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Abstract: Social media is widely used to share real‑time information and report accidents during
natural disasters. Named entity recognition (NER) is a fundamental task of geospatial information
applications that aims to extract location names from natural language text. As a result, the identi‑
fication of location names from social media information has gradually become a demand. Named
entity correction (NEC), as a complementary task ofNER, plays a crucial role in ensuring the accuracy
of location names and further improving the accuracy of NER. Despite numerous methods having
been adopted for NER, including text statistics‑based and deep learning‑based methods, there has
been limited research on NEC. To address this gap, we propose the CTRE model, which is a geospa‑
tial named entity recognition and correction model based on the BERT model framework. Our ap‑
proach enhances the BERT model by introducing incremental pre‑training in the pre‑training phase,
significantly improving the model’s recognition accuracy. Subsequently, we adopt the pre‑training
fine‑tuning mode of the BERT base model and extend the fine‑tuning process, incorporating a neu‑
ral network framework to construct the geospatial named entity recognition model and geospatial
named entity correction model, respectively. The BERT model utilizes data augmentation of VGI
(volunteered geographic information) data and social media data for incremental pre‑training, lead‑
ing to an enhancement in themodel accuracy from 85% to 87%. The F1 score of the geospatial named
entity recognition model reaches an impressive 0.9045, while the precision of the geospatial named
entity correctionmodel achieves 0.9765. The experimental results robustly demonstrate the effective‑
ness of our proposed CTREmodel, providing a reference for subsequent research on location names.

Keywords: social media information; named entity recognition; named entity correction; VGI; BERT

1. Introduction
With the continuous promotion of the construction of smart cities, the methods used

for obtaining geographic spatial data have become more diverse and widespread. Emerg‑
ing technologies such as smartphones, the Internet of Things, and social media have led to
explosive growth in geographic spatial data [1–3]. As important basic data for urban con‑
struction, geographic spatial data contain information on urban spatial structures, trans‑
portation networks, public facilities, andmany other aspects, providing important support
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for urban planning, transportation management, and other fields. Among geographic spa‑
tial data, geographic named entity data are very important, including place names, ad‑
dresses, spatial locations, and other components, which play important roles in building
the urban geographic spatial environment. Therefore, the geographic named entity recog‑
nition of geographic named entity data is crucial for these data to be used more effectively.
Currently, the most advanced research in geographic named entities mainly applies rele‑
vant theories in natural language processing to the semantic understanding of the text for
geographic named entities. This approach is more suitable for geographic named entity
data with a single source and a simple structure, and it can achieve good results. However,
due to the complexity of geographic named entity data and their diverse data sources, this
method performs poorly in processing the data. Previous research roughly divided geo‑
graphic named entity recognition into two categories: spatial statistical‑based geographic
named entity recognition [4] and deep neural network‑based geographic named entity
recognition [5]. Many previous studies [6] have achieved high recognition accuracy in
geographic named entity recognition, ignoring the correctness of identified geographic
entities; thus, further standardization and precision improvement are needed. Therefore,
this study uses the BERTmodel and introduces the incremental pre‑trainingmethod to im‑
prove the accuracy of themodel in the pre‑training phase. Andwe also enhance the corpus
by enriching the geographic named entity database after completing the incremental pre‑
training. Additionally, we compare and verify the number of semantic feature extraction
modules of the model to further improve its accuracy [7]. In addition, many of the geo‑
graphic named entity recognition data used in previous research come from VGI (volun‑
teered geographic information) data [8–12]. Despite the extraction of place names, errors
may still exist in the resulting geographic named entity data. Therefore, place name correc‑
tion work is also very important, as it plays an important role in expanding the standard
place name library for the subsequent efficient use of geographic named entity data. Previ‑
ous research roughly divided Chinese text correction into three categories: rule‑based Chi‑
nese spelling correction methods, machine learning‑based Chinese spelling methods, and
deep learning‑based Chinese text correction [13–15]. The existing research mainly focuses
on correcting general natural language texts, while geographic named entities are a spe‑
cial type of text that contains potential spatial information. Therefore, this study conducts
geographic named entity text correction based on BERT and provides an understanding
of the semantic features of geographic named entities.

The innovative points of this article are as follows:
(1) We introduce a transfer learning approach and use multiple sources of VGI data to

achieve a highly accurate expansion of the geographic named entity database.
(2) Incremental pre‑training is introduced in the pre‑training stage of the geographic

named entity recognition model and the geographic named entity correction model,
further improving the accuracy of geographic named entity text recognition and cor‑
rection.

(3) After performing geographic named entity recognition, we conduct further experi‑
ments and attempt to achieve geographic named entity text correction based on the
existing geographic named entity recognition results, further improving the accuracy
of geographic named entity recognition.
In this paper, we propose two models for Chinese geographical named entity recog‑

nition and geographical named entity correction, collectively known as CTRE, where “C”
stands for Chinese context, “T” represents toponym, “R” denotes recognition, and “E”
stands for error (the full term is error correction, which corresponds to text error correc‑
tion in Chinese, both of which are based on the BERT framework and are extended and
constructed). Previous studies have demonstrated the effectiveness of the CRF [16,17] and
BiLSTM [18,19] frameworks in text sequence labeling and named entities, so our proposed
model framework extends the structure of CRF and BiLSTM on the basis of BERT. Based
on the two proposed models, this study aims to address two major challenges. Firstly,
the proposed geographical named entity recognition model is utilized to extract and iden‑
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tify geographical named entities from social media data. However, due to the inherent
fallibility of language, such as spelling errors and missing spellings in English, as well as
homophonic and typo words in Chinese, and the spatial heterogeneity, which refers to
different names for the same place and different places having the same name, the identi‑
fied entities may contain errors. Therefore, the second objective is to employ the proposed
geographical named entity error correction model to rectify the errors that are present in
the extracted geographical named entities. For example, when identifying a geographic
named entity in a Twitter text, the content is “Taylor Swift performs ’Our Song ‘from’ Tay‑
lor Swift (Debut) ‘as the first surprise song for Day 2 of ‘The Eras Tour ‘in Los Angeles,
California!” We can identify the geo‑named entity “Los Angeles, California” through the
geographical named entity recognition model. Unlike English texts, Chinese vocabulary
is based on a Chinese character, and each Chinese character has a specific meaning. In En‑
glish, words are typically composed of letters or numbers, and each letter has no meaning
in itself and needs to be combined to form a vocabulary. For example, in Chinese, Beijing is
“BeiJing”, where the three characters of “Bei” are spelled as awhole to form aword and are
recognized in the process of geographical named entity recognition. In English, the letter a
in California can be recognized separately. In addition, due to the diversity of onlinemedia
data, online text is mostly user‑generated, so there are errors such as misspellings, missing
spelling, etc. For example, “Los Angeles” is misspelled as “Los Angelas”, so we need to
correct it. Both the geographical named entity recognition and text correction models con‑
tribute to the advancement of natural language processing, providing more efficient, accu‑
rate, and intelligent solutions for real‑world applications. This study’s contribution lies in
the further correction research based on the original geographic named entity recognition,
offering more efficient, accurate, and intelligent solutions for real‑world applications. In
addition, by correcting the identified geographic named entity data, it provides assistance
in expanding the existing standard address dataset.

The remaining parts of our paper are as follows: The second part introduces the con‑
cepts related to geographical named entity recognition and the method for correcting Chi‑
nese addresses. The BERT model, the models of geographic named entity recognition and
text correction, as well as the related content are introduced in the third part. The datasets,
pre‑processingmethods, experiments for named entity recognition and address correction,
and the resulting experimental outcomes are presented in the fourth part. The fifth part
presents the study’s conclusions and prospects for future research.

2. Related Work
2.1. Geographic Named Entity Recognition Based on Social Media Platforms

Place names are proper names assigned by people to geographical entities in physical
space. In addition to denoting specific geographic locations, place names may also in‑
clude natural or human features. Place names are widely used in people’s daily lives and
are the basic resources of geographic information [20]. Place name data can be collected
through empirical data such as interviews and social surveys [21,22], but these approaches
are difficult to popularize and apply on a large scale due to problems such as a high cost,
low efficiency, and weak generalization. As geographic spatial information services be‑
come more widespread, the data are growing exponentially. Social media, location‑based
travel blogs, and housing advertisements are becoming more prevalent in people’s daily
lives, and geographic named entity information is widely present in these different types
of text [23–25]. However, this geographic named entity information contained in text is
often not effectively utilized. With the development and progress of natural language pro‑
cessing technology, geographic named entity recognition driven by big data has become
a hot research topic. Currently, research on methods for geographic named entity recog‑
nition in ubiquitous network text can be broadly categorized into two types, traditional
spatial statistical methods and deep neural network‑based methods.
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2.1.1. Methods Based on Spatial Statistics
The spatial statistical method involves researchers creating rules for recognizing geo‑

graphic named entities in specific research areas or extracting them from text by analyzing
their spatial distribution patterns. For instance, de Bruijn et al. proposed a method for ex‑
tracting place names by matching them with existing databases and OpenStreetMap [26].
However, in ubiquitous network text data, particularly in crowdsourced data, the place
name information contributed by users usually has a certain degree of arbitrariness. In ad‑
dition, there are some local conventions for place names, which often contain irregular lan‑
guage and some abbreviations that cannot be identified using methods based on specific
place name databases. Furthermore, McKenzie et al. combined multiple spatial statisti‑
cal metrics and random forest ensemble learning methods to extract neighborhood names
from rental property listings [27]. Lai et al. used a spatial point pattern analysis method
to extract place names from geotagged tweets [28]. Nevertheless, these spatial statistical
methods may encounter issues such as high dimensionality, computational complexity,
and overfitting despite their effectiveness in certain research domains.

2.1.2. Methods Based on Deep Neural Networks
Geographic named entity recognition (NER) based on deep neural networks is an

approach that utilizes deep learning models to automatically identify geographic entities
from textual data. Thismethod leverages deep neural networks to extract features and clas‑
sify input text, enabling the automatic identification of geographic named entities such as
countries, cities, rivers, etc. In this method, the geographic named entity recognition task
is often treated as a sequence labeling problem, where each word in the text sequence
is tagged as a geographic entity or non‑geographic entity. To achieve this, deep learning
models such as recurrent neural networks (RNNs), convolutional neural networks (CNNs),
and attention mechanisms are commonly used to model the text sequence, and classifiers
such asmultilayer perceptrons (MLPs) are used to predict the tag of eachword. These deep
learning models learn the language features and contextual information of geographic en‑
tities in the text by training on large amounts of annotated geographic named entity text
data, which improves the recognition effectiveness of geographic named entities. Hu et al.
proposed a deep learning architecture called C‑LSTM that combines geographic dictionar‑
ies and rules and is applied to the process of geotagging Weibo data [29]. Additionally,
NER tools have been utilized for extracting historical corpora, but this approach may lack
generalization. Using artificial neural networks is an effective way to address generality
and scalability. However, this method cannot solve the problem of toponym disambigua‑
tion because it does not utilize the contextual features of the text. To solve the problem
of toponym disambiguation, Wang et al. proposed a neural network geotagging model
based on the BiLSTM‑CRF architecture to extract locations from social media messages
and trained the model to manually annotate tweet data and a dataset fromWikipedia [30].
With the development of natural language processing technology, pre‑training and fine‑
tuning language models represented by BERT have made it possible to efficiently and ac‑
curately extract geographic named entities from ubiquitous network texts [31]. Liu et al.
implemented the Geo‑NER for geological reports based on the BERT model [32]. How‑
ever, directly applying BERT to geographic named entity recognition may ignore the inter‑
label constraint relationship between label sequences, which can significantly affect the
model’s performance in the task. To address this, Ma et al. proposed a BERT‑BiLSTM‑
CRF deep neural network architecture for Chinese text geotagging tasks [33]. Qiu et al.
proposed a ChineseTR architecture based on weakly supervised BERT + BiLSTM + CRF
for Chinese geotagging and trained the Chinese geotagging model on a training dataset
generated from the People’s Daily corpus [34]. Tao et al. proposed an improved BERT
model method for geographical named entity recognition and verified the effectiveness of
the method [35]. The proposed method employed ALBERT + BiLSTM + CRF. The biggest
difference from the model framework in this study is the BERT of the base. Compared
with BERT, ALBERT has made certain improvements. It adopts the methods of parameter
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sharing and embedding layer sharing, which reduce the number of parameters in BERT
and can improve the training efficiency and reasoning speed. However, this method has
limited resource scenarios. For example, the experimental dataset used by Tao et al. is
TPCNER, and the dataset size is at the 600,000 level. The resources in this study are abun‑
dant, and the data magnitude reaches the 3,000,000 level. Models trained with different
scales of data have different semantic feature extraction abilities. Our data size is larger,
so the model has better semantic feature extraction ability and the evaluation scale is rela‑
tively large. Therefore, we use BERT to build the model on the base to obtain the semantic
entities in the training model. The research conducted by Tao et al. was biased towards
the improvement of the accuracy of identifying entities in geographic naming recognition.
After identification, the recognition effects of different models and methods on the same
dataset were compared, and the quality of the dataset was verified. However, our study
further carried out the related tasks of text error correction as an in‑depth study and sup‑
plement to the identification research, which Tao et al. did not have in the previous study.
As a result, the scalability of our methodology is better. Deep learning‑based geographic
named entity recognitionmodels often divide pre‑training and fine‑tuning into two stages,
allowing them to better learn the semantic features of the text by pre‑training on massive
unsupervised data.

2.2. Chinese Address Correction
Text correction plays an important role in the field of natural language processing,

and a good correction model is crucial for improving downstream task performance [36].
However, Chinese text correction is a challenging task due to its complexity. Research
in related fields has proposed various methods for Chinese text correction, which can be
categorized into three main groups: rule‑based text spelling correction methods, machine
learning‑based text spelling correctionmethods, and deep learning‑based text spelling cor‑
rection methods.

2.2.1. Ruled‑Based Chinese Text Spelling Correction Method
Rule‑based Chinese text spelling correction methods rely on knowledge resources

such as dictionaries. They identify a character as a spelling error if it does not comply
with the predefined rules, such as not being present in the dictionary, and provide candi‑
date characters as correction options. Early Chinese text correction methods first detected
the misspelled position, generated candidate characters for these positions, and then se‑
lected a suitable one to replace the misspelling [37–40]. Another early study on Chinese
text spelling correction proposed by Chang [41] used a Chinese character dictionary that
accounted for the similarities in shape, pronunciation, meaning, and input method code to
handle the spelling correction task. Each Chinese character in the sentence was replaced
with a similar one from the dictionary, and the probability of all modified sentences was
calculated based on a language model. Zhang et al. proposed another rule‑based Chinese
text correctionmethod that differentiated betweenChinese andEnglishmatchingmethods.
Thismethod could handle not onlyChinese character replacement errors, but also insertion
and deletion errors, greatly improving the correcting performance compared to Chang’s
method [42]. In addition, Huang et al. used a segmentation tool (CKIP) to generate correc‑
tion candidates for detecting Chinese spelling errors [43]. Hung et al. corrected Chinese
text spelling errors based on manually edited error templates [44]. Similarly, Jiang et al.
designed a new grammar rule system for correcting Chinese grammar and spelling er‑
rors [45]. In rule‑based Chinese text spelling correction methods, if a character does not
comply with predefined rules, the method identifies it as a spelling error and provides
candidate characters as correction options. However, in practical applications, rule‑based
Chinese text spelling correction methods heavily rely on linguistic knowledge and rules,
and building language knowledge and rule libraries requires significant human and time
costs and cannot cover the complex linguistic phenomena of Chinese. In addition, due
to the complexity of Chinese, there are many unknown and ambiguous words that rule‑
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based methods cannot effectively handle. More importantly, rule‑based methods require
full‑text scanning andmatching for each input text, resulting in a low processing efficiency,
and thus are not suitable for large‑scale text processing. Therefore, the limitations of rule‑
based Chinese text spelling correction methods restrict their widespread use in practical
scenarios. With the continuous development of artificial intelligence and natural language
processing technologies, machine learning and deep learning‑based Chinese text spelling
correction methods have gradually become mainstream.

2.2.2. Machine Learning‑Based Spelling Method
The machine learning‑based Chinese spelling correction method [46–48] is a tech‑

nique that utilizes machine learning algorithms and language models to automatically de‑
tect and correct spelling errors in Chinese text. This method requires a large amount of
Chinese language corpus to train the language model and teach it the patterns of spelling
errors. When a spelling error is detected, the method uses the trained model to analyze
and correct it, providing more accurate spelling correction suggestions. This method can
be widely used in areas such as Chinese input methods, word processing software, search
engines, and social media to improve the accuracy and efficiency of text processing. Com‑
pared with traditional rule‑based spell checking methods, machine learning‑based spell
checking methods can better handle complex language patterns and spelling errors and
can provide more accurate corrections based on the user’s input history and contextual
information. In the research on machine learning‑based Chinese text spelling correction
methods, unsupervised n‑gram language models are often used for error detection [49,50].
This approach introduces a confusion set of similar characters after error detection to limit
the candidate options. Xie et al. replaced characters with confusion sets and evaluated the
modified sentence using a joint bi‑gram and tri‑gram language model [49]. In the studies
by Jia et al. and Xin et al., graph models were used to represent sentences, and the single‑
source shortest path (SSSP) algorithm was performed on the graph to correct spelling er‑
rors [51,52]. In addition, transforming text spelling correction tasks into sequence labeling
problems and using machine learning methods such as conditional random fields or hid‑
den Markov models is also a solution [50,53]. Xiong et al. proposed a Chinese spelling
correction framework called HANSpeller, which uses an extended hidden Markov model
and ranking model to correct spelling errors in Chinese articles, and achieves further re‑
finement using a rule‑based model [54]. Unlike rule‑based Chinese text spelling correc‑
tion methods, machine learning‑based methods can automatically learn correction rules
according to the data, making themmore adaptable to different domains and types of text,
with relatively good adaptability and scalability. However, these methods require a large
amount of annotated data in practical applications, and obtaining and standardizing text
data require a lot of labor and time costs. Moreover, thesemethods can easily produce erro‑
neous prediction results when processing long texts due to inherent issues with the model.

2.2.3. Deep Learning‑Based Chinese Text Spelling Correction Method
The deep learning‑based Chinese text spelling correction method is a technology that

uses deep learning models to automatically detect and correct spelling errors in Chinese
text. The purpose of this technology is to automatically identify spelling errors in text
by training a model to provide correct suggestions or automatic corrections to improve
the accuracy and readability of the text. Deep learning‑based methods can typically han‑
dle various types of spelling errors, including typos, homophones, and look‑alike char‑
acters, and can adaptively process various types and styles of text. This technology has
been widely applied in various fields such as search engines, intelligent customer ser‑
vice, and natural language processing [35]. Some research is based on end‑to‑end net‑
works (e.g., RNN), directly treating Chinese text spelling correction as a sequence labeling
task [55,56]. Wang et al. proposed an end‑to‑end confusion‑set‑guided encoder–decoder
model based on the sequence‑to‑sequence framework, treating Chinese text spelling cor‑
rection as a sequence‑to‑sequence task and injecting confusion set information through
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a copying mechanism [40]. However, this method also has a limited generalization abil‑
ity and performs poorly when dealing with spelling errors that have not appeared in the
dataset. Overall, machine learning‑based Chinese text spelling correction methods are be‑
coming increasingly popular.

3. Methods
The geographical named entity recognition model uses the BERT framework as the

encoder, and further adds a decoder, which includes a fully connected feedforward neural
network layer, a bidirectional LSTM layer, and a CRF layer. In addition, adding a CRF
layer after BERT can increase the constraint of the data sequence order. The geographi‑
cal named entity correction model adds a decoder on top of the BERT framework, which
includes two sub‑modules: error detection and correction. The input of the decoder is
passed to the fully connected layer for linear transformation, and then binary classifica‑
tion is used to judge whether the character is correctly segmented or not. The correction
module uses the maximum value selection method to convert the output of the encoder
into the corresponding characters.

3.1. BERT Model
BERT (Bidirectional Encoder Representations from Transformers) is a pre‑trained lan‑

guage model proposed by Google AI Research [31]. It leverages the transformer’s encoder
structure, and its performance is enhanced through two pre‑training tasks on a vast text
corpus, Masked Language Modeling (MLM) and Next Sentence Prediction (NSP), to fur‑
ther improve the performance of the model. The model’s architecture is shown in Figure 1.
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In the fine‑tuning stage, the BERT model is initialized with pre‑trained parameters,
and a neural network structure is designed for specific downstream tasks. It is then fine‑
tuned using labeled downstream task datasets.

The emergence of BERT has revolutionized natural language processing, introducing
a new pre‑training and fine‑tuning method for language models. Compared to previous
models, the BERT model has stronger semantic understanding capabilities [57]. By lever‑
aging semantic information from the text corpus during pre‑training, the self‑supervised
approach implicitly introduces linguistic knowledge for downstream tasks. In the pre‑
training of the BERT model, the MASK objective function is used to train the model’s loss
function, which is commonly referred to as the Masked Language Model (MLM) loss. The
formula can be specifically represented as

LMLM = −∑ (i ∈ m)logP
(

xi_true

∣∣∣X{<i}, X_{> i}
)

(1)

where M is the set of tokens that are replaced with the MASK token, xi_true is the true
i − th token, and P(xi_true | X_{< i}, X_{> i}) is the probability that the model predicts
xi_true, obtained through the softmax function. The objective of this loss function is to
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minimize the difference between the predicted and true values. During training, themodel
will attempt to optimize this loss function to better understand the context and semantic
information of the input sequence.

The computation formula of the transformer in the BERT model is as follows:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (2)

In this equation, Q is the query matrix, K is the content to be attended to, and V is the
value matrix. The purpose of scaling by dk is to avoid the dot product from being too large,
as a large dot product can result in a very small gradient after passing through softmax.

3.2. Incremental Pre‑Training
Similar to fine‑tuning, the incremental pre‑training of language models is also a trans‑

fer learning method. Incremental pre‑training refers to further pre‑training on a new
dataset based on an existing pre‑trained language model to enhance the model’s perfor‑
mance in a specific domain. Incremental pre‑training usually involves the following steps:
first, select an existing pre‑trained model; then, conduct additional pre‑training on the
new dataset, typically using the same or similar tasks as the original pre‑training; finally,
fine‑tune themodel that has undergone incremental pre‑training to adapt to specific down‑
stream tasks.

The advantage of incremental pre‑training is that it can utilize information from the
new dataset to enhance the model’s representational power. Additionally, as the pre‑
trainedmodel has already learned a significant amount of semantic information, themodel
can converge faster during incremental pre‑training and require less training data. For in‑
cremental pre‑training, we selected 139,255 Sina Weibo text data points from check‑in lo‑
cations in Jinan city from March to December 2022 after pre‑processing and cleaning. We
used these data to construct a general web text corpus. Some examples of Sina Weibo text
data are shown in Table 1.

Table 1. An example of incrementally pre‑trained Weibo text data.

景点名称 Name of Scenic Spot Longitude Latitude Weibo Text

大明湖风景名胜区
Daming Lake Scenic

Spot 117.0244 36.6754 大明湖畔捡到夏雨荷

济南千佛山风景名胜区
Jinan Qianfo

Mountain Scenic Spot 117.0369 36.6389 记录在千佛山看的日落

趵突泉公园 Baotu Spring Park 117.01566 36.6615 今天的趵突泉有点雾气

3.3. Geographic Named Entity Recognition Model
Named entities, also known as name entities, are essential terms in the field of natu‑

ral language processing, encompassing words and phrases that pertain to specific objects,
tasks, places, and more, and are identifiable by their names. Among them, geographical
named entities represent a subclass that primarily denotes geographic locations, organi‑
zation names, institutions, and other relevant entities. For the purpose of this study, geo‑
graphical named entities specifically refer to texts that are abundant in web texts, imbued
with geographic semantics. Apart from merely denoting a geographic location, they en‑
compass descriptions of spatial relationships with specific geographic points, including
orientation, distance, and other related aspects.

Based on the BERT model, we constructed a geographic named entity recognition
framework that can extract text semantics and perform task‑oriented recognition. We first
conducted incremental pre‑training on the collected ubiquitous network text data, and
then added new neural network structures for the geographic named entity recognition
task. The resulting model predicts whether each character in the ubiquitous network text
belongs to a geographic named entity. The incremental pre‑training fine‑tuning learning
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model and training frameworkwere built for the geographic named entity recognition task.
The input data for the model are ubiquitous network text data, which are more natural‑
language‑like and are therefore used by the geographic named entity semantic model for
incremental pre‑training. The final neural network structure of the geographic named en‑
tity recognition model is shown in Figure 2.
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Our model consists of two main parts: the encoder and the decoder. The encoder
is mainly used for the pre‑training and fine‑tuning stages of the BERT model. In the pre‑
training stage, we adopt an incremental pre‑training method to further improve the accu‑
racy of semantic recognition. In the fine‑tuning stage, wemainly train themodule quantity
of the semantic feature extraction module to ensure that BERT’s semantic feature extrac‑
tion achieves the best results. The output of the encoder is used as the input of the decoder,
and its dimensionality is kept consistent.

For the decoder part of the model, the output of the encoder is used as the input. It
first passes through a fully connected feedforward neural network layer and is transformed
nonlinearly via an activation function to maintain the same dimensionality as the input.
Then, the output of this layer is used as the input to the bidirectional LSTM layer. The
bi‑directional LSTM layer contains two LSTM layers, which read the input sequence from
both the forward and backward directions and generate forward and backward hidden
state sequences, respectively. Finally, these two sequences are concatenated into a new
sequence, and the concatenated output is fed into a fully connected layer for sequence
labeling classification. The last layer is a CRF layer, which is added after BERT and can
add constraints on the sequence data relationships. The CRF layer calculates the CRF loss
function based on the sequence labeling classification output of the fully connected layer,
thereby adding constraints on the order of generated labels to ensure that the output results
are legal. Compared with the BERT model, the previous modules (i.e., the model’s input
part and the semantic feature extraction module) are exactly the same.

Next, the objective function and loss function of the geographical named entity recog‑
nition model will be introduced. When introducing the model structure, it was mentioned
that the role of the CRF layer is to calculate the loss function based on the output of the fully
connected layer. Specifically, in the geographical named entity recognition task, the loss
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function of the CRF layer of the model contains two types of scores: emission score and
transition score. In the CRF layer, Equation (3) can be used to represent the probabilities.

P(y|x) =
exp

(
∑n

i=1

(
∑yi

Xiyi

)
+ ∑yi ,yi+1

tyi ,yi+1

)
Z(x)

(3)

In Equation (3), n is the sequence length, and ∑yi
Xiyi represents the summation of

emission scores, which is used to denote the scores of all labels observed at position i with
the given feature Xiyi. ∑yi ,yi+1

tyi ,yi+1 represents the summation of transition scores, which
is used to denote the scores of all transitions from one label to another. Z(x) represents
the normalization factor used to calculate the sum of possible state sequences.

The emission score xiyi comes from the output of the BiLSTM layer, which focuses on
expressing which geographical named entity label the current character can be mapped
to. The transition score tyiyj represents the transition score between categories in the text
sequence. For example, tB−Entity,I−Entity = 0.9 means the score from the B − Entity cate‑
gory to the I − Entity category is 0.9. The transition score matrix composed of all category
transitions is a parameter of the geographical named entity recognition model, and these
scores are updated during the iterative process of training. When calculating the CRF loss
function, the true path score (emission score and transition score) and the total score of all
paths (emission score and transition score) are calculated. The goal of model training is
to make the score of the true path the highest among all paths. Therefore, the objective
function of the model can be obtained:

Objective Function =
PRealPath

P1 + P2 + . . . + PN
(4)

Taking the logarithm of the above equation yields the following:

Log Objective Function = log
PRealPath

P1 + P2 + . . . + PN
(5)

By taking the negative of the objective function above, since the goal of the model
training is to minimize the loss function, we obtain the following loss function:

Loss Function = −log PRealPath
P1 + P2 + . . . + PN

(6)

In the equation above, Prealpath represents the true path fraction when calculating the
CRF loss function, which is composed of the transmit fraction and the transfer fraction. Pi
represents the path fraction of the i − th path, so the denominator in the fraction represents
the total fraction of all paths.

To make the fine‑tuning task more efficient, we propose several optimization strate‑
gies. The early stopping strategy is used to prevent overfitting of the neural network. The
hierarchical fine‑tuning strategy allows for different layers to use different learning rates
for model fine‑tuning. The layer‑by‑layer unfreezing strategy, similar to the hierarchical
fine‑tuning strategy, only trains the parameters related to the target task in higher layers
while freezing the general knowledge in lower layers, ensuring that the model’s general
knowledge is not forgotten. In addition, to evaluate the accuracy of the geographic named
entity recognition model, we introduce the evaluation metrics of precision, recall, and F1
score. To introduce these metrics, we first explain several commonly used concepts:

True Positive (TP): The number of positive samples that the model correctly classi‑
fies as positive, that is, the number of correctly identified geographic named entities in
the sample.

False Positive (FP): The number of negative samples that the model incorrectly clas‑
sifies as positive, that is, the number of non‑geographic named entities identified as geo‑
graphic named entities in the sample.
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True Negative (TN): The number of negative samples that the model correctly classi‑
fies as negative, that is, the number of correctly identified non‑geographic named entities
in the sample.

FalseNegative (FN): The number of positive samples that themodel incorrectly classi‑
fies as negative, that is, the number of geographic named entities identified as
non‑geographic named entities in the sample.

The formulas for calculating precision, recall, and F1 score are as follows:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 =
2 × Precision × Recall

Precision + Recall
(9)

As the above formulas show, precision refers to the samples predicted as positive by
the model that are actually positive. Recall refers to the proportion of actual positive sam‑
ples that are correctly predicted by the model. The F1 score is the harmonic mean of preci‑
sion and recall, which can comprehensively evaluate the performance of both indicators.

3.4. Geographic Named Entity Correction
Chinese geographical named entity text error correction refers to detecting and cor‑

recting errors in spelling, words, and other aspects of geographical named entity text to
improve the accuracy and readability of the text. Unlike English text, Chinese text has
certain particularities in the form of language. Chinese vocabulary is composed of one or
more Chinese characters, and each Chinese character has its own meaning, while English
words usually represent a letter or number, where each letter has no meaning in itself, so
letters need to be combined to form a vocabulary. Therefore, for English, entity error cor‑
rection is used to correct the letters in the word, while for Chinese, entity error correction
is used to correct a Chinese character. Types of errors generally include spelling errors and
word errors. Geographic named entity correction provides researcherswith a newperspec‑
tive for studying geographical named entities and expands the limitations of the original
geographic named entity recognition, which was only focused on recognition accuracy.
Examples of geographical named entity of different error types are shown in Table 2.

Table 2. Geographical named entity of different error types.

Error Type Geographical
Named Entity Translation Error Entities

Spelling mistakes 九如山 Jiuru Mountain 久如山
Missing spelling 千佛山 Qianfo Mountain 千山
Wrong word used 大明山 Daming Mountain 大名山

The geographical named entity text correctionmodel is based on the BERT framework
and is also divided into two parts: the encoder and the decoder. The resulting model
structure is shown in Figure 3.

The encoder part of the model is consistent with the geographic named entity recog‑
nition model. The encoder part of the model is identical to that of the geographic named
entity recognitionmodel. As for the decoder part, twomoduleswere designed for error de‑
tection and correction. For the error detectionmodule, the input of the decoder first passes
through a fully connected layer for linear transformation. Since error detection is a binary
classification task that classifies each character as either correct or incorrect, the output di‑
mension of this layer needs to be converted to two dimensions, making the final output
dimension suitable for the target task’s classification dimension. The softmax function is
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applied to the linearly transformed output to compute the probabilities of correctness and
incorrectness for each character. These probabilities are normalized, resulting in output
values of either 0 or 1. In the output vector, the value on the first dimension represents
the probability of being incorrect, while the value on the second dimension represents the
probability of being correct. For the error correction module, the output of the encoder
is converted to the corresponding character using the maximum value selection method.
The ID of the dimension with the maximum output value is used to predict the character
and query the lookup table to obtain the corresponding model predicted character.
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Next, we will introduce the objective function and loss function of the geographical
named entity correction model. The decoder structure of the geographical named en‑
tity text correction model consists of two parts, which include error detection and error
correction subtask modules. Therefore, we will discuss the loss functions of these two
subtasks separately.

For the error detection subtask, there is a problem of class imbalance in the dataset,
which means that the number of samples with incorrect characters is much smaller than
that of correct characters. Thismay lead to poor performance of themodelwhen predicting
incorrect characters, which are the focus of the correction task. Therefore, in this section,
we use the improved cross‑entropy loss function, Focal Loss, to calculate the loss value of
the error detection subtask, which has the following mathematical form:

Lossdet = Focal Loss(pt) = −αt(1 − pt)
γ log(pt) (10)

The core idea of the Focal Loss function is to balance the importance of positive and
negative samples, reducing the weight of easily classified positive samples while focusing
on the weight of difficult‑to‑classify negative samples. In Equation (10), pt represents the
predicted probability of the model for the correct character, and −log(pt) is consistent
with the cross‑entropy loss function. That is, the degree of punishment for correctly classi‑
fied characters is proportional to the logarithm of the predicted probability, meaning that
the smaller the predicted probability, the greater the punishment. (1 − pt)γ is the unique
aspect of Focal Loss, controlling the degree of punishment for difficult‑to‑classify samples
through an adjustable parameter γ. αt represents the weight of the sample class. In this
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study, difficult‑to‑classify negative samples refer to erroneous characters that need to be
detected, and we set the value of αt to 0.25 and the value of γ to 2.

For the error correction subtask, it is similar to the target task of confusionword correc‑
tion. Therefore, we only list the mathematical form of the loss value without
further explanation.

Losscor = −
∑x∈true_prob x

∑x∈true_prob δ(x)
(11)

In the training process of the model, the loss value Lossdet of the error detection sub‑
task and the loss value Losscor of the error correction subtask need to be weighted and
summed to obtain the final loss function. x represents the input text sequence, while δ(x)
represents the text sequence obtained by making small modifications to the input text,
which can include operations such as replacing, inserting, or deleting a single character,
as shown in Equation (12).

Loss = detection_weight·Lossdet + (1 − detection_weight)·Losscor (12)

In Equation (12), detection_weight is a hyperparameter for model training, represent‑
ing the proportion of the loss value of the error detection subtask to the total loss value,
which indicates the importance of the error detection subtask in the task of geographical
named entity text correction.

To make the task of geographical named entity text correction more effective, we use
a gradient optimization strategy during training. This strategy is a way to increase the
batch size to improve the training efficiency without increasing the memory usage when
training deep neural networks.

4. Experiments and Discussion
4.1. Datasets and Pre‑Training

The original data used in this study come from two sources, one of which being ge‑
ographical named entity data that were manually collected by government departments,
and the other being geographical named entity data that were extracted from ubiquitous
web text data. Jinan is located in the eastern coastal region of China and is the capital city
of Shandong Province. It covers an area of approximately 10,244.45 square kilometers and
has 10 districts and two counties under its jurisdiction, as shown in the specific adminis‑
trative map in Figure 4.

The general preprocessing of geographical named addresses mainly involves meth‑
ods such as correcting geographical named addresses, filling geographical named elements,
and identifying and filling geographical named address elements to preprocess geograph‑
ical named address data. However, in this study, semantic representation learning was
used to obtain the semantic features of geographical named entities. The geographical
named entity corpus used in this studynot only includes standardized geographical named
address data, but also includes geographical named entity data obtained from ubiquitous
networks such as social media. Ubiquitous network text data, taking Weibo as an exam‑
ple of the original data source, are shown in Table 3. During the preprocessing of the
geographical named entity data, we mainly corrected and cleaned the erroneous data and
eliminated the data noise by removing duplicate geographical named entity records, use‑
less characters, and stop words and unifying full‑width/half‑width characters. Example of
the cleaned and preprocessed geographic named entity data are shown in Table 4.
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Table 3. Examples of Weibo text data.

Weibo Original Data Source Translation

济南租房独立卫浴春华居可
短租到1214800

Jinan rental independent bathroom Chunhua
residence can be short‑term rent to 1,214,800

初冬济南疫情 Jinan epidemic in early winter

当代济南华山的封闭生活
The Closed Life of Huashan in Contemporary

Jinan

大明湖没有夏雨荷
只有废阳阳的池某灿

There is no Xia Yuhe in Daming Lake, only
Chi Moucan in Abandoned Yangyang

Table 4. Examples of cleaned and preprocessed geographical named entity data.

中文地理命名实体 Chinese Geographic Named Entity Longitude Latitude

顺河街66号银座晶都国际3号楼2层 2nd Floor, Building 3, Ginza Jingdu
International, 66 Shunhe Street 117.001696 36.660089

净水大世界 Clean water world 117.044367 36.690995

鑫苑世家公馆正南方向30米 Xinyuan Family Mansion, due south
30 m 116.907415 36.689018

This study uses a total of 3,530,611 geographic named entity text data points located
in Jinan City, Shandong Province in 2022, which have been preprocessed and cleaned as
the experimental corpus for constructing model instances of geographic named entities.

4.2. Pre‑Training and Validation of Place Names Based on the BERT Model
In order to verify the performance and training cost of the proposed BERT model, we

calculated various indicators of model training and validation, including the training time,
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loss value, perplexity of the validation set, and accuracy of the validation set. These results
are shown in Table 5.

Table 5. Training and validation metrics of semantic models for geographical named entities using
character encoding strategy in BERT model.

Metric Character
Encoder Scheme

Training
Time

Final Training
Loss

Validation Set
Perplexity

Validation Set
Accuracy

Metric
value

Character
Encoding Scheme
Used in BERT

Model

24 h 21 m 39 s 0.6615 1.8511 86.52%

Unlike supervised learning in downstream tasks, the pre‑training phase of the geo‑
graphic named entity semantic model is a self‑supervised learning task, and there are no
standard labeled data. Therefore, this study added perplexity as the main indicator to
evaluate the performance of the model. The calculation formula is as follows:

perplexity = eeval_loss (13)

where e is the natural logarithm, and eval_loss is the average loss value of the model on
the validation set.

According to the experimental results, our validation accuracy reached 86.52%, which
is at a high level and proves that the BERT model, after improvement, can better under‑
stand the semantic meaning of geographic named entity text. After discussing and analyz‑
ing the pre‑training phase used in previous relevant studies, this study obtained similar
conclusions to those of previous studies, proving that even if the research area and data ob‑
jects are different, the model proposed in this study follows the rules defined by previous
studies. This model provides a foundation for subsequent model construction and related
application research.

4.3. Comparative Analysis of the Number of Semantic Modules in BERT Model
Previous research [48] has conducted comparative studies on the number of seman‑

tic modules in the BERT model. To verify whether the BERT‑based geographic named
entity recognition model conforms to the conclusions of previous research, we conducted
comparative validation experiments on the number of modules and on whether digits are
uniformly replaced. In the number comparison validation experiment, we compared the
output results of the BERT‑based geographic named entity recognitionmodelwith those of
previous research to evaluate the differences and similarities between them. In the compar‑
ison validation of whether digits are uniformly replaced, we verified whether our model
can correctly identify and process digits and replace them uniformly to improve the accu‑
racy and consistency of geographic named entity recognition, addressing the issues found
in previous research. Through these validation experiments, we can more accurately eval‑
uate the performance and reliability of the BERT‑based geographic named entity recog‑
nition model and provide guidance and reference for further improving and optimizing
geographic named entity recognition technology.

Therefore, we conducted a comparative analysis of different numbers of semantic fea‑
ture extraction modules. After training with the training set of the geographic named
entity corpus, we set different numbers of semantic feature extraction modules (6, 8, 10,
and 12) for four control models. The specific training and validation indicators are shown
in Table 6.
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Table 6. Training and validation metrics of semantic models for geographical named entities with
different numbers of semantic feature extraction modules.

Metric Number of Semantic Feature
Extraction Modules Training Time Final Training

Loss
Validation Set
Perplexity

Validation Set
Accuracy

Metric
value

6 29 h 45 m 43 s 0.1813 1.2616 94.72%
8 35 h 52 m 41 s 0.2567 1.2572 94.84%
10 41 h 45 m 51 s 0.1745 1.2518 94.96%
12 47 h 40 m 07 s 0.1736 1.2497 95.03%

According to Table 6, as the number of semantic feature extraction modules increases,
the training time also increases correspondingly, showing a positive correlation with the
module quantity. The perplexity of the training set is roughly negatively correlated with
the number of modules, and the loss of the training set and the perplexity of the validation
set are relatively small, indicating that there is no overfitting phenomenon. This study ulti‑
mately used a model with 12 semantic feature extraction modules as the basic framework
for further research to ensure the ultimate effectiveness of downstream tasks.

To further improve the accuracy of subsequentmodels based on the BERT framework,
we conducted a digit replacement experiment after selecting the uppermodule features. In
the geographical named entity recognition task, identifying digits is relatively difficult and
less practical. Therefore, we conducted an experiment to replace Arabic numerals in the
geographical named entity text corpus, and the experimental results are shown in Table 7.

Table 7. Training and validation metrics of semantic models for geographical named entities in text
corpus where Arabic numerals are replaced with (NUM) and where they are not replaced.

Metric Whether Arabic Numerals
Are Replaced by (NUM) Training Time Final Training

Loss
Validation Set
Perplexity

Validation Set
Accuracy

Metric
value

Y 50 h 16 m 00 s 0.0331 1.0975 97.96%
N 47 h 40 m 07 s 0.1736 1.2497 95.03%

Based on Table 6, we can see that the Arabic numerals in the geographic named entity
corpus affect themodel’s ability to extract semantic features from the text. At the same time,
only a small amount of training time cost was added, and the loss value of the training set
and the perplexity of the validation set decreased significantly. In order to improve the
semantic feature extraction ability of the BERT model, we replaced the Arabic numerals
in the corpus with unified codes. Finally, we decided to use the geographic named entity
corpus with the replaced Arabic numerals as the basis for subsequent research.

4.4. Geographic Named Entity Recognition
In order to improve the robustness and resilience of the geographic named entity

recognition model, we conducted incremental pre‑training on a ubiquitous network text
corpus constructed from 139,255 Sina Weibo texts that were checked‑in within Jinan city
from March to December 2022, after cleaning and preprocessing. Sina Weibo is one of
the most popular social media platforms in China; it is a microblog‑based social network
where users can post short texts, pictures, videos, and audios and interact with other users.
As of 2022, the number of active users on Sina Weibo exceeded 580 million, making it one
of the most important platforms in the field of social media in China. The obtained Weibo
text data can be identified using the named entity recognition model to obtain the corre‑
sponding entities. The example process of geographic named entity recognition is shown
in Figure 5. Examples of recognized entities are shown in Table 8.
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In order to improve the robustness and resilience of the geographic named entity 
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corpus constructed from 139,255 Sina Weibo texts that were checked-in within Jinan city 
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ers. As of 2022, the number of active users on Sina Weibo exceeded 580 million, making it 

one of the most important platforms in the field of social media in China. The obtained 

Weibo text data can be identified using the named entity recognition model to obtain the 

corresponding entities. The example process of geographic named entity recognition is 

shown in Figure 5. Examples of recognized entities are shown in Table 8. 
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Table 8. Training data examples for the geographical named entity recognition model.

Chinese Text Display in English Recognition Result

济南华山湖朝霞现天空之镜
Jinan Huashan Lake sunrise

mirror of the sky Jinan; Huashan Lake

第一次来济南和大明湖合个影
First time coming to Jinan
and taking a photo with

Daming Lake
Jinan; Daming lake

趵突泉很好
就是体感47度已经肝不动了

Baotu Spring is very good,
but feeling 47 degrees is

already so tired
Baotu Spring

初冬大明湖济南身边事同城种草
Early winter Daming Lake

Jinan things around the same
city recommended

Daming Lake; Jinan

For the geographic named entity recognition model, this study developed a training
framework with hyperparameters, as shown in Table 9.

Table 9. Training hyperparameters for the geographical named entity recognition model.

Hyperparameters Value

Batch_size 64
Initial_learning_rate 0.00003

epoch 100
num_labels 3(B‑entity, I‑entity, and O)

Lstm_hidden_size 1024
Num_transformer_module 12

Patience_num 0.0002
Layer_wise_learning_rate 15

Min_epoch_num 10
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This study first manually constructed 14,728 labeled data points of geographic named
entity recognition based on the collected Sina Weibo data, and integrated 2363 data points
from the CLUENER2020 dataset to form the dataset for the geographical named entity
recognition task. The model was fine‑tuned based on the above incremental pre‑training.
The ratio of the training set, validation set, and testing set during the training process was
8:1:1, and the data selection method was random. In addition, to evaluate the recognition
accuracy of the proposedmethod for geographic named entity recognition, we compared it
with several traditional methods for geographic named entity recognition, including Fully
Connected Neural Network + CRF, RNN + CRF, and BiLSTM + CRF. Three commonly
used classification indicators were used to evaluate the effectiveness of geographic named
entities, namely precision, recall, and F1‑score.

Similar to the pre‑training task of the geographical named entity recognition model,
to verify the performance and training cost of the recognition model, we also calculated
various indicators for model training and validation, as shown in Table 10.

Table 10. Incremental pre‑training task for geographical named entity recognition model on various
metrics on the training and validation sets.

Task Name Training Time Final Training
Loss

Validation Set
Perplexity

Validation Set
Accuracy

Geographic named entity recognition
model incremental pre‑training task 4 h 42 m 56 s 0.5199 1.9393 87.72%

From Table 9, we can see that the model has relatively good performance on the ubiq‑
uitousweb text corpuswith a relatively small amount of data, indicating that themodel has
strong text semantic understanding ability. After verifying the effectiveness of the model,
we compared it with several traditional models. The comparison results of the precision,
recall, and F1 score for each method are shown in Table 11.

Table 11. Comparison results of precision, recall, and F1 score between the geographical named
entity recognition model and other methods.

Geographic Named Entity
Recognition Method Precision Recall F1 Score

FCNN + CRF 0.7981 0.7533 0.7751
RNN + CRF 0.8535 0.8299 0.8415

BiLSTM + CRF 0.8524 0.8379 0.8451
BERT + CRF 0.9018 0.9074 0.9045

As shown in Table 11, our improved BERT‑based geographic named entity recogni‑
tionmodel has significant advantages over traditionalmethods (FCNN+CRF, RNN+CRF,
and BiLSTM + CRF), with an F1 score of around 0.90, which proves that incorporating
social media information into geographic named entity recognition with pre‑trained lan‑
guage models can greatly improve the accuracy of geographic named entity recognition
tasks. By comparing BiLSTM + CRF with our method, it can be concluded that the method
based on the pre‑trained model can enable the model to learn more language features and
have better generalization ability, and thus improve the recognition effect. Our proposed
geographic named entity recognition model outperforms previous methods in precision,
recall, and F1 score, demonstrating its excellent identification performance. Overall, our
proposed model performs better than previous traditional models and has better compre‑
hensive performance, laying a foundation for further research on geographic named entity
recognition text.
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4.5. Geographic Named Entity Correction
This study used a total of 3,530,611 geographic named entity text data points located

in Jinan City, Shandong Province in 2022, which were preprocessed and cleaned, as the
experimental corpus for constructing model instances of geographic named entities.

To perform the correction of geographic named entities, we used a dataset of
779,924 text samples of geographic named entities obtained through manual annotation
and data augmentation techniques. The data augmentation methods used included vo‑
cabulary replacement, back‑translation, random insertion, and random deletion.

The dataset was randomly divided into training, validation, and testing sets with pro‑
portions of 85%, 10%, and 5%, respectively. The structure of the dataset included twofields,
which were the original geographic named entities and the corrected geographic named
entities. The training data accounted for 85% of the total dataset, which was used with the
aim of training a geographic named entity correction model with a large amount of data,
while the validation data accounted for 10%, and was mainly used to evaluate the trained
correctionmodel and adjust and optimize themodel parameters based on the evaluation re‑
sults. Some examples of geographic named entity correction are shown in Table 12. Addi‑
tionally, the hyperparameters used to train the geographic named entity correction model
are shown in Table 13.

Table 12. Examples of corrected geographical named entities.

Geographical
Named Entity

Display in
English Is Corrected Error Character

Position
After

Correction

久如山 Jiuru Mountain N 1 九如山

千佛山
Qianfu

Mountain Y 千佛山

老山 Lao Mountain N 1 崂山
大名湖 Daming Lake N 2 大明湖

Table 13. Model training hyperparameters.

Hyperparameters Value

Batch_size 64
Accumulate_grad_batches 4

Detection_weight 0.3

After data augmentation and model training on the geographical text corpus, in or‑
der to evaluate the geographical named entity text correction model, we compared it with
the RNN (seq2seq) method. The comparison results of our geographical named entity cor‑
rection model and the traditional error correction method based on RNN and the seq2seq
model architecture on the sequence metrics are shown in Table 14.

Table 14. Comparison results of sequence‑level metrics between the geographical named entity text
correction model and the method based on the seq2seq model structure.

Geographic Named
Entity Correction

Method

Sequence‑Level
Precision Sequence‑Level Recall Sequence‑Level F1

Score
Sequence‑Level

Accuracy

RNN (seq2seq) 0.8983 0.4369 0.5879 0.8051
BERT 0.9765 0.7647 0.8577 0.8595

From Table 14, compared with traditional RNN error correction methods, it can be
seen that our proposed error correction method improves the precision rate from 89.8% to
97.6%, improves the recall rate from 43.7% to 76.5%, improves the F1 value from 58.8% to
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85.8%, and improves the accuracy rate from 80.5% to 85.9%. We can see that our proposed
model for geographic named entity correction outperforms the seq2seq model architec‑
ture on all metrics, demonstrating that the deep learning architecture using incremental
pre‑training and data augmentation can greatly improve the accuracy and effectiveness of
geographic named entity text correction tasks. Other parameters of the geographic named
entity correction model are shown in Table 15.

Table 15. Various error correction metrics of the geographical named entity correction model.

Geographic
Named Entity
Correction
Method

Precision
of Error
Detection

Recall of
Error

Detection

F1 Score
of Error
Detection

Error Cor‑
rection
Accuracy

Error
Correction
Recall Rate

Error
Correction
F1 Score

Sequence‑
Level

Precision

Sequence‑
Level
Recall

Sequence‑
Level F1
Score

Sequence‑
Level

Accuracy

BERT 0.9388 0.8845 0.9108 0.9200 0.8679 0.8932 0.9765 0.7647 0.8577 0.8595

Based on Table 15, we can see that our proposed geographic named entity text correc‑
tion model achieved good results in most of the detection, correction, and sequence‑level
metrics. Our model’s F1 scores for detection, correction, and sequence level were 0.9108,
0.8932, and 0.8577, respectively, all of which reached a high level, demonstrating the ex‑
cellent correction effect of our proposed geographic named entity correction model. This
indirectly proves that the geographic named entity correction model has a strong under‑
standing ability of geographic named entity text semantic features, which lays the founda‑
tion for future research on geographic named entities.

5. Conclusions
In this paper, we first introduced the BERT model framework in natural language

processing tasks. Then, we fine‑tuned the BERT framework and performed incremental
pre‑training, which improved the BERT framework and achieved good results. Based on
the BERT framework, we extended and constructed a geographical named entity recog‑
nition (NER) model. By comparing it with other geographical NER methods, we proved
that our pre‑training fine‑tuning approach performed better than the other recognition
methods, laying the foundation for further research on geographical named entity recog‑
nition. Finally, our proposed geographical named entity correction (NEC) model was also
extended and improved based on the BERT framework. Through a comparison with tradi‑
tional sequence‑to‑sequence‑based correction methods, our proposed geographical NEC
model achievedmuch better correction results. With the continuous development and pop‑
ularization of natural language processing technology, geographical named entity recog‑
nition and correction techniques will be further developed and applied and will become
important tools for people to process geographical information and manage geographi‑
cal knowledge. However, current geographical named entity recognition and correction
technologies still have some shortcomings, such as high error rates in geographical named
entity correction, incomplete coverage of geographical information data, and differences in
processing geographical names in different languages. In summary, geographical named
entity recognition and correction techniques have broad application prospects, but also
have certain defects. In the future, we will focus on realizing more content related to geo‑
graphical named entities and further expanding and upgrading these functions. We will
also improve the BERT model to rebuild the geographical NER and NEC models and pro‑
pose functions such as place name recommendation.
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