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Abstract: Spatial autocorrelation analysis is essential for understanding the distribution patterns
of spatial flow data. Existing methods focus mainly on the origins and destinations of flow units
and the relationships between them. These methods measure the autocorrelation of gravity or the
positional and directional autocorrelations of flow units that are treated as objects. However, the
intrinsic complexity of actual flow data necessitates the consideration of not only gravity, positional,
and directional autocorrelations but also the autocorrelations of the variables of interest. This study
proposes a global spatial autocorrelation method to measure the variables of interest of flow data. This
method mainly consists of three steps. First, the proximity constraints of the origin and destination of
a flow unit are defined to ensure similarity of flow units in terms of direction, distance, and position.
This undertaking aims to determine the neighborhood of flow units and generate their adjacent
matrices. Second, a spatial autocorrelation measurement model for flow data is constructed on the
basis of the adjacent matrix generated. Artificial data sets are also employed to test the validity of the
model. Finally, the proposed method is applied to the flow data analysis of population migration
in central and eastern China to prove the practical application value of the model. The proposed
method is universal and can be generalized to the global spatial autocorrelation analysis of any type
of flow data.

Keywords: spatial flow data; global spatial autocorrelation; spatial pattern; spatial statistic;
geographical interaction

1. Introduction

The identification of the spatial patterns of geographical events or phenomena is a
fundamental topic in geographical research. Spatial autocorrelation measurement is one
of the most common methods for quantifying spatial patterns. Spatial autocorrelation
is defined as the nonrandom distribution of spatial variables on the basis of spatial
location [1,2]. Spatial autocorrelation in GIS clarifies the degree to which one object is
similar to other nearby objects. The First Law of Geography emphasizes the universality
of spatial autocorrelation in space by explaining that everything is related to everything
else, although near things are more related than distant things [3]. Given that spatial
flow data receive considerable attention [4], the development of effective quantitative
analysis models to measure the spatial autocorrelation of flows is significant for the
spatial pattern analysis of flow data. Moreover, it could also expand the application
scope and universality of spatial autocorrelation in GIS.

Although important progress has been made in the research of the spatial autocorre-
lation of OD flows, the complexity of OD flow data relative to traditional polygon data
leads to multiple connotations for the spatial autocorrelation of OD flows [5]. The distinct
data structure of OD flow data compared to traditional point and polygon data leads
to many different perspectives on the measurement of the spatial autocorrelation of OD
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flows. For example, we can measure the spatial autocorrelation of the direction of flow
data or the spatial autocorrelation of the relationship between outflow origins and inflow
destinations [6,7]. We can also treat each OD flow unit as a whole and measure the spa-
tial autocorrelation of a certain numerical attribute. This study focuses on the first case;
that is, starting from the integrity of the flow unit and then discussing the global spatial
autocorrelation of the flow attributes of the flow unit.

This paper is organized as follows: The literature of the spatial autocorrelation of
OD flow data is reviewed in Section 2. In the specific research work part in Section 3, the
possible basic types of OD flow units are introduced (Section 3.1), and the construction
of the rules of proximity between flow units is further explained (Section 3.2). In the
following section (Section 4), the extension of the traditional Moran’s I method proposed in
this work to the spatial autocorrelation analysis of OD flow data is explored (Section 4.1).
The effectiveness of the proposed method is subsequently verified (Section 4.2) through
artificial data sets. Finally, on the basis of OD flow data of population migration in eastern
China, the proposed method is used to conduct a case analysis to demonstrate the practical
application value of the method in the analysis of spatial interaction problems; the analysis
is discussed in Section 5. The discussion, conclusion, and future work are presented in
Section 6. The proposed method can effectively analyze the spatial autocorrelation of OD
flow data traffic or other numerical attributes from a global level. It can also quantify the
overall trend of agglomeration, dispersion, or random distribution. The method enriches
the understanding of the spatial distribution patterns of OD flow data.

2. Literature Review

Relevant research over the past few decades reveals that the spatial interactions
of flow data are no longer a novel research topic. Studies on the measurement and
interpretation of spatial interactions in flow data were already being undertaken as early
as the 1970s [8–10]. Such early research opened the door to flow data studies. However,
hardly any breakthrough was made because at the time, the volume of flow data was
generally large and the computing capacity of computers was limited. Moreover, OD
flow data were not as widely used as point and polygon data. Hence, scholars did not
pay close attention to the topic.

In the subsequent period, flow data research from a geospatial perspective shifted
focus towards the measurement, analysis, and visualization of interactions [11–13]. In
addition, the research on the measurement of spatial autocorrelations in OD flow data
gradually emerged [14,15]. However, research during this stage had yet to develop a
systematic understanding of the measurement of spatial autocorrelations of flow data.
Hence, Fotheringham [16,17] introduced flow data analysis on the basis of the gravity
model [18] and explained the definition of spatial interaction in detail [19]. Models on
spatially autocorrelated errors and spatial autoregressive errors and heterogeneity in OD
flow analysis were later proposed and applied [20]. Anselin studied the application and
spatial autocorrelation of flow data in econometrics, emphasizing the gravity and spatial
autocorrelation measurement of flow interactions [21,22]. This pioneering research focused
on developing spatial autocorrelation measurements for flow data via gravity models, with
applications in economic geography.

In the 1990s, Getis introduced the conventional spatial autocorrelation analysis method,
which can be applied to detect patterns in various types of data, including point data
(quantitative data associated with discrete location coordinates), polygon data (data related
to areal units and boundaries), and flow data (data that represent movements, interactions,
or transportation between origins and destinations) [9]. Getis contended that the spatial
interaction model is a special case of a spatial autocorrelation model and proposed a
general statistic. Black proposed the concept of the autocorrelation of flow, which includes
network autocorrelation and spatial autocorrelation for flow data [23]. Black believed
that the autocorrelation that stresses the connectivity between nodes belongs to network
autocorrelation, and that the autocorrelation that treats origins and destinations as objects
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belongs to spatial autocorrelation. In reality, Getis treated a flow unit as an object and
emphasized the universality of the conventional spatial autocorrelation method in flow data
analysis. Black’s categorization and precise definition of the spatial autocorrelation of flow
data helped deepen people’s understanding of flow data. The primary contribution during
that stage was a comprehensive understanding of the classification and definitions of
spatial autocorrelation. However, there was no systematic study exploring the application
of various existing spatial autocorrelation models to the two types of autocorrelation
analysis for flow data.

With increasing understanding of spatial autocorrelation in flow data, more detailed
and in-depth autocorrelation research on flow data has emerged. Representative studies
include the fundamental theory of flow data spatial autocorrelation and the modifiable
areal unit problem (MAUP) related to flow data origins and destinations [2,24,25]. Subse-
quently, the network autocorrelation model, spatial economic interaction autocorrelation,
and regression model related to flow data were proposed and applied [26–29]. A number
of conventional methods of autocorrelation measurement were also introduced into
the network autocorrelation model [27,30–32]. New network autocorrelation models
for flow data were later proposed, and new applications were extended accordingly;
examples include the local autocorrelation model based on the difference-in-differences
technique [33,34], spatial economic OD flow model [35,36], and Bayesian spatial interac-
tion model [33].

These studies predominantly focused on autocorrelation in flow data. Moreover,
most autocorrelation measurement models were developed based on flow values between
origins and destinations, relying primarily on the Poisson distribution. In contrast, mod-
els following Black’s definition are chiefly network autocorrelation models, with only a
limited number of studies exploring spatial autocorrelation specifically for flow data. The
research related to spatial autocorrelation dates back to a series of studies on the spatial
filtering of feature vectors [37,38] and its relevant application research [39–41]. Liu et al.
introduced a general spatial autocorrelation analysis model for vectors, which reflect
the general form of OD flow [6]. A notable feature of this study is that the direction of
flow units was incorporated into the implementation logic of the model as part of the
autocorrelation measurement.

Getis [8] contended that the common elements of various spatial autocorrelation
models include (1) the matrix denoting the association among spatial elements (Condition 1:
spatial weight matrix) and (2) the attribute values of spatial elements representing different
positions (Condition 1: variable of interest). For conventional points and polygons, point
or polygon objects are the spatial elements in Condition 1, and the values of variables
used for spatial autocorrelation analysis are the attribute values in Condition 2. Similarly,
when the object of analysis is flow data, the OD flow unit as a whole object represents
the spatial element in Condition 1, and the flow value of the OD flow unit represents the
attribute value in Condition 2. In accordance with this definition, the attributes of a flow
unit are the variables of interest for spatial autocorrelation measurement instead of the
directions of flow units as a variable for autocorrelation analysis. Griffith and Liu [6,37,38]
proposed a new spatial interaction autocorrelation analysis model on the basis of the basic
characteristics (directions of flow units) of flow. At this stage, no researcher has proposed
any spatial autocorrelation model on the basis of Getis’ definition. Accordingly, the current
study attempts to fill this gap.

On the basis of Black’s study, our research (1) divides the autocorrelation of flow data
into network autocorrelation and spatial autocorrelation, (2) agrees with the general model
of spatial autocorrelation defined by Getis, and (3) treats the OD flow unit as an object
and spatial element to be analyzed. Moreover, this study determines the spatial proximity
matrix of flow data by constraining the neighborhood of the origin and destination. There-
after, the global spatial autocorrelation model of flow data is constructed on the basis of the
conventional Global Moran’s I. This study also tests the effectiveness of the model through
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artificial data sets and performs empirical analysis by using population migration data.
This empirical analysis proves the practical application value of the proposed method.

3. Definition of Flow Unit and Its Spatial Proximity
3.1. Types of Flow Unit

Spatial elements contain spatial and random information. In the spatial autocorre-
lation analysis, which is represented by Moran’s index and Geary C and et al. [42], the
essence of measurement is to analyze the spatial association characteristics of a numeric
interest variable of a geographic element. Such a numeric attribute belongs to non-spatial
information. The spatial and geometric information of these geographic elements is mainly
used to determine the spatial proximity and construction of the spatial proximity matrix.
Accordingly, the following question should be answered: How can spatial autocorrelation
be measured without a numerical variable for a set of points with spatial characteristics?
The conventional methods are illustrated in Figure 1. Figure 1(a1) shows a set of spatial
points. Different brightnesses represent different variable values; the darker the color, the
larger the value, and vice versa. Specific information is provided in the legend. Given that
this set of points has attribute information, global or local spatial autocorrelation can be
measured using Moran’s I and other spatial autocorrelation analysis models.
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The analysis result is shown in Figure 1(a2). However, spatial autocorrelation analysis
cannot be performed directly for other cases, where a set of points may not contain any
useful numerical variables. First, a common method is to divide the area where these
points are located according to a certain geographic unit (e.g., administrative division,
unit, or cell). Second, the number of points in each geographic unit is summarized by
using sample statistics. Lastly, this statistic is used as the variable value for this geographic
unit. The summary result of points in Figure 1(b1) is shown in Figure 1(b2). Evidently,
the geographic units used for spatial autocorrelation analysis become polygons (cells),
and the target variable for analysis becomes the number of points in each polygon. The
analysis result is shown in Figure 1(b3). In this case, the basic geographic units used for
spatial autocorrelation analysis are either points or polygons with numeric variable. Spatial
autocorrelation analysis cannot be performed on points or polygons without numeric
variable. This case provides the solution when the OD flow faces similar situations.
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Unlike such elements as points and polygons, the basic units of the OD flow data
generally comprise the origin, destination, and direction. The OD flow with numeric
variables of interest consists of the origin, destination, direction, and variable. These two
types of flow units form the basic structure of flow data. Figure 2(a1) shows the flow units
with variables, where the thickness of the arrow indicates the size of the target variable.
Figure 2(b1) shows the flow units without variables. Similar to point- or polygon-based
spatial autocorrelation analysis, the analysis of the OD flow data should also be based on
a numeric variable. Autocorrelation analysis cannot be performed directly for flow units
without variables. Figure 2(a2) shows the autocorrelation analysis result of the flow units
with variables. For the flow units without variables, a summary can be made on the basis
of the polygon geographic unit, and the results can be concluded (see Figure 2(b2)). The
thicker the arrows in Figure 2(b2), the greater the flow from the origin to the destination
areas. At this time, the flow units without variables are converted into flow units with
variables, with the variable being the flow value between the two areas. The flow value will
be the target variable for spatial autocorrelation analysis. Figure 2(b3) shows the spatial
autocorrelation result of flow data in the area shown in Figure 2(b2).
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3.2. Spatial Proximity of the Flow Unit

Before conducting spatial autocorrelation analysis, the spatial proximity rule among
elements must be determined, and spatial proximity matrices should be constructed on the
bases of these rules. The spatial autocorrelation analysis of flow data is no exception. Spatial
proximity between two flow units can be defined as follows: For two origin-destination
(OD) flow units fi and f j, if their respective origin locations are spatially proximate and their
respective destination locations are also spatially proximate, then fi and fi can be considered
spatially adjacent. This conceptualization, predicated on the inherent spatial properties of
linked origin and destination points, constitutes a fundamental formulation of a spatial
neighborhood between OD flow units. For example, Queen and Rook cannot be directly
applied to point-based flow units, although they can be directly applied to area-based flow
units. Thereafter, this study shows how to determine the spatial proximity of point- and
area-based flow units through fixed-distance and the Queen-and-Rook rule, respectively.

Figure 3(a1) shows the point-to-point flow data with numerical variables. Figure 3(b1)
shows the area-to-area flow data with numerical variables. Some rules for determining
the proximity between flow units are generic and can be applied to any of the flow units
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(e.g., fixed-distance and k-nearest). By contrast, other rules can only be applied to area-to-
area flow data (e.g., topology-based Queen and Rook). Other more complex neighborhood
distance modeling methods include inverse distance and inverse distance squared et al.
For flow unit f1 in Figure 3a, if fixed-distance is adopted as a rule and the neighborhood
distance is set as d1, then the neighborhood distance of f1’s origin and destination can
be determined (see Figure 3(a2)). Only f2 and f3’s origin and destination are within the
neighborhood distance of f1. Therefore, only f2 and f3 are the neighbor units of f1. After
extending the length from d1 to d2, the result is shown in Figure 3(a3), which suggests
that in addition to f2 and f3, the origin and destination of f5 also fall in the neighborhood
distance of f1. By this time, the neighbor flow units of unit f1 include f2, f3, and f5.
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Figure 3(b1) indicates the area-to-area flow units. If f1 is considered the target flow
unit and the Queen rule is the proximity rule, then the result of the neighbor units of f1 is
shown in Figure 3(b2). This outcome suggests that only f5’s origin and destination area
fall in the area that has a shared side with f1’s origin and destination (Queen rule). Thus,
only f5 is the neighbor flow unit of f1. When adopting the Rook rule, the result is shown
in Figure 3(b3). For the origin and destination areas of the target flow unit, only areas
with a shared side or shared node are considered neighbor areas. In this instance, the
neighbor flow units of f1 include f3, f5, and f6. Similar to points or polygons, the spatial
autocorrelation effects of the flow units can be measured on the bases of the target variables
once the spatial proximity matrix is determined.

4. Modeling Global Spatial Autocorrelation of Flow
4.1. Measuring Global Moran’s Index of OD Flow

Three types of OD flow patterns are shown in Figure 4; the thicker the arrow, the
higher the value of the interest variable and vice versa. In Figure 4a, each group of OD that
flows with a similar position also has similar values of interest variables. For example, the
interest variable values of the OD flows on the left are higher. Accordingly, this pattern
is defined as a positive spatial autocorrelation. In Figure 4b, the interest variables of each
group of OD flows have high and low values. Thus, no similarity exists. This type of
pattern, in which a group of nearby flow units remain dissimilar, is defined as a negative
spatial autocorrelation. The OD flows in Figure 4c exhibit a random distribution regardless
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of the spatial distribution or value of the interest variable. Thus, no spatial autocorrelation
exists, which is defined as zero spatial autocorrelation. Thereafter, we will show how to
measure whether these patterns have a spatial autocorrelation and what kind of spatial
autocorrelation they belong to if there is spatial autocorrelation.
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Moran’s I is one of the most widely used among a wide range of methods for measur-
ing global spatial autocorrelation. If I denotes the global Moran’s index, then the equation
of this index is as follows:

I =
∑n

i=1 ∑n
j=1 wi,jcij

S2∑n
i=1 ∑n

j−1 wi,j
, (1)

where wi,j denotes the spatial proximity between flow unit i and j. If we assume the flow
units i and j are spatially proximate, then wi,j = 1; otherwise, wi,j = 0; and
cij = (xi − x)

(
xj − x

)
, where xi and xj denote the attribute values of flow units i and j,

respectively. If we assume that n denotes the total number of flow units, then x indicates
the average attribute value of the n flow units. The equation of S2 is as follows:

S2 =
∑n

i=1(xi − x)2

n
, (2)

Hence, the equation for the Global Moran’s I can be specifically expressed as follows:

I =
n∑n

i=1 ∑n
j=1 wi,j(xi − x)

(
xj − x

)
∑n

i=1 ∑n
j−1 wi,j∑n

i=1(xi − x)2 . (3)

To understand this equation, we use Figure 5 to demonstrate the calculation process.
Figure 5 contains nine flow units, with the directions and thickness of arrows indicating
the directions and sizes of flows, respectively. Evidently, flow units f1, f2, f3, and f4 have
similar origin and destination areas, and their flow values are low, thereby forming clusters
with low flow values. Flow units f5, f6, and f7 have similar origin and destination areas
and their flow values are high, thereby forming clusters with high flow values. Apart from
these units, some discrete flow units exist, such as f8 and f9. The legend indicates the flow
value of each flow unit. Therefore, n = 9, which is the total number of flow units. The
equation of the average value x = 5 and S2 = 10.

For flow unit f1, we can obtain the neighbor area of the origin area O1 and destination
area D1 on the basis of the definition of proximity and by using the Rook rule. OSet1
denotes the set of the neighbor area of O1, and DSet1 denotes the set of the neighbor area
of D1. For any flow unit fi, if the origin area of flow unit fi Oi ∈ OSet1 and the destination
area of flow unit fi Di ∈ DSet1, then fi is a neighbor flow unit of f1. This method indicates
that the neighbor flow units of f1 are f2, f3, and f4. Similarly, the neighbor flow units of f5
are f6 and f7 (see Table 1).
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Table 1. Variable calculation of each flow unit.

i j wi,j (xi−
¯
x)(xj−

¯
x) wi,jcij

1 2 1 (2 − 5) (3 − 5) 6
1 3 1 (2 − 5) (2 − 5) 9
1 4 1 (2 − 5) (4 − 5) 3
2 1 1 (3 − 5) (2 − 5) 6
3 1 1 (2 − 5) (2 − 5) 9
3 4 1 (2 − 5) (4 − 5) 3
4 1 1 (4 − 5) (2 − 5) 3
4 3 1 (4 − 5) (2 − 5) 3
5 6 1 (9 − 5) (9 − 5) 16
5 7 1 (9 − 5) (10 − 5) 20
6 5 1 (9 − 5) (9 − 5) 16
7 5 1 (10 − 5) (9 − 5) 20

On the basis of the data in Table 1, the partial result of ∑n
i=1 ∑n

j=1 wi,jcij, when i = 1 and
i = 5, can be obtained as follows:

∑
i=1

n

∑
j=1

wi,jcij = ∑
i=1

n

∑
j=1

wi,j(xi − x)
(

xj − x
)
= 18

∑
i=5

n

∑
j=1

wi,jcij = ∑
i=1

n

∑
j=1

wi,j(xi − x)
(

xj − x
)
= 36

This calculation method is used and each flow unit is taken as target. Moreover, the
neighbor flow units of the target flow unit are sought, thereby yielding the following result:

n

∑
i=1

n

∑
j=1

wi,jcij =
n

∑
i=1

n

∑
j=1

wi,j(xi − x)
(
xj − x

)
= 114

Given that Rook is adopted as the proximity rule in this case, when the flow and
target flow units are spatially proximate, wi,j = 1; otherwise, wi,j = 0. Thus, the value of
∑n

i=1 ∑n
j−1 wi,j is the sum of the neighbor units of each flow unit:

n

∑
i=1

n

∑
j=1

wi,j = 12
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Global Moran’s I can be calculated as follows after obtaining all the variables needed:

I =
∑n

i=1 ∑n
j=1 wi,jcij

S2∑n
i=1 ∑n

j=1 wi,j
=

114
10 ∗ 12

= 0.95

Obtaining Global Moran’s I is merely the first step in measuring global spatial autocor-
relation. Additional testing is required to determine whether the observed value of Moran’s
I significantly deviates from randomness. We should conduct tests and calculations on the
bases of the expected or mean value of Global Moran’s I and its standard deviation. The
Z-Score can be typically used to test such a significance. The Z-Score equation is as follows:

Z =
Observed− Expected

σ(Expected)
=

I − E(I)
σ(I)

, (4)

where I is the observed value, E(I) is its expected value, and σ(I) is the standard deviation
of Global Moran’s I. The equation of E(I) is as follows:

E(I) =
−1

n− 1
, (5)

Therefore, the more flow units are evaluated (i.e., the higher the value of n), the
expected value of Global Moran’s I approaches 0. Under random assumptions, the standard
deviation equation for Global Moran’s I is as follows:

σ(I) =
√

Var(I)

=

√
n(n 2+3−3n) B+3A2−nC]−K(n2−n) B+6A2−2nC]

A2(n−1)(n−2)(n−3) ,
(6)

A =
n

∑
i=1

n

∑
j=1

wi,j, (7)

B =
n

∑
i=1

n

∑
j=1

wi,j
2, (8)

C =
n

∑
i=1

(
n

∑
j=1

wi,j

)2

, (9)

K =
n∑n

i=1(xi − x)4

nσ4 , (10)

On the basis of this equation, the Z-Score of the example (see Figure 2) can be obtained.
Moreover, whether the OD flow is distributed in a clustered manner, discretely, or randomly,
can also be determined. The significance level of the spatial autocorrelation can also be
obtained. When Z is above 2.58, the flow data in the study area is distributed in aggregation
with high or low flow values at a 99% confidence interval. When Z is between 1.96 and
2.58, the flow data in the study area exhibits a clustered distribution with high or low flow
values at a 95% confidence interval.

When Z is between 1.65 and 1.96, the flow data in the study area exhibit a clustered
distribution in high or low flow values at a 90% confidence interval. This significance
indicates that the flow value in the study area presents a positive spatial autocorrelation.
In contrast, when Z falls in intervals of under −2.58, −2.58 to −1.96, or −1.96 to −1.65,
the flow value of the flow data in the study area shows discrete distributions at the 99%,
95%, and 90% confidence intervals, respectively. This negative significance indicates that
the flow in the study area presents a negative spatial autocorrelation. When Z is between
−196 and 1.96, the null hypothesis cannot be rejected, thereby indicating that the flow in
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the study area is randomly distributed in space. The Z-Score of the flow data in Figure 2 is
as follows:

Z =
I − E(I)

σ(I)
=

0.95 + 0.125
0.3547

= 3.031

The calculation result of Z is 3.031, meets Z ∈ (2.58, ∞), and the probability of the
aggregation mode occurring randomly is below 1%, thereby indicating that the flow of the
flow data in Figure 2 has a significant positive spatial autocorrelation. That is, the clustered
distribution has high or low values at the 99% confidence interval.

4.2. Evaluation Efficiency of Model by Artificial Data Set

The flow data in Figure 5 contains unit clusters with high and low flow values. More-
over, the flow units with agglomeration characteristics account for a large proportion of the
total number of all flow units. This result suggests that the flow units in this data set show
significant characteristics of global aggregation (i.e., positive spatial autocorrelation). The
purpose of elaborating the calculation of Global Moran’s I in Figure 5 is to illustrate how to
measure the global spatial autocorrelation of the flow data. To verify the rationality and
effectiveness of the method, two artificial data sets with clear objectives are employed (see
Figure 6). The flow data in Figure 6a shows evident discrete distribution. In the first group
of clustered flow units, the flow units with high and low flow values appear alternately,
the clustered flow units of the second and third group show similar characteristics as the
first group, and the flow units in the three groups account for the majority of the total units.
That is, the flow values of the flow data in Figure 6a present global discrete distribution
(i.e., negative spatial autocorrelation). In the flow data set shown in Figure 6b, the majority
of the flow units appear to be randomly distributed, even for neighbor flow units, and
the flow values are randomly distributed. Given that the majority of the flow units in
Figure 6b are randomly distributed, the expectation is that the flow data lack global spatial
autocorrelation features. To verify the validity of the proposed method, global spatial
autocorrelation measurement is also performed on the flow data (see Figure 6a,b) using the
method based on the Rook rule.
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Figure 6. Two artificial flow data sets (The number is the code of each flow unit): (a) Flow data set
with discrete distribution characteristics; (b) flow data set with random distribution characteristics.

Table 2 shows the analysis results through calculation. The Moran’s I of artificial
data set A is −0.761, and the Z-Score is −1.874, which meets Z ∈ (−1.96,−1.65). This
result reveals that the probability of the random occurrence of the flow data pattern in
artificial data set A is below 10%. Thus, the null hypothesis can be rejected. A significant
negative spatial autocorrelation (i.e., discrete distribution) can be observed. The Moran’s I
of artificial data set B is 0.256, and the Z-Score is 0.870, which meets Z ∈ (−1.96, 1.96). This
result means that the flow data in artificial data set B cannot reject the null hypothesis and
are randomly distributed. The calculation of Global Moran’s I and Z-Score test result are
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completely the same as expected. This result proves the effectiveness of measuring the OD
flow data global spatial autocorrelation using the proposed method.

Table 2. Result of the global spatial autocorrelation of the artificial flow data.

Flow Data Set Name Moran’s I Expected Index Standard Deviation Z-Score

Artificial data set A −0.761 −0.111 0.347 −1.874
Artificial data set B 0.256 −0.111 0.422 0.870

5. Application
5.1. Study Area and Data Description

This study uses eight adjacent provinces and one municipality in Southern China as
study areas, utilizes the population flow data recorded in the highway system in 2018 as
the data source, and demonstrates the measurement of the global spatial autocorrelation
of population flow by using the proposed method. The dataset used in this paper comes
from Tencent Migration Big Data, which is China’s largest Internet company and holds the
country’s largest user base of online social platforms. The raw data provides records of
migratory OD flows between different prefecture-level cities in China.

The study area shown in Figure 7a comprises three city clusters: (1) a cluster of
central cities with Wuhan as the center, located in the middle reaches of the Yangtze
River; (2) the Yangtze River Delta city cluster with Shanghai as the center; and (3) the
Pearl River Delta city cluster with Guangzhou as the center. Most of these provinces
and municipalities, which feature large populations, population migration, and facilitated
transportation are located in China’s highly developed regions. The research data come
from Tencent’s population migration data interface, which records the number of people
entering and exiting each city through roads and highways every day. The data flow
involves approximately 110 cities, with over 600,000 data flow entries throughout the year.
Each data set contains the names, latitudes, and longitudes of the outflow and inflow cities,
as well as the total flow population. These details constitute a complete flow unit. The
summary of the flow data in 2018 is shown in Figure 7b.
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Each flow data can be represented by fi(Oi, Di, VAL), where Oi and Di denote the size
of the population moving in and out of the city, respectively, and VAL is the population that
flows from city Oi to city Di. Prior to the global spatial autocorrelation analysis, we need to
construct a spatial proximity matrix for each flow unit. This study adopts the Queen rule,
which specifies that the city that has a shared side or node with the target city, and is the
neighbor unit of the target city. For flow unit fi(Oi, Di, VAL), if the set of neighbor cities
of origin area Oi is the O_NSeti, then the set of neighbor cities of destination area Di is
D_NSeti. For any flow unit f j

(
Oj, Dj, VAL

)
, if Oj ∈ ONSeti and Dj ∈ DNSeti, then flow unit

f j
(
Oj, Dj, VAL

)
is the neighbor unit of flow unit fi(Oi, Di, VAL). Similarly, if the neighbor

unit of any flow unit can be identified in this manner, then global spatial autocorrelation
measurement can be performed. Accordingly, population flow can be analyzed regardless
of whether it is in aggregation, discrete, or in a random distribution. In this study, flow
units are divided by month according to the time of occurrence. Eventually, the flow data
subset at the summary level is obtained monthly for 12 months. Under the condition
of a random hypothesis, the global spatial autocorrelation index is calculated using the
proposed method, and its significance is tested using the z-score. The spatial aggregation
degrees of the flow values across 12 months are then compared, and the variation rules
are discussed.

5.2. Result

A city with a developed economy may drive the economic development of its sur-
rounding cities. In addition, neighboring cities generally have similar location advantages,
such as regional resource endowment and a sound geographical environment, which are
also important for the aggregation of cities with developed economies. By contrast, a city
with a less developed economy, possibly as a result of insufficient regional advantages or the
absence of any effects from developed cities, may also present an aggregated distribution.
The urban agglomeration effects on the development potential of an area outweigh all other
aspects. A crucial driver behind population migration is the imbalance between supply
and demand between two areas. Given that neighboring areas tend to be similar in terms of
industry and economy, the areas where population flows out are generally the areas where
labor-exporting cities agglomerate. These cities have sluggish industrial development and
offer only a few jobs. By contrast, the areas where population flows in tend to be areas
where cities with a shortage of labor agglomerate. These cities have many jobs to offer and
develop rapidly. Verifying the significance of this trend is one of objectives of the proposed
spatial autocorrelation method. The global spatial autocorrelation of population migration
in 2018 in the study area is analyzed by month. The analysis results are presented in Table 3.

Table 3. Analysis results of the global spatial autocorrelation of the population flow data.

Month Moran’s I Expected Index Standard Deviation Z-Score

January 0.349 −0.0004 0.0052 67.064
February 0.378 −0.0003 0.0047 80.863

March 0.349 −0.0004 0.0050 69.454
April 0.350 −0.0004 0.0051 69.154
May 0.344 −0.0004 0.0053 64.946
June 0.346 −0.0004 0.0054 64.639
July 0.359 −0.0005 0.0055 65.742

August 0.363 −0.0005 0.0055 65.628
September 0.347 −0.0004 0.0052 66.412

October 0.352 −0.0004 0.0052 68.041
November 0.333 −0.0004 0.0054 62.161
December 0.354 −0.0004 0.0055 64.656

Table 3 lists the Moran’s I, expected index, standard deviation, and z-score each month.
Moreover, Table 3 shows that in 12 months, all Moran’s I values are between 0 and 1, and all
z-scores are above 2.58. These results suggest that the population migration for all months
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shows an aggregation distribution at the 99% confidence interval and general relative
stability. The observation is that most of the z values are between 60 and 70, and that all
Moran’s I values are between 0.3 and 0.4. The expected index and standard deviation are
also within a certain threshold.

To observe the spatial autocorrelation of the population migration in different months
and its evolution, we use month as the x-axis and Global Moran’s I as the y-axis in construct-
ing the graph (Figure 8). Despite the general stability of the z-scores, the score in February
(i.e., 80.863) is evidently higher than those of the other months. The z-score in November
(i.e., 62.161) is the lowest. This result shows the evident spatial aggregation characteristics
of population migration in the study area in February and November relative to those in
the other months. The salient significant Moran’s I value observed globally in February is
indicative of distinct spatial cluster patterns. While the predominant role of high or low
clustering remains equivocal in February, such spatial autocorrelations generally arise from
the collective influence of both high and low value clusters across most contexts.
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On the basis of the full sample data, we extract all the flow data whose flow rate
threshold is above 10,000 for each flow unit. With the same method, only the data that
meet the threshold are analyzed. The analysis result is shown in Figure 9. Figure 9 shows
that relative to that of the full sample flow data, the z-score of the subsample flow data
is generally reduced from approximately 65 to approximately 40. The score for February
remains higher than those of the other months, but with minimal fluctuation. The score for
November shows the same tendency as the full sample. That is, the z-score is lower than
the average value with substantial fluctuation. The z-score of November is far lower than
the values of the other months.

Through the two-level analysis, and regardless of the use of full sample flow data or
flow data with high flow values (except for February and November), we find that the other
months present a relatively stable agglomeration effect at a 99% confidence interval, with
the agglomeration degree showing minimal differences. Only the agglomeration degree
of the flow data with a high flow threshold is less than that of the flow data of the full
sample. Apart from having effectively detected the global aggregation mode, which is
evidently different, this application also reveals an interesting fact: in the analysis results
of the two flow data sets, the z-scores are considerably higher than 2.58, which is the
threshold for the 99% significance level. This outcome is due to the huge difference in the
total population flowing in and out of different cities every month. For cities with a large
potential for population migration, the migration flow can reach 7 million per month. In
contrast, for cities with minimal migration, the number may be only a few thousand or
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even just hundreds. Note that the data used in this study, which are obtained from the
monitoring and sampling of location-based services, are not a full sample, and are thus
not completely consistent with actual migration. Nonetheless, they are consistent in terms
of proportion.
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6. Discussion and Conclusions
6.1. Discussion

Given that flow data have various forms, the flow data that can be applied to spatial
autocorrelation analysis using the proposed method are worth discussing [43]. Flow data
have been widely applied, and the OD pair is among the most important forms, and
can be referred to as OD flow. This particular flow data emphasizes the associations and
interactions among different places or regions. In reality, taxi passengers getting on and off,
subway passengers entering and exiting stations, capital flowing in and out, two places
communicating, and tourists traveling from one country to another can all be abstracted as
OD flow. Despite the extensive sources of OD, all flows can still be divided into two basic
forms; namely, OD flow without numerical variables (e.g., origin and destination formed
when taxi passengers get on and off) and OD flow with numerical variables (e.g., traffic
data between two subway stations during a specific time period and population migration
data between two cities). The former must be aggregated on the basis of geographic units
or cells, and the flow data or other attributes between two areas after the aggregation must
be used as the new numerical variable of the OD flow to meet the requirements of the
proposed method. Therefore, with proper treatment, any OD flow can be analyzed using
the proposed method.

Focus should be directed toward the construction of a spatial proximity matrix during
the spatial autocorrelation analysis of flow data. Similar to the construction of a proximity
matrix of points and polygons, the proximity matrix of flow data is also realized through
topological proximity rules (e.g., Queen or Rook), number-based rules (e.g., K-nearest),
and distance-based rules (e.g., inverse–distance or sequence–distance). Given that flow
data must consider the proximity of the origin and destination, some special scenarios
should also be considered aside from these constraints. For example, when using the
K-nearest constraint, K = 8 is assumed, and it indicates eight neighbor origins of the origin
of the target flow unit. However, the corresponding destinations are not necessarily the
neighbor destinations of the target flow unit. In the extreme case, none of them are neighbor
destinations. Thus, the issue in modeling the spatial proximity matrix is whether K-nearest
should directly adopt this rule, or whether K = 8 should be defined as the nearest eight flow
units of the target flow unit. In accordance with the definition of spatial autocorrelation, if
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the autocorrelation in the direction of the neighbor flow unit is considered, then the former
should be adopted instead of the latter.

A spatial autocorrelation significance test should be conducted on the basis of random
or standard normal distribution hypotheses. In the application analysis, the z-scores of
the global spatial autocorrelations of two flow data sets are extremely high (i.e., above the
2.58 threshold), at the 99% confidence interval. The reason is similar to that of the high
z-score of the spatial autocorrelation of a point or polygon. When the difference between
the values of the analysis variables is huge, clusters with significantly high and low values
are likely to occur. Given the z-score equation, the score is bound to be high. The huge
difference in the flow values of the different flow units in the examples in this study is
undoubtedly the main factor behind the high z-score.

As we have previously emphasized, the data structure from the traditional point and
polygon to the OD flow becomes increasingly complicated. For a flow unit, it is composed
of the origin, destination, direction, and variable of interest. The target of measuring
spatial autocorrelation can be one or more of these variables. Figure 10 shows examples
of the spatial autocorrelation analysis of OD flow data from three different perspectives.
In Figure 10a, for a group of flow units with adjacent relations, the concern is whether the
out-degree and in-degree of each flow unit belongs to the same type. For example, the
out-degree and in-degree could be either extremely large or small; that is, the out-degree is
large, and the in-degree is small, or vice versa. Following this classification can facilitate
the quantification of whether the distribution of OD flow has a spatial autocorrelation and
help determine the type of spatial autocorrelation to which it belongs (Figure 10d).
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Figure 10. Three perspectives of spatial autocorrelation analysis of OD flow data. (a) Spatial as-
sociation between out-degree of origin and in-degree of destination among proximity flow units;
(b) spatial association of directions among proximity flow units (For an OD flow cell, the horizontal
direction is used as the starting angle in the left-to-right direction); (c) association of variable of
interest among proximity flow units; (d) an example for (a); (e) an example for (b); (f) an example
for (c).

In addition, the measurement of spatial autocorrelation can be shifted toward the
direction of OD flow [6], as shown in Figure 10b. At this point, one could measure
and determine the spatial autocorrelation mode and type shown in Figure 10e in the
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OD flow data. As shown in Figure 10c, the spatial autocorrelation measurement with
the interest variable as the target is also a major direction. The interest variable can be
any attribute value that needs to be analyzed, such as the flow of people, material flow,
information flow, and capital flow. This research is also based on the perspective of
constructing a global spatial autocorrelation model of OD flow, and attempts to evaluate
whether the pattern shown in Figure 10f exists. The characteristic of OD flow with a
composite structure indicates that the above situation must be considered when modeling
spatial autocorrelation. In addition, a spatial autocorrelation measure based on multilayer
networks distinguishes the three perspectives presented in Figure 10 [7].

6.2. Conclusion and Future Directions

By determining the spatial proximity elements of the origins and destinations of
target flow units, the global spatial autocorrelation analysis method proposed in this study
ensures the existence of neighbor origins and destinations between target flow units and
their neighbor flow units. Moreover, the current research ensures that these flow units
have similar lengths and directions. The construction of the spatial proximity matrix of
OD flow is effective and meets the analysis requirements of global spatial autocorrelation.
On the basis of the spatial proximity matrix of OD flow, and by adopting Global Moran’s
I, this study effectively measures the global spatial autocorrelation of OD flow data. This
process serves to enrich existing measurement methods and extend the application of
Global Moran’s I in GIS.

In terms of effectiveness evaluation, negative spatial autocorrelation (discrete dis-
tribution) and nonspatial autocorrelation (random distribution) artificial data sets were
designed (Section 3.2). In addition, the global spatial autocorrelation of two artificial data
sets was measured using the proposed method. The analysis results are consistent with
the designed goal and thus verifies the effectiveness of the proposed method. In terms of
the application value, this study takes the OD flow data of population migration through
highways and roads in the central and eastern regions of China in 2018 as the main data
source. Global spatial autocorrelation analysis is also conducted on full sample data and
the extracted subset of migration flow above 10,000 persons among cities. The analysis
reveals that the two data sets show relative stability in 12 months, but that the degree of
aggregation is high in February and low in November. The analysis successfully detects
the global spatial autocorrelation effects of population migration across different months
and its trend over time. The analysis also determines the months when abnormal global
autocorrelation takes place. This finding is of immense value in understanding the overall
spatial patterns of population migration.

Although this study has successfully proposed a global spatial autocorrelation analysis
model for OD flow data based on Global Moran’s I, Global Moran’s I can only determine
whether a set of flow data has a discrete, random, or aggregated distribution; it cannot
establish whether the aggregation is of high or low value. Subsequent research will
compensate for this deficiency by using G-statistics and other methods. In addition,
global spatial autocorrelation can only measure the global tendency. Future research
should be able to measure local spatial autocorrelation. In terms of result visualization,
the local spatial autocorrelation of OD flow, which is different from that of conventional
point and polygon data, requires a new visualized strategy and plan, which remains a
considerable challenge. As far as this case study is concerned, it might be interesting, and
important findings could be obtained if the streaming data used could distinguish between
different types of population flows and if we could analyze how the highs and lows of the
spatial autocorrelation of the different types of flows are clustered. This will be additional
important work for us in the future.
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