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Abstract: Urban planners have been long interested in understanding how urban structure and
activities are mutually influenced. Human mobility and economic activities naturally drive the
formation of road network structure and the accessibility of the latter shapes the patterns of movement
flow across urban space. In this paper, we perform an exploratory study on the relationship between
the street network structure and the intensity of human movement in urban areas. We focus on two
cities and we utilize a dataset of geo-tagged tweets that can form a proxy to urban mobility and the
corresponding street networks as obtained from OpenStreetMap. We apply three network centrality
measures, including closeness, betweenness and straightness centrality, calculated at a global or local
scale, as well as under mixed or individual transportation mode (e.g., driving, biking and walking)
with its directional accessibility, to uncover the structural properties of urban street networks. We
further design an urban area transition network and apply PageRank to capture the intensity of
human mobility. Our correlation analysis indicates different centrality metrics have different levels
of correlation with the intensity of human movement. The closeness centrality consistently shows the
highest correlation (with a coefficient around 0.6) with human movement intensity when calculated
at a global scale, while straightness centrality often shows no correlation at the global scale or
weaker correlation ρ ≈ 0.4 at the local scale. The correlation levels further depend on the type of
directional accessibility and of various types of transportation modes. Hence, the directionality and
transportation mode, largely ignored in the analysis of road networks, are crucial. Furthermore, the
strength of the correlation varies in the two cities examined, indicating potential differences in urban
spatial structure and human mobility patterns.

Keywords: road network; centrality; urban mobility; transitions; geo-tagged tweets; correlation
analysis

1. Introduction

Urban spaces are typically highly localized but they are globally connected [1]. In
particular, the urban space consists of local patchworks, which serve some specific function-
ality. Nevertheless, these patchworks are linked by the urban street network into a whole
at a global scale. The urban space expands to satisfy the requirement of human activities
and extends based on the original urban structure to keep the whole structure flexible and
sustainable. While the structure of urban space is greatly influenced by the history of each
city [2], researchers have long been analyzing its properties in order to facilitate planning
functionalities, such as resource allocation, transportation planning and help understand
human movement patterns. The mobility activities collected in return on the urban space
are then leveraged to analyze the evolution of urban space and help find hidden potentials
for improvement [3].

Human activities in urban environments, such as business and travel, are often shaped
and constrained by the geographical distance to and accessibility of the resources [4]. The

ISPRS Int. J. Geo-Inf. 2023, 12, 7. https://doi.org/10.3390/ijgi12010007 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi12010007
https://doi.org/10.3390/ijgi12010007
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0003-1974-6980
https://orcid.org/0000-0002-9189-2993
https://doi.org/10.3390/ijgi12010007
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi12010007?type=check_update&version=1


ISPRS Int. J. Geo-Inf. 2023, 12, 7 2 of 15

disparity of resource allocations across urban regions (e.g., moving from residential areas
to shopping or art districts) or so-called intervening opportunities often motivate people
to move across regions to satisfy their needs [5,6]. Urban mobility is also impacted by
various other heterogeneous factors. For example, social interactions [7,8] also show strong
correlations with human movements especially for distant travel. External events, e.g.,
global events like the COVID-19 pandemic [9–11], regional events like natural disasters [12],
or local events like crime threats [13] and street festivals [14] could distort the regular pat-
terns of urban mobility, of which the analysis can advocate the need for resilience and
sustainability of economic activities in urban space. In this work, we focus on under-
standing the relationship between urban mobility and urban space structure captured by
street networks.

The urban street network, functioning as the backbone of urban space, plays a vi-
tal role in connecting urban neighborhoods and supporting the local/global movement
in/between urban areas. Its structural properties, such as centrality and accessibility, can
reveal many implications on human activities. Centrality [15], which is a network-based
metric measuring the structural importance of nodes in complex networks, is often utilized
to capture the importance of different parts of road networks, such as intersections and
segments. Intensive studies have shown road network centrality measures play important
roles in understanding urban economic activities [1,16], exploring land use [17–20], traffic
flow analysis [21–29], identifying traffic congestion [30] and discovering the patterns of
traffic accidents [31]. For example, former studies [21,22] indicate that the structural prop-
erties of urban road networks as captured by the betweenness centrality can explain the
observed traffic flow. Another form of centrality, closeness centrality, is shown to be highly
correlated with the intensity of economic activities [16] and land use [32]. Furthermore,
the aggregated human travel flow on streets is shown through simulations to be mainly
shaped by the underlying street structure [23].

Previous studies often perform their analysis at the fine-grained street level. In this
research, we instead consider an aggregated level with urban regions as study units, and
in particular we explore the relationships between road network centrality measures and
the intensity of human urban mobility. In particular, we study three different centrality
measures, including closeness centrality, betweenness centrality, and straightness centrality.
We explore the centrality calculations under various settings. At the global scale, we
calculate the centrality by considering the whole road network; while at the local scale, we
limit the calculation to neighboring road segments and intersections in a predefined spatial
radius. We further consider different transportation modes (e.g., driving, biking, and
walking) and their accessibility in both directions, which are often neglected in previous
work while we will show later has a significant impact on our correlation analysis.

To capture human mobility, we collected large-scale geo-tagged social media posts
as a proxy of real human movements. Compared to previous work on using survey-
based and census data [33], Dollar bill tracking [34], Mobile Phone Call records [35], or
trajectory data [36] collected from GPS (Global Positioning System) enabled devices, e.g.,
taxi trajectory, large-scale geo-tagged data from human sensors provide unprecedented
opportunities for urban mobility analysis and modeling [37]. Geo-tagged social posts are
often publicly available, relatively easier to collect, and cover movements with mixed
modes of transportation.

Figure 1 presents the methodology workflow of our study. For road network centrality
measure, we collected road network raw data from OpenStreetMap (www.openstreetmap.
org), process it to get a list of nodes (i.e., road intersections) and edges (i.e., road segments),
formulate the graph of road networks by whether or not considering the transportation
modes the corresponding accessibility in both directions, and finally calculate various
centrality measures. As a proxy of human urban mobility, we utilize geo-tagged tweets
collected using Twitter Streaming API (https://developer.twitter.com/en/docs/tutorials/
consuming-streaming-data). To capture the flow of the movements across spatial areas in-
stead of static locations, we design an urban region transition network, where the intensity

www.openstreetmap.org
www.openstreetmap.org
https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data
https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data
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of human movements between pairs of regions (i.e., the nodes in the network) is measured
by the frequency of transitions. We further apply a personalized PageRank [38] to measure
and rank the intensity of human mobility activities for each urban region. Finally, the rela-
tionship between road network structure and human urban mobility intensity are captured
by a ranking correlation analysis between the centrality measures and Pagerank outputs.

Urban	Region	
Transition	
Network

PageRankGeo-Tagged	
Tweets

Twitter Streaming API

Road	Segments	
&	Intersections

Road	
Network

Centrality
Measure

Correlation	
Analysis

Open Street Map

Figure 1. The methodology framework of our study. For road network centrality, we collected data
from OpenStreetMap, parse to get road segments and intersections, formulate a graph (undirected or
directed) by taking road segments as edges and intersections as nodes, and calculate various centrality
measures. For human urban mobility intensity, we collected geo-tagged tweets as a proxy of human
movements, designed an urban region transition network to capture the human movement flow
across urban areas, and then applied a personalized PageRank algorithm to measure the intensity of
urban mobility. Finally, we conducted a ranking correlation analysis between the two.

Our results imply that different centrality metrics correlate with the intensity of human
movement at different levels. The directionality and transportation modes of urban road
network do play an important role. Finally, the correlation strength further differs in the
two cities examined. We summarize our main findings below

• With centrality measure calculated as global scale, closeness centrality which captures
the accessibility has the highest correlations (ρ ≈ 0.6) with the intensity of human ur-
ban mobility. Straightness centrality ranks second. Betweenness centrality often does
not show a significant positive or occasionally shows slightly negative correlations.

• When calculated at a local scale with only nearby neighboring nodes considered, all
centrality measures do not show significant positive correlations with urban mobility,
except that the straightness centrality for the city Pittsburgh only shows a relatively
weak correlation (ρ ≈ 0.3− 0.4).

• The transportation modes (i.e., driving, biking, and walking) with directional accessi-
bility correlate with urban mobility at different levels. The centrality when considering
the biking or walking mode tends to have higher correlations compared to the driv-
ing mode.

• The city Pittsburgh often shows stronger correlations than New York City, which could
indicate the possible differences in terms of urban spatial structure and the routine
travel and transportation modes of human movements. e.g., in New York City, the
subway is the top choice for commute which cannot be captured by street networks.

Roadmap: The remaining of the paper is organized as follows: Section 2 discusses
the related work and how our work differs. Section 3 describes our analysis setup and the
dataset. Section 4 presents and analyzes our experimental results, while Section 5 concludes
by also discussing the limitations and future work.

2. Related Work

In this section, we discuss previous works on road network structure analysis using
centrality measure, and the various uses of road network centrality to help analyze human
economic activities, including land use and urban mobility.
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Road Network Centrality Measure: Centrality measure is originally borrowed from
network science research and mainly applied in social networks, biological networks, and
many others [15]. The measure has been extended to analyze the topological structure
of the street network [39,40]. Work in [39] provides a comprehensive study on the sta-
tistical distribution of road network centrality measures, where closeness, betweenness
and straightness centrality show very similar functional distributions, while some other
centrality measures (e.g., Information centrality) follow a power-law distribution. They
further show the distributions diversify across cities. To scale to a large road network, an
approximation method for betweenness centrality was proposed in [41]. The work in [42]
further proposed a method based on the shapley value to refine the existing centrality
metrics such that they take into account not only the functioning of nodes as individual
entities but also as members of groups of nodes. The original centrality algorithm can
also need adjustments for certain applications, e.g., road network selection for maps at
different scales [43] and explaining traffic flow [21]. In this work, we apply three standard
centrality algorithms to capture the nodes (i.e., intersections) importance and study their
relationships to urban mobility intensity.

Road Network Centrality and Economic Activities: Previous studies have been lever-
aging road network structure analysis to understand the urban form and spatial patterns [1]
and how it relates to helping understand human economic activities. The work in [44]
developed a model based on road network closeness centrality and residential land us-
age ratio to predict the population density, which achieves an acceptable accuracy. An
exploratory study in [20] found road network betweenness centrality had the highest cor-
relation with land-use intensity, second by closeness centrality. The former indicated the
location advantage of being traversed more frequently plays an important role. Prior to
the study, analysis done in different urban cities [17–19] had shown a strong association of
road network structure capture centrality measures with land use. Work in [16] studied
the correlation between street centrality and the density of economic activities, and they
found that the street network centrality is more highly correlated with the density of sec-
ondary economic activities, like small local businesses, than primary economic activities,
like wholesale. Studies also found the centrality of urban street network centrality has a
high correlation with real estate values [32,45], gasoline prices [46] and spatial distribution
and volume of retail stores [47,48]. For example, a study in [47] shows the spatial patterns
of retail stores in road network structure. They found the Kernel Density Estimation of
different types of retail stores (e.g., Restaurants) have significant levels of correlations with
closeness centrality.

Road Network Centrality and Urban Mobility: Road network as the backbone con-
nects the urban space and partially determines the accessibility and reachability of human
movements. Intensive studies [21–29] found the road network structure captured by var-
ious centrality measures have a significant impact on urban traffic flow. Leung, Ian XY,
et al. [22] utilized real-world GPS (Global Positioning System) traces data in Shanghai
and San Francisco to prove that some modified centrality metrics can better predict traffic
flow, and the power of prediction of street network centrality differed depending on the
structural properties of street networks. A closer work was done by Jiang, Bin, et al. [23].
They simulated human movement and found that the aggregate flow on streets is mainly
shaped by underlying street structure but not human traveling behavior, and closeness
centrality is not a good indicator. However, they did not utilize real human movement
data to verify the results. Work in [24] utilized taxi trajectory data and measure the traffic
flow intensity as various spatial granularities, e.g., point, line, and area, and they found
that the traffic flow intensity captured by weighted PageRank had a strong correlation with
traffic at the line and area levels. Our work is similar to this work, while we instead utilize
geo-tagged social media posts to capture traffic flow given the availability of GPS trajectory
data. Work by [21] further proposed a modified betweenness centrality to better explain
traffic flow. Other interesting lines of work related to traffic analysis focus on how road
network centrality analysis helps routing and navigation [29], identifying traffic congestion
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on road networks [30], discovering bottlenecks in road networks [49,50], investigating the
patterns of traffic accidents [31] and evaluating accidents’ impact on urban traffic mobil-
ity [25,51]. These works often take GPS trajectory data which are often limited in a specific
city at a relatively small scale and limited to a single mode of transportation (e.g., taxi
trajectory). Our work focuses on urban traffic flow across geographical regions, and we
leverage geo-tagged social media data which are often at large-scale across urban cities with
mixed transportation modes covered. Existing work also largely ignores the accessibility
and directionality under certain transportation modes of street networks, which as we
show later has a significant impact on the correlation between centrality measures and the
intensity of urban mobility.

3. Experimental Setup and Datasets

In this section, we will introduce the network structures that capture the intensity
of human movements and the urban road network as well as the data that drive their
realizations in Pittsburgh and New York City (NYC).

3.1. Human Transition Network

In the human transition network GT = (U, E), the set of nodes U is a collection of
non-overlapping areas/neighborhoods in the city under examination. Further, a directed
edge eij between two areas u1, u2 ∈ U exists if there has been observed a transition by a city-
dweller from u1 to u2. The definition of uis can be arbitrary (e.g., municipal neighborhood
borders, grids [52], areas divided by arterial roads [53], etc.). In our analysis, by simplicity,
we follow the grid-based method [52] and divide the whole city (102 miles rectangle
area considered around the center of each city) into 400 neighborhood areas, each one of
0.5 miles2. The grid size of 0.5 miles2 often covers 4–8 street blocks of economic districts
in urban cities of the United States (US). We experimented with different grid sizes (i.e.,
0.25, 0.75 miles) and our results are not sensitive to it. Further reducing the grid size leads
to sparse data where many grids have 0 or very few geo-tweets and thus noisy for the
latter statistical correlation analysis, while further increasing the grid size leads to a smaller
number of grids which thus do not give enough data points for the latter analysis. We will
also leave the exploration of other definitions of urban areas as future work.

In order to obtain the structure of GT for both cities we use geo-tagged social-media
user-generated content. In particular, we use a dataset (https://www.icwsm.org/2016
/datasets/datasets/, accessed on 31 October 2022) provided by [54], where the tweets
were collected using Twitter’s streaming API. Twitter’s Terms of Service do not allow
the full JSON for datasets of tweets to be distributed to third parties. However, they do
allow datasets of tweet IDs to be shared. The provided dataset only contains Tweet ID, we
further apply the tool “Hydrator” (https://github.com/DocNow/hydrator, accessed on 31
October 2022) to collect the original tweet post.

We consider tweets in a period from 15 July to 15 November 2013, and only keep those
with exact geo-locations (i.e., with latitude and longitude) voluntarily shared by the user.
Each processed tweet has a tuple format <user Id, place Id, time, latitude, longitude>. In total,
we have 492,131 geo-tagged tweets in Pittsburgh and 3,172,872 in NYC. Figure 2 presents a
scatter plot of the distribution, where we can see the central business areas, e.g., Pittsburgh
downtown, and NYC Manhattan, often show a dense cluster of human movements. Using
these data, we generate edge (transition) eij ∈ E if the same Twitter user has generated two
consecutive tweets in locations li ∈ ui and lj ∈ uj within a predefined time interval ∆t and
the distance between these two locations is greater than a threshold ∆d. In our experiment,
we set ∆t = 4 h and ∆d = 10 m. Figure 3 shows the Empirical Cumulative Distribution
Function (ECDF) of the transition distance and time intervals. The ECDF is a step function
defined as follows given n data points Xi

F̂n(t) =
1
n

n

∑
i=1

1Xi<t (1)

https://www.icwsm.org/2016/datasets/datasets/
https://www.icwsm.org/2016/datasets/datasets/
https://github.com/DocNow/hydrator
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where 1Xi<t is an indicator function and equal to 1 when the ith data point Xi is less
than a fixed value t. t is a sorted sequence of Xi in increasing order. As we can see
from the distribution, the parameters we select capture a majority of the transitions (e.g.,
>75%). Finally, we have 188,433 such transition pairs in Pittsburgh and 962,319 in NYC,
as summarized in Table 1. Note that the above definition allows for self-edges in GT . We
can also annotate every edge eij with a weight, which captures the number of transitions
between the two urban areas i and j.

(a) Pittsburgh (b) New York City

Figure 2. Distribution of geo-tagged tweets in different areas of the two cities, Pittsburgh (a) and
New York City (b). The maps come from Google Maps with a zoom level of 10, and a scale ratio
of 1:288895 given that Vector tile layers are used. For the map orientation, the north arrow follows
naturally with the bottom-up direction in the figure. Each square image represents a 10 miles by
10 miles geographical region.
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(b) New York City

Figure 3. The Empirical Cumulative Distribution Function of transition distance under different
parameters. The top figure includes all transitions, the one in the middle keeps transitions with
time interval ∆t < 4 h, while the bottom as the setting we select for our later analysis only keeps
transitions with time interval ∆t < 4 h and transition distance ∆d > 10 m. Our parameter selection
captures a majority of the transitions, i.e., 86.4% for Pittsburgh and 78.5% for New York City.
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Table 1. Number of tweets and transitions in two urban cities, where a transition is a movement by
the same user from one area to another area within a predefined time interval ∆t.

City # Geo-Tagged Tweets # Transitions

Pittsburgh 492,131 188,433

New York 3,172,872 962,319

Centrality in GT : To capture the centrality of human movement in different neigh-
borhoods, we calculate the PageRank [38] for each node in GT . Originally, PageRank is
used to capture the importance of web pages, where pages visited more often by a random
walker are more important. In particular, we calculate a weighted PageRank score Pi of a
geographical area i as:

Pi = α ∑
j

Aij
Pj

kout
j

+ βi (2)

where, α = 0.85 and kout
j is the weighted out-degree of node j which counts self and outgo-

ing edges. βi is a personalized (external) priority importance for area i, which is defined as
the fraction of tweets taking place in area i. For implementation, we use a network analysis
tool, namely “igraph”, in R language (https://igraph.org/r/, accessed on 31 October 2022)
to create the weighted graph and apply the existing PageRank algorithm available in igraph
(https://igraph.org/r/doc/page_rank.html, accessed on 31 October 2022).

We will also use a second simple centrality metric for GT , which is the number of geo-
tagged tweets nt,i generated in area i. The latter does not incorporate mobility information,
but rather captures the intensity of activity in each area.

3.2. Street Network

We will model the street network through a graph Gs = (V, S), where the set of nodes
V represents the intersections in the street spatial structure and an edge sij ∈ S represents
the street segment that connects intersections i and j. We fetch the street networks from
OpenStreetMap and process them into the Gs network format. In particular, we first
exported the raw map data in 2014 for the Northeast region of the United States using
the “Geofabrik Downloads” (https://download.geofabrik.de/, accessed on 31 October
2022) tool provided by OpenStreetMap. Then we apply osm4routing (https://github.com/
Tristramg/osm4routing, accessed on 31 October 2022), which is a library originally written
in Python and now rewritten in Rust, to extract the nodes and edges list to represent the
road network.

Each node in the network (with a tuple <node Id, latitude, longitude>) represents
the intersections of streets and the edge represents the segment. osm4routing extracts
additional metadata such as the coordinates of each intersection, the length of each street
segment and accessibility flags for each street segment in two directions (e.g., accessibility
by car, foot, bike, etc.). The accessibility flags also provide a direction on each edge sij,
which might be different depending on the mode of transportation.

The information of each edge is formalized as a tuple <source node, target node, dis-
tance, car, car reverse, bike, bike reverse, foot>, where the distance is the geographical distance
between two nodes. car is an integer, for example, 2 means there are 2 lanes available for
vehicles in the direction from the source node to the target node, and car reverse represents
the capacity for the other direction. Bike and foot represent the accessibility for biking and
walking separately. We select two cities, Pittsburgh and New York City, for our experiments,
each with a 10 miles2 rectangle area centered in the city. As summarized in Table 2, there
are in total 23,126 (21,886) nodes and 32,475 (34,651) edges for the undirected Gs in the 102

miles rectangle area around the center of Pittsburgh (NYC). Figure 4 further visualizes the
road network on the map by using the tool from [55]. In contrast to tweets’ geographical dis-
tribution as shown in Figure 2, it is not quite straightforward to understand the relationship
between the road network structure and urban mobility intensity. Note that for the road

https://igraph.org/r/
https://igraph.org/r/doc/page_rank.html
https://download.geofabrik.de/
https://github.com/Tristramg/osm4routing
https://github.com/Tristramg/osm4routing
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network centrality measure below, we extend the studied area to 15 miles when calculating
the node centrality to eliminate the “edge effects” [56] due to artificial boundaries.

Table 2. Number of nodes and edges for road networks in Pittsburgh and New York City.

City # Nodes # Edges

Pittsburgh 23,126 32,475

New York 21,886 34,651
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(b) New York City

Figure 4. Street network in selected urban areas of two cities, Pittsburgh (a) and New York City
(b). The map data come from OpenStreetMap, with the zoom level, scale ratio and north arrow
orientation the same as in Figure 2.

Centrality of Street Network: For a road network Gs with n nodes and m edges,
we use a network analysis tool, namely “igraph”, in R language (https://igraph.org/r/,
accessed on 31 October 2022) to create the weighted graph and then calculate three well-
established measures of node centrality: closeness centrality Cc, betweenness centrality Cb

and straightness centrality Cs.
Cc

i captures the accessibility of node i and is defined as [15]:

Cc
i =

n− 1
n
∑

j=1,j 6=i
dij

(3)

where, dij is the shortest path length between nodes i and j.
Cb

i quantifies to what extent node i serves as a “broker” between nodes, is formally
defined as [15]:

Cb
i =

1
(n− 1)(n− 2)

n

∑
s=1;t=1;s 6=t 6=i

ni
st

nst
(4)

where, nst is the number of shortest paths between nodes s and t, while ni
st is the number

of such shortest paths that traverse node i.
Cs

i measures the extent to which node i can be reached directly, on a straight line, from
all other nodes, which is defined as [16]:

Cs
i =

1
n− 1

n

∑
j=1;j 6=i

dEucl
ij

dij
(5)

https://igraph.org/r/
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where, dEucl
ij is the Euclidean distance between nodes i and j.

In particular, we calculate three global and nine local indices of street centralities. The
global indices, Cc

glob, Cb
glob and Cs

glob, are calculated using the whole road network. We

also consider the local version of centralities Cc
local,d, Cb

local,d and Cs
local,d, where we compute

the centrality of node i considering only the nodes that are within a radius d. In our
experiments we use d = 800, 1600 and 2400 m, by only considering neighboring nodes
within radius d.

To understand the relationship between different centrality measures, we calculate the
pair-wise ranking correlations. Figure 5 shows the ranking correlations between pair-wise
centrality measures when considering the street network as an undirected graph, for the two
cities of interest (i.e., Pittsburgh and New York City). From the correlation color map, we can
see the centrality measure at a global scale often have lower correlations with the one at local
scale when d gets smaller. At the global scale, the closeness centrality highly correlates with
betweenness centrality but not with straightness centrality. However, straightness centrality
at the local scale, especially when d = 1600, tends to correlate significantly higher with
closeness and betweenness centrality at the global scale. Finally, given the same centrality
measure at the local scale, e.g., Cs

local , the pairwise correlation between two local versions
drops as the radius d “difference” ∆d increase, e.g., ρ(Cs

local,d=800, Cs
local,d=1600) = 0.86

with ∆d = 800 is larger than ρ(Cs
local,d=800, Cs

local,d=2400) = 0.75 with ∆d = 1600, which
is expected. However, given the same ∆d, the larger the radius, the larger the pairwise
correlation since the road networks between two local versions for the same node have a
larger overlap ratio, e.g., the overlap ratio is 1/9 between d = 800 and d = 1600 versus
9/25 between d = 1600 and d = 2400.

(a) Pittsburgh (b) New York City

Figure 5. Pair-wise correlation between different centrality measures when considering the road
network as an undirected graph. The color bar on the right side shows the range of correlation
coefficients with the highest as 1 and the lowest as −0.35 per our data.

Finally, we consider the urban street network as a directed graph based on the direction
accessibility for three types of movements including driving, biking and walking. In this
case, there are two different calculations for closeness and straightness centrality based on
two types of shortest paths between nodes. The first one is the outgoing shortest path dout

ij ,
with the direction starting from node i to node j. The second is the incoming shortest path
din

ij with direction into node i from node j, capturing how easily a traveler can access node i
from other locations in the city. Therefore, we have in and out closeness and straightness
centrality based on these two types of shortest path calculations. Figures 6 and 7 present
the pair-wise correlations, where we can see in and out centrality does highly correlate
with each other. They also show different correlation patterns compared to the one when
considering the road network as an undirected graph.
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(a) driving (b) biking (c) walking

Figure 6. Pittsburgh: Pair-wise correlation between different centrality measures when considering
the road network a directed graph. The color bar on the right side shows the range of correlation
coefficients with the highest as 1 and the lowest as −0.4 per our data.

(a) driving (b) biking (c) walking

Figure 7. New York City: Pair-wise correlation between different centrality measures when con-
sidering the road network as a directed graph. The color bar on the right side shows the range of
correlation coefficients with the highest as 1 and the lowest as −0.4 per our data.

3.3. Correlation Analysis Setup

Our goal is to examine the relationship between the central areas in a city as captured
through the mobility of people, and the central areas of the city as captured through the
street network. For that, we will utilize Spearman’s rank correlation coefficient [57] ρ.
In particular, the first variable for this correlation will be the PageRank centrality Pi of
nodes i ∈ U (as well as nt,i). However, the centrality values that we got from the street
networks are defined on a different set of nodes (set V). Thus, we will use a spatial mapping
Φ : V → U utilizing the lat/lon coordinates we have for every v ∈ V. With Φ in place,
the second variable for calculating ρ will be the average road network centrality, C̄∗v , of all
nodes v ∈ V that map to i ∈ U, that is, Φ(v) = i. we rank the 400 neighborhood areas based
on average street centrality C̄∗v and PageRank score P of each area and get two sequences of
ranking scores rC and rP and then calculate the Spearman’s rank correlation coefficient ρ to
capture the level of correlations, which is defined as

ρ =
∑i
(
rCi − rC

)(
rPi − rP

)√
∑i
(
rCi − rC

)2
∑i
(
rPi − rP

)2
(6)
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where, rCi and rPi are the ranking scores of C̄∗i and Pi, separately. ρ ranges from −1 to 1,
where 1 is the total positive correlation and 0 is no correlation. For implementation, we
used a statistical library “MASS” in R to calculate the ranks and their correlation.

4. Results and Analysis

We first take the urban street network as an undirected network without consideration
of the traffic accessibility in two directions. Table 3 presents the correlation results for
Pittsburgh and NYC. We can see that the global closeness centrality Cc

glob and betweenness

centrality Cb
glob highly correlate with the intensity of human movement in both urban

environments. This suggests that center areas in urban cities tend naturally to be more
accessible from/to other places (higher Cc

glob) and thus function as city “hubs” (higher Cb
glob).

In contrast, the global straightness centrality Cs
glob, local closeness centrality Cc

local,d and local

betweenness centrality Cb
local,d present no significant positive correlations. However, the

local straightness centrality Cs
local,d shows an interesting urban difference with a significant

level of correlation in Pittsburgh but not in NYC. This is more likely due to the difference of
urban space structures or travel patterns between the two cities. Further analysis is needed
to sort out the exact source of this difference.

In general, the level of correlations with urban mobility intensity using geo-tagged
tweets align well with findings in previous studies using GPS trajectory data [22,24], while
there are still some gaps in utilizing the road network structure to fully explain the urban
traffic. This could be attributed to the mixed and complex transportation systems in urban
areas [58], e.g., subway and train systems overlying the road network serve as “shortcuts”
to connect urban regions and make them more accessible.

Table 3. Correlation ρ (* indicates a p-value < 0.05; ** indicates p-value < 0.01) between the street
centrality and the intensity of human movement.

C
GT Pittsburgh NYC

nt,i Pi nt,i Pi
Cc

glob 0.610 ** 0.604 ** 0.509 ** 0.505 **

Cb
glob 0.501 ** 0.497 ** 0.459 ** 0.466 **

Cs
glob 0.021 0.020 0.078 0.074

Cc
local,d=800m −0.223 ** −0.228 ** −0.085 −0.093

Cc
local,d=1600m −0.043 −0.046 0.012 0.004

Cc
local,d=2400m 0.024 0.0189 −0.044 −0.047

Cb
local,d=800m −0.001 −0.128 * 0.009 −0.127 *

Cb
local,d=1600m 0.017 0.026 −0.072 −0.070

Cb
local,d=2400m 0.106 * 0.112 * −0.014 −0.014

Cs
local,d=800m 0.348 ** 0.351 ** 0.105 * 0.104 *

Cs
local,d=1600m 0.410 ** 0.408** 0.028 0.026

Cs
local,d=2400m 0.442 ** 0.438 ** −0.031 −0.031

We further present the results when we consider the urban street network as a directed
graph based on the direction accessibility for three types of movements including driving,
biking and walking. Table 4 presents the correlation between the centrality of directed street
network and the PageRank score of neighborhood areas (results for ni,t are omitted due to
space limitations). Compared to Table 3, we do not observe significant differences when
considering the directed networks. This might be due to the fact that the transition network
GT essentially captures the starting and ending point of a movement, ignoring the actual
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path followed and/or due to the high similarity of the different directed network structures.
Nevertheless, there is still some significant change for global straightness centrality when
considering directed street networks—especially for biking and walking—which might be
attributed to the fact that for these “slow modes” of transportation short geometric distance
is important. Additionally, the gap between the two cities gets larger when considering the
walking mode, which might indicate the different “walkability” of the urban space.

Table 4. Correlation results (* indicates a p-value < 0.05; ** indicates p-value < 0.01) by considering
the road network as a directed network based on the accessibility of driving, biking and walking in
either direction.

C
PageRank Driving Biking Walking

Pittsburgh NYC Pittsburgh NYC Pittsburgh NYC
Cc

glob (in) 0.597 ** 0.473 ** 0.622 ** 0.397 **
0.616 ** 0.393 **

Cc
glob (out) 0.594 ** 0.481 ** 0.623 ** 0.391 **

Cb
glob 0.481 ** 0.431 ** 0.520 ** 0.452 ** 0.514 ** 0.444 **

Cs
glob (in) −0.053 0.061 0.200 ** 0.301 **

0.212 ** 0.313 **
Cs

glob (out) −0.002 0.083 0.231 ** 0.303 **

Cc
local,d=800m (in) −0.253 ** −0.143 ** −0.250 ** −0.087

−0.241 ** 0.042
Cc

local,d=800m (out) −0.282 ** −0.142 ** −0.253 ** −0.069

Cc
local,d=1600m (in) −0.133 ** −0.170 * −0.123 ** −0.117 *

0.103 * −0.012
Cc

local,d=1600m (out) −0.067 0.003 −0.103 * −0.012

Cc
local,d=2400m (in) −0.053 −0.215 ** −0.024 −0.178 **

−0.011 −0.078
Cc

local,d=2400m (out) −0.039 −0.204 ** −0.077 −0.171 **

Cb
local,d=800m 0.042 0.100 * 0.044 −0.066 0.041 −0.081

Cb
local,d=1600m 0.061 0.125 * 0.072 −0.035 0.062 −0.044

Cb
local,d=2400m 0.140 ** 0.100 * 0.161 ** 0.009 0.143 ** 0.002

Cs
local,d=800m (in) 0.248 ** 0.053 0.324 ** 0.002

0.362 ** 0.094
Cs

local,d=800m (out) 0.248 ** 0.053 0.324 ** 0.002
Cs

local,d=1600m (in) 0.306 ** 0.046 0.363 ** −0.020
0.396 ** 0.032

Cs
local,d=1600m (out) 0.306 ** 0.046 0.363 ** −0.020

Cs
local,d=2400m (in) 0.349 ** 0.003 0.386 ** −0.051

0.423 ** −0.023
Cs

local,d=2400m (out) 0.349 ** 0.003 0.386 ** −0.051

5. Conclusions and Discussions

In this paper, we examined the correlations between the centrality of street networks
with the intensity of human movement in urban areas and we found that the correlation
level differs with different centrality metrics, of which some further depend on different
scales (global or local) of calculation, different cities, types of transportation modes and
different directions.

We would like to emphasize that our analysis methods may suffer from a variety
of biases. For example, we examine the correlation by aggregating the road network
centrality and human movement in each neighborhood area, while a microscopic study
might give a different view, e.g., traffic flow analysis at levels of individual street segment
or intersection [21,22,59]. Also, the rectangle urban area we pick and grid-based region
slicing may introduce edge effects on the correlation results. The alternatives would be
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municipal neighborhood boundary or clustered regions based on spatial connectivity and
human transitions [54]. Furthermore, the large-scale available dataset used here may have
some noise and biases. For instance, the street networks in OpenStreetMap might not
be that accurate especially for cities that are not that popular, since all the information
is crowdsourced by the public. Also, the nature of voluntarily sharing may only give
partial information of human movement captured by geo-tagged tweets, of which the
quality depends on many other factors, such as demographic biases, spam tweets, and fake
location information. Mixing of other data sources, e.g., bicycle sharing, GPS trajectory,
subway records, or geo-tagged from other social media platforms could help eliminate
such concerns.

Not shaded by the limitations, our work provides an illuminating way to study the
relationship between urban structure and human movement in a large-scale way, given
the public availability of road network data and geo-tagged social media posts. As we
show closeness centrality often correlates the highest with human movement, but is still
far from fully explaining it. A further smart combination of different centrality measures
calculated at various settings is suggested to build stronger indicators for human urban
mobility. We also recommend the consideration of the directional accessibility under
different transportation modes enabled by road networks when performing road network
structure analysis. Analysis performed in one city might not be easily transferable to
another city, calling for a better understanding of the heterogeneity of spatial structure and
mobility patterns across different cities.

In the future, we plan to examine the levels of correlation by considering the temporal
and contextual information of human movements, such as the time and type [52]. For
network centrality, we want to further investigate other practical factors, such as the
max flow on a street (number of available lanes), the fastest path, and the density/type
of resources surrounding a street intersection. We also want to trace the root cause of
human movements, resource allocation, and road network convenience. Finally, we plan to
understand the dynamic changes of road network structures and how they interplay with
human urban mobility over time.
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42. Szczepański, P.L.; Michalak, T.; Rahwan, T. A new approach to betweenness centrality based on the Shapley Value. In Proceedings
of the 11th International Conference on Autonomous Agents and Multiagent Systems, Valencia, Spain, 4–8 June 2012; Volume 1,
pp. 239–246.

43. Weiss, R.; Weibel, R. Road network selection for small-scale maps using an improved centrality-based algorithm. J. Spat. Inf. Sci.
2014, 9 , 71–99. [CrossRef]

44. Tenzin, N.; Jayasinghe, A.; Abenayake, C. Road Network Centrality based Model to Simulate Population Distribution. J. East.
Asia Soc. Transp. Stud. 2019, 13, 1194–1215.

45. Chakrabarti, S.; Kushari, T.; Mazumder, T. Does transportation network centrality determine housing price? J. Transp. Geogr.
2022, 103, 103397. [CrossRef]

46. Firgo, M.; Pennerstorfer, D.; Weiss, C.R. Centrality and pricing in spatially differentiated markets: The case of gasoline. Int. J. Ind.
Organ. 2015, 40, 81–90. [CrossRef]

47. Han, Z.; Cui, C.; Miao, C.; Wang, H.; Chen, X. Identifying spatial patterns of retail stores in road network structure. Sustainability
2019, 11, 4539. [CrossRef]

48. Yoshimura, Y.; Santi, P.; Arias, J.M.; Zheng, S.; Ratti, C. Spatial clustering: Influence of urban street networks on retail sales
volumes. Environ. Plan. Urban Anal. City Sci. 2021, 48, 1926–1942. [CrossRef]

49. Feng, H.; Bai, F.; Xu, Y. Identification of critical roads in urban transportation network based on GPS trajectory data. Phys. Stat.
Mech. Its Appl. 2019, 535, 122337. [CrossRef]

50. Xu, M.; Wu, J.; Liu, M.; Xiao, Y.; Wang, H.; Hu, D. Discovery of critical nodes in road networks through mining from vehicle
trajectories. IEEE Trans. Intell. Transp. Syst. 2018, 20, 583–593. [CrossRef]

51. Sun, C.; Pei, X.; Hao, J.; Wang, Y.; Zhang, Z.; Wong, S. Role of road network features in the evaluation of incident impacts on
urban traffic mobility. Transp. Res. Part Methodol. 2018, 117, 101–116. [CrossRef]

52. Zhang, K.; Jin, Q.; Pelechrinis, K.; Lappas, T. On the importance of temporal dynamics in modeling urban activity. In Proceedings
of the 2nd ACM SIGKDD International Workshop on Urban Computing, Chicago, IL, USA, 11 August 2013; pp. 1–8.

53. Yuan, N.J.; Zheng, Y.; Xie, X. Segmentation of Urban Areas Using Road Networks; Microsoft Research Technical Report MSR-TR-2012-
65; Microsoft: Albuquerque, NM, USA, 2012.

54. Zhang, K.; Lin, Y.R.; Pelechrinis, K. Eigentransitions with hypothesis testing: The anatomy of urban mobility. In Proceedings of
the International AAAI Conference on Web and Social Media, Cologne, Germany, 17–20 May 2016; Volume 10, pp. 486–495.

55. Eugster, M.J.; Schlesinger, T. osmar: OpenStreetMap and R. R J. 2013, 5, 53. [CrossRef]
56. Gil, J. Street network analysis “edge effects”: Examining the sensitivity of centrality measures to boundary conditions. Environ.

Plan. Urban Anal. City Sci. 2017, 44, 819–836. [CrossRef]
57. Sedgwick, P. Spearman’s rank correlation coefficient. BMJ 2014, 349, g7327. [CrossRef]
58. Chen, P.N.; Karimi, K. Analysis and Modelling of the Multilevel Transport Network: The Metro and Railway System in Greater London;

University of Strathclyde: Glasgow, UK, 2022.
59. Kazerani, A.; Winter, S. Modified betweenness centrality for predicting traffic flow. In Proceedings of the 10th International

Conference on GeoComputation, Sydney, Australia, 30 November–2 December 2009; Volume 2.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1038/nature04292
http://www.ncbi.nlm.nih.gov/pubmed/16437114
http://dx.doi.org/10.1038/nature06958
http://www.ncbi.nlm.nih.gov/pubmed/18528393
http://dx.doi.org/10.1080/10095020.2013.774108
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
http://dx.doi.org/10.1063/1.2150162
http://dx.doi.org/10.5311/JOSIS.2014.9.166
http://dx.doi.org/10.1016/j.jtrangeo.2022.103397
http://dx.doi.org/10.1016/j.ijindorg.2015.03.009
http://dx.doi.org/10.3390/su11174539
http://dx.doi.org/10.1177/2399808320954210
http://dx.doi.org/10.1016/j.physa.2019.122337
http://dx.doi.org/10.1109/TITS.2018.2817282
http://dx.doi.org/10.1016/j.trb.2018.08.013
http://dx.doi.org/10.32614/RJ-2013-005
http://dx.doi.org/10.1177/0265813516650678
http://dx.doi.org/10.1136/bmj.g7327

	Introduction
	Related Work
	Experimental Setup and Datasets
	Human Transition Network
	Street Network
	Correlation Analysis Setup

	Results and Analysis
	Conclusions and Discussions
	References

