request to corresponding author.

Acknowledgments: The authors acknowledge and appreciate the hydrological data the Bangladesh
Meteorological Department (BMD) provided, without which this study would not have been possible.
The authors would like to thanks Md. Sakib Hasan Tumon for helping us during data curation stage.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Mashala, M.J.; Dube, T.; Mudereri, B.T.; Ayisi, K.K.; Ramudzuli, M.R. A Systematic Review on Advancements in Remote Sensing

for Assessing and Monitoring Land Use and Land Cover Changes Impacts on Surface Water Resources in Semi-Arid Tropical
Environments. Remote Sens. 2023, 15, 3926. [CrossRef]

2. Adhami, M.; Sadeghi, S.H.; Duttmann, R.; Sheikhmohammady, M. Changes in watershed hydrological behavior due to land use
comanagement scenarios. J. Hydrol. 2019, 577, 124001. [CrossRef]

3. Ala-Aho, P.; Soulsby, C.; Pokrovsky, O.; Kirpotin, S.; Karlsson, J.; Serikova, S.; Vorobyev, S.; Manasypov, R.; Loiko, S.; Tetzlaff, D.
Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and
permafrost influenced landscape. J. Hydrol. 2018, 556, 279–293. [CrossRef]

4. Correa, A.; Windhorst, D.; Tetzlaff, D.; Crespo, P.; Célleri, R.; Feyen, J.; Breuer, L. Temporal dynamics in dominant runoff sources
and flow paths in the A ndean P áramo. Water Resour. Res. 2017, 53, 5998–6017. [CrossRef]

5. Pi, K.; Bieroza, M.; Brouchkov, A.; Chen, W.; Dufour, L.J.; Gongalsky, K.B.; Herrmann, A.M.; Krab, E.J.; Landesman, C.;
Laverman, A.M. The cold region critical zone in transition: Responses to climate warming and land use change. Annu. Rev.
Environ. Resour. 2021, 46, 111–134. [CrossRef]

6. Naylor, L.A.; Spencer, T.; Lane, S.N.; Darby, S.E.; Magilligan, F.J.; Macklin, M.G.; Möller, I. Stormy geomorphology: Geomorphic
contributions in an age of climate extremes. Earth Surf. Process. Landf. 2017, 42, 166–190. [CrossRef]

7. Todmal, R.S. Assessment of hydro-climatic trends in a drought-prone region of Maharashtra (India) with reference to rainfed
agriculture. Reg. Environ. Chang. 2023, 23, 62. [CrossRef]

https://doi.org/10.3390/rs15163926
https://doi.org/10.1016/j.jhydrol.2019.124001
https://doi.org/10.1016/j.jhydrol.2017.11.024
https://doi.org/10.1002/2016WR020187
https://doi.org/10.1146/annurev-environ-012220-125703
https://doi.org/10.1002/esp.4062
https://doi.org/10.1007/s10113-023-02044-z


ISPRS Int. J. Geo-Inf. 2023, 12, 401 15 of 17

8. Sun, S.; Liu, Y.; Chen, H.; Ju, W.; Xu, C.-Y.; Liu, Y.; Zhou, B.; Zhou, Y.; Zhou, Y.; Yu, M. Causes for the increases in both
evapotranspiration and water yield over vegetated mainland China during the last two decades. Agric. For. Meteorol. 2022,
324, 109118. [CrossRef]

9. Mahmoud, S.H.; Alazba, A. Hydrological response to land cover changes and human activities in arid regions using a geographic
information system and remote sensing. PLoS ONE 2015, 10, e0125805. [CrossRef]

10. Rogger, M.; Agnoletti, M.; Alaoui, A.; Bathurst, J.; Bodner, G.; Borga, M.; Chaplot, V.; Gallart, F.; Glatzel, G.; Hall, J. Land use
change impacts on floods at the catchment scale: Challenges and opportunities for future research. Water Resour. Res. 2017, 53,
5209–5219. [CrossRef]

11. Roy, P.S.; Ramachandran, R.M.; Paul, O.; Thakur, P.K.; Ravan, S.; Behera, M.D.; Sarangi, C.; Kanawade, V.P. Anthropogenic land
use and land cover changes—A review on its environmental consequences and climate change. J. Indian Soc. Remote Sens. 2022,
50, 1615–1640. [CrossRef]

12. Gobler, C.J. Climate change and harmful algal blooms: Insights and perspective. Harmful Algae 2020, 91, 101731. [CrossRef]
[PubMed]

13. Barnosky, A.D.; Hadly, E.A.; Bascompte, J.; Berlow, E.L.; Brown, J.H.; Fortelius, M.; Getz, W.M.; Harte, J.; Hastings, A.;
Marquet, P.A. Approaching a state shift in Earth’s biosphere. Nature 2012, 486, 52–58. [CrossRef]

14. Chingombe, W. Effects of Land-Cover-Land-Use on Water Quality within the Kuils-Eerste River Catchment. Ph.D. Thesis,
University of Western Cape, Cape Town, South Africa, 2012.

15. Furberg, D.; Ban, Y.; Nascetti, A. Monitoring of urbanization and analysis of environmental impact in Stockholm with Sentinel-2A
and SPOT-5 multispectral data. Remote Sens. 2019, 11, 2408. [CrossRef]

16. Gao, J.; Li, F.; Gao, H.; Zhou, C.; Zhang, X. The impact of land-use change on water-related ecosystem services: A study of the
Guishui River Basin, Beijing, China. J. Clean. Prod. 2017, 163, S148–S155. [CrossRef]

17. Molina-Navarro, E.; Trolle, D.; Martínez-Pérez, S.; Sastre-Merlín, A.; Jeppesen, E. Hydrological and water quality impact
assessment of a Mediterranean limno-reservoir under climate change and land use management scenarios. J. Hydrol. 2014, 509,
354–366. [CrossRef]

18. Sahana, M.; Ravetz, J.; Patel, P.P.; Dadashpoor, H.; Follmann, A. Where Is the Peri-Urban? A Systematic Review of Peri-Urban
Research and Approaches for Its Identification and Demarcation Worldwide. Remote Sens. 2023, 15, 1316. [CrossRef]

19. Berndtsson, R.; Becker, P.; Persson, A.; Aspegren, H.; Haghighatafshar, S.; Jönsson, K.; Larsson, R.; Mobini, S.; Mottaghi, M.;
Nilsson, J. Drivers of changing urban flood risk: A framework for action. J. Environ. Manag. 2019, 240, 47–56. [CrossRef]

20. Gulachenski, A.; Ghersi, B.M.; Lesen, A.E.; Blum, M.J. Abandonment, ecological assembly and public health risks in counter-
urbanizing cities. Sustainability 2016, 8, 491. [CrossRef]

21. Burns, D.A.; Pellerin, B.A.; Miller, M.P.; Capel, P.D.; Tesoriero, A.J.; Duncan, J.M. Monitoring the riverine pulse: Applying
high-frequency nitrate data to advance integrative understanding of biogeochemical and hydrological processes. Wiley Interdiscip.
Rev. Water 2019, 6, e1348. [CrossRef]

22. AL-Shammari, M.M.; AL-Shamma’a, A.M.; Al Maliki, A.; Hussain, H.M.; Yaseen, Z.M.; Armanuos, A.M. Integrated water
harvesting and aquifer recharge evaluation methodology based on remote sensing and geographical information system: Case
study in Iraq. Nat. Resour. Res. 2021, 30, 2119–2143. [CrossRef]

23. Jayantilal, G.M. Modelling Runoff Using Modified SCS-CN Method for Middle South Saurashtra Region (Gujarat-India).
Ph.D. Thesis, Gujarat Technological University Ahmedabad, Gujarat, India, 2016.

24. Roopnarine, C.; Ramlal, B.; Roopnarine, R. A Comparative Analysis of Weighting Methods in Geospatial Flood Risk Assessment:
A Trinidad Case Study. Land 2022, 11, 1649. [CrossRef]

25. Aznarez, C.; Jimeno-Sáez, P.; López-Ballesteros, A.; Pacheco, J.P.; Senent-Aparicio, J. Analysing the impact of climate change on
hydrological ecosystem services in Laguna del Sauce (Uruguay) using the SWAT model and remote sensing data. Remote Sens.
2021, 13, 2014. [CrossRef]

26. Hailu, A.; Mammo, S.; Kidane, M. Dynamics of land use, land cover change trend and its drivers in Jimma Geneti District,
Western Ethiopia. Land Use Policy 2020, 99, 105011. [CrossRef]

27. Sonu, T.; Bhagyanathan, A. The impact of upstream land use land cover change on downstream flooding: A case of Kuttanad and
Meenachil River Basin, Kerala, India. Urban Clim. 2022, 41, 101089.

28. Nasreen, M.; Hossain, K.M.; Khan, M.M. (Eds.) Coastal Disaster Risk Management in Bangladesh: Vulnerability and Resilience, 1st ed.;
Routledge: London, UK, 2023.

29. Benton-Short, L.; Short, J.R. Cities and Nature; Routledge: New York, NY, USA, 2013.
30. Reza, I. Assessment of Water Level and Bed Level Variation in the Lower Meghna River. Master’s Thesis, Bangladesh University

of Engineering and Technology, Dhaka, Bangladesh, 2010.
31. Kim, H.W.; Li, M.-H.; Kim, J.-H.; Jaber, F. Examining the impact of suburbanization on surface runoff using the SWAT. Int. J.

Environ. Res. 2016, 10, 379–390.
32. Barbero-Sierra, C.; Marques, M.-J.; Ruíz-Pérez, M. The case of urban sprawl in Spain as an active and irreversible driving force for

desertification. J. Arid Environ. 2013, 90, 95–102. [CrossRef]
33. Kumar, P.; Avtar, R.; Dasgupta, R.; Johnson, B.A.; Mukherjee, A.; Ahsan, M.N.; Nguyen, D.C.H.; Nguyen, H.Q.; Shaw, R.;

Mishra, B.K. Socio-hydrology: A key approach for adaptation to water scarcity and achieving human well-being in large riverine
islands. Prog. Disaster Sci. 2020, 8, 100134. [CrossRef]

https://doi.org/10.1016/j.agrformet.2022.109118
https://doi.org/10.1371/journal.pone.0125805
https://doi.org/10.1002/2017WR020723
https://doi.org/10.1007/s12524-022-01569-w
https://doi.org/10.1016/j.hal.2019.101731
https://www.ncbi.nlm.nih.gov/pubmed/32057341
https://doi.org/10.1038/nature11018
https://doi.org/10.3390/rs11202408
https://doi.org/10.1016/j.jclepro.2016.01.049
https://doi.org/10.1016/j.jhydrol.2013.11.053
https://doi.org/10.3390/rs15051316
https://doi.org/10.1016/j.jenvman.2019.03.094
https://doi.org/10.3390/su8050491
https://doi.org/10.1002/wat2.1348
https://doi.org/10.1007/s11053-021-09835-3
https://doi.org/10.3390/land11101649
https://doi.org/10.3390/rs13102014
https://doi.org/10.1016/j.landusepol.2020.105011
https://doi.org/10.1016/j.jaridenv.2012.10.014
https://doi.org/10.1016/j.pdisas.2020.100134


ISPRS Int. J. Geo-Inf. 2023, 12, 401 16 of 17

34. Halder, A.; Majed, N. The effects of unplanned land use and heavy seasonal rainfall on the storm-water drainage in Dhaka
metropolitan city of Bangladesh. Urban Water J. 2023, 20, 707–722. [CrossRef]

35. Tawhid, K.G. Causes and Effects of Water Logging in Dhaka City, Bangladesh. TRITA-LWR. Master’s Thesis, Department of Land
and Water Resource Engineering, Royal Institute of Technology, Stockholm, Sweden, 2004.

36. Ahmed, A.U.; Appadurai, A.N.; Neelormi, S. Status of climate change adaptation in South Asia region. In Status of Climate Change
Adaptation in Asia and the Pacific; Springer: Cham, Switzerland, 2019; pp. 125–152.

37. Chasek, P.; Downie, D. Global Environmental Politics; Routledge: New York, NY, USA, 2020.
38. Rahman, M.; Ningsheng, C.; Mahmud, G.I.; Islam, M.M.; Pourghasemi, H.R.; Ahmad, H.; Habumugisha, J.M.; Washakh, R.M.A.;

Alam, M.; Liu, E. Flooding and its relationship with land cover change, population growth, and road density. Geosci. Front. 2021,
12, 101224. [CrossRef]

39. Erhard, L.; Heiberger, R. Regression and Machine learning. In Research Handbook on Digital Sociology; Edward Elgar Publishing:
Cheltenham, UK, 2023; pp. 130–145.

40. Kumar, A.; Upadhyay, P.; Singh, U. Multi-Sensor and Multi-Temporal Remote Sensing: Specific Single Class Mapping; CRC Press:
Boca Raton, FL, USA, 2023.

41. Naboureh, A.; Li, A.; Bian, J.; Lei, G.; Amani, M. A hybrid data balancing method for classification of imbalanced training data
within google earth engine: Case studies from mountainous regions. Remote Sens. 2020, 12, 3301. [CrossRef]

42. Lukas, P.; Melesse, A.M.; Kenea, T.T. Prediction of future land use/land cover changes using a coupled CA-ANN model in the
upper omo–gibe river basin, Ethiopia. Remote Sens. 2023, 15, 1148. [CrossRef]

43. Muhammad, R.; Zhang, W.; Abbas, Z.; Guo, F.; Gwiazdzinski, L. Spatiotemporal change analysis and prediction of future land
use and land cover changes using QGIS MOLUSCE plugin and remote sensing big data: A case study of Linyi, China. Land 2022,
11, 419. [CrossRef]

44. Ramadan, G.F.; Hidayati, I.N. Prediction and Simulation of Land Use and Land Cover Changes Using Open Source QGIS. A Case
Study of Purwokerto, Central Java, Indonesia. Indones. J. Geogr. 2022, 54, 344–351. [CrossRef]

45. Guo, X.; Fu, Q.; Hang, Y.; Lu, H.; Gao, F.; Si, J. Spatial variability of soil moisture in relation to land use types and topographic
features on hillslopes in the black soil (mollisols) area of northeast China. Sustainability 2020, 12, 3552. [CrossRef]

46. Randolph, J. Environmental Land Use Planning and Management; Island Press: Washington, DC, USA, 2004.
47. Deng, X.; Li, Z.; Gibson, J. A review on trade-off analysis of ecosystem services for sustainable land-use management. J. Geogr. Sci.

2016, 26, 953–968. [CrossRef]
48. Souza, C.M., Jr.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.;

Souza-Filho, P.W. Reconstructing three decades of land use and land cover changes in brazilian biomes with landsat archive and
earth engine. Remote Sens. 2020, 12, 2735. [CrossRef]

49. Leta, M.K.; Demissie, T.A.; Tränckner, J. Modeling and prediction of land use land cover change dynamics based on land change
modeler (Lcm) in nashe watershed, upper blue nile basin, Ethiopia. Sustainability 2021, 13, 3740. [CrossRef]

50. Gao, G.; Fu, B.; Lü, Y.; Liu, Y.; Wang, S.; Zhou, J. Coupling the modified SCS-CN and RUSLE models to simulate hydrological
effects of restoring vegetation in the Loess Plateau of China. Hydrol. Earth Syst. Sci. 2012, 16, 2347–2364. [CrossRef]

51. Kiprotich, P.; Wei, X.; Zhang, Z.; Ngigi, T.; Qiu, F.; Wang, L. Assessing the impact of land use and climate change on surface runoff
response using gridded observations and swat+. Hydrology 2021, 8, 48. [CrossRef]

52. Shrestha, S.; Cui, S.; Xu, L.; Wang, L.; Manandhar, B.; Ding, S. Impact of land use change due to urbanisation on surface runoff
using GIS-based SCS–CN method: A case study of Xiamen city, China. Land 2021, 10, 839. [CrossRef]
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