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Abstract: Many studies have proven that urban greenness is an important factor when cyclists choose
a route. Thus, detecting trees along a cycling route is a major key to assessing the quality of cycling
routes and providing further arguments to improve ridership and the better design of cycling routes.
The rise in the use of video recordings in data collection provides access to a new point of view of a
city, with data recorded at eye level. This method may be superior to the commonly used normalized
difference vegetation index (NDVI) from satellite imagery because satellite images are costly to obtain
and cloud cover sometimes obscures the view. This study has two objectives: (1) to assess the number
of trees along a cycling route using software object detection on videos, particularly the Detectron2
library, and (2) to compare the detected canopy on the videos to other canopy data to determine
if they are comparable. Using bicycles installed with cameras and GPS, four participants cycled
on 141 predefined routes in Montréal over 87 h for a total of 1199 km. More than 300,000 images
were extracted and analyzed using Detectron2. The results show that the detection of trees using
the software is accurate. Moreover, the comparison reveals a strong correlation (>0.75) between the
two datasets. This means that the canopy data could be replaced by video-detected trees, which is
particularly relevant in cities where open GIS data on street vegetation are not available.

Keywords: bicycle; trees; canopy; NDVI; video; automatic detection; Detectron2; Montréal

1. Introduction

Connecting with nature provides many health benefits [1–3]. A great way of improving
mental and physical health is by using a bicycle to travel and commute [4]. However,
many factors such as the built environment affect the decision to use a bicycle as a mode of
transportation [5,6]. According to Winters et al. [7], when choosing a route to cycle, beautiful
scenery is the second most important motivator in a person’s decision after routes that
minimize exposure to noise and air pollution and before cycling paths that are separated
from road traffic. Determining the greening of cities, particularly the abundance of street
trees, can therefore be a tool for understanding travel behavior or assessing the quality of
bicycle routes in a city. Indeed, the tree canopy is an element of nature that contributes
to positive emotions [8] and nicer scenery [9]. Routes with trees are also preferred by
pedestrians and cyclists [10].

A popular method of determining greenness in cities is to calculate the normalized
difference vegetation index (NDVI) from satellite imagery [11,12]. Although interesting,
this approach has two significant drawbacks: (1) high-resolution imagery can be costly to
obtain, and (2) sometimes, parts of the images are not usable due to cloud cover.

An alternative is to analyze street view images—obtained from Google Street View
(GSV) or BMap—which provide a visualization of vegetation as seen by an individual on
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the street [13–16]. For example, based on GSV, Li et al. [14] proposed a green view index
(GVI) that varies from 0 to 100 for the percentage of street vegetation in city scenery. In this
respect, a recent Canadian study based on a survey of 282 adults found a significant positive
association between the GVI and participation in recreational activities during the summer,
whereas no significant association was found with the NDVI [15]. However, the use of GSV
has two important limitations: (1) the street data collection of a whole city can be carried
out over several seasons, including winter (Figure 1), or even years, and (2) GSV images
have not been captured everywhere in the world, especially in cities in the Global South.

Figure 1. Google Street View image for a road in Montreal in 2020.

Over the last two decades, video cameras have become a popular tool for recording
and analyzing data in the field [17,18] including in transportation studies [19–23]. New
algorithms using artificial intelligence can detect the components in an image to identify
the objects including features in the built environment. The most popular libraries for such
use are Detectron2, EfficientDet, YOLO, and Faster R-CNN, with Detectron2 being the
most accurate [24]. Furthermore, Detectron2 is already being used in transportation studies
to count the number of cars on a highway [25]. To the best of our knowledge, there are,
however, no studies that currently use such algorithms to determine if videos taken in a
city can accurately show the amount of greenness on different routes and road types. These
videos taken at eye level with a camera mounted on a bicycle handlebar could also provide
new real-time information due to their perspective. Although satellite data capture videos
from a higher perspective, street videos capture every obstacle in a city, such as motorized
vehicles or construction sites, and could, therefore, offer a different measure of greenness.

Research Objectives

Previous studies have shown the importance of scenic routes and trees in choosing a
cycle path [10,13,26–28]. The goal of this paper is twofold. First, we aim to determine if a
cyclist’s video footage taken just under eye level can be used to determine the greenness
level—which, in this study, is measured as the percentage of street trees—of a route using
software object detection, in this case, the Detectron2 library. Second, we want to know if
video data might be an alternative to canopy data, especially when data are collected while
riding a bicycle. Therefore, we compare eye-level video data with canopy data derived
from NDVI data for the same year in Montréal—a city where a large dataset is already
available. This allows us to determine the possibility of quantifying street trees with video
images and use these data in other studies.

2. Materials and Methods
2.1. Study Area and Primary Data Collection

This study is based on a primary data collection using instrumented bicycles con-
ducted on the island of Montréal in June 2019 (2 million inhabitants in 2020). This extensive
mobile data collection has previously been used in recent works to analyze cycling safety,
particularly dangerous overtaking [19] and conflict occurrence with motorized vehicles and
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pedestrians [20]. The reader can refer to these two studies for a detailed description of this
primary data collection. Briefly, 4 participants cycled on 141 predefined routes for 87 h and
1199 km. These routes were chosen to maximize the coverage of the road and cycling net-
works while also taking the diversity of urban micro-environments into consideration [20].
All the subjects gave their informed consent for inclusion before participating in the study.
The study was conducted in accordance with the Declaration of Helsinki and the protocol
was approved by the Ethics Committee of the Institut National de la Recherche Scientifique
(project No. CER 19-509). Each participant was equipped with (1) a GPS watch (Garmin
Forerunner 920 XT, Olathe, KA, USA) to record GPS points every second, and (2) an action
camera (Garmin VIRB XE, Olathe, KA, USA) mounted on the handlebar of the bicycle to
record a video of each route.

2.2. GIS Secondary Data on Road Network and Canopy

As described in previous studies [19,20], all GPS points were map-matched on the
OpenStreetMap (OSM) [29] network data and manually validated to extract the type of
road (primary, secondary, tertiary, service, residential, etc.) using the highway key from
OSM [30] (Table 1).

Table 1. GPS points and road types.

Type of Road 1 N % HH:MM:SS

Primary 14,650 4.70 04:04:10
Secondary 70,968 22.79 09:42:48

Tertiary 69,996 22.47 19:26:36
Service 2233 0.72 00:37:13

Residential 96,636 31.03 26:50:36
Unclassified 5938 1.91 01:38:58

Cycleway 40,587 13.03 11:16:27
Footway 8765 2.81 02:26:05

Pedestrian 1673 0.54 00:27:53
Total 311,446 100.0 86:30:46

1 Based on the highway key from OpenStreetMap [30].

The canopy data were downloaded from the Montreal Urban Community Website [31].
Built from NDVI data and a digital height model (DHM), this open dataset contains four
categories (covers): low mineral, high mineral, and low vegetal and high vegetal (canopy), where
low is below three meters from ground level and high is above three meters. The difference
between low vegetal and high vegetal is the NDVI value, with data lower than 0.3 being low
and the rest being high (with data ranging from −1 to 1). With these categories, we isolate
the high vegetal cover, creating a map of the canopy on the Island of Montréal.

2.3. Data Processing

The data processing was conducted entirely in Python and is illustrated in Figure 2.
First, one image per second was extracted from each video using the OpenCV li-

brary [32]. In total, 311,446 images were generated. Second, each video image was analyzed
using the Detectron2 [33] library, which is implemented in PyTorch [34], in order to cal-
culate the number of trees each frame contained. It should be noted that although this
study focused on the trees, the Detectron2 algorithm can also identify flowers, grass,
and other types of vegetation. The configuration used for Detectron2 was the COCO-
PanopticSegmentation file provided by the library [35]. During this process, three other
features were extracted: buildings, roads, and sky. As an example, 17.1%, 32.7%, 21.8%,
and 25.1% of trees, roads/pavement, sky, and buildings, respectively, were detected in
the image in Figure 3. Note that these percentages were annotated on each frame to ver-
ify whether they made sense. These percentages were also saved to a text file and their
univariate statistics are reported in Table 2.
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Third, the results obtained from the Detectron2 analysis were then merged with
the GPS points collected on each route and saved in a geopackage file (gpkg). The val-
ues were associated with each point using the route filename, as well as the timestamp
(DD:HH:MM:SS).

Figure 2. Data processing in Python.

Figure 3. Segmented image; 17.08% of image pixels were classified as trees.
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Table 2. Univariate statistics for the four detected categories in the images (n = 311,446).

Tree Road Sky Building

Percentiles
1 0.0 0.5 0.0 0.0
5 0.8 10.6 1.5 0.0
10 2.3 18.0 3.2 0.0
25 7.3 28.6 8.1 0.0
50 17.5 39.3 16.3 2.7
75 29.9 48.0 26.7 11.2
90 41.8 55.3 36.9 22.9
95 49.4 58.9 42.9 30.1
99 65.8 65.6 54.2 42.4

Mean 20.2 37.8 18.5 7.5
SD 1 15.7 14.4 13.0 10.3

1 SD: standard deviation.

Fourth, each route was split into segments ranging from 100 to 400 m, with a step of
50 m. The different lengths were compared to see if a specific length was more efficient
at predicting the canopy at the route level (i.e., sensitivity analysis). These segments
were created from the GPS coordinates of each route using the GeoPandas library [36].
The segments also contained a greenness level (gS), which is the weighted mean tree percent
of each point (gi), where wi is the distance between the point i and the next point over the
segment length (lS):

gS =
∑i=1

p∈S giwi

∑i=1
p∈S wi

with wi =
d(i, i + 1)

lS
(1)

Formula (1) was used to fix the following problem: data points where the cyclist was
stopped tended to accumulate because we had one point per second, but the urban features
on the image hardly varied (Figure 4). By looking at the distance to the next point, we
smoothed out any accumulation of points that did not provide a new value.

Figure 4. GPS points on a route with different distances between them.

We then added a buffer of 15 m on each side of each point (Figure 5a). This buffer
allowed us to create polygons with each segment representing the field of view. Because we
wanted to compare the greenness detected in videos with the canopy data, we limited the
observable area to that seen by the camera. For example, we could not see on the other side
of buildings or very far on each side. It would be time-consuming and difficult to manually
enter a distance for each point based on the built environment and visual observations so a
buffer of 15 m on each side was chosen. We selected this 15 m threshold because, when
observed in GIS software, it reflected the average road width for the routes in Montréal.
The polygons, therefore, represented the field of view on each side of the video for most of
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the city. Because there were points where the buffer was too low or high, the final results
might have been affected.

Figure 5. Example of road segments. (a) Road segment polygons. (b) Road segments with overlap-
ping canopy.

Finally, it was possible to determine the parts of the canopy derived from NDVI
data that intersected with the route segments and calculate a canopy area percentage (CS,
Equation (2)) for each segment (Figure 5b). The univariate statistics of these CS indicators
are reported in Table 3.

CS =
Area of canopy in segment

Total area of segment
× 100 (2)

Table 3. Univariate statistics for the percentages of the canopy within the buffered segments.

Segment
Length 100 m 150 m 200 m 250 m 300 m 400 m

n 1 13,978 9309 6972 5569 4625 3444
Percentiles

1 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.1 0.2 0.4 0.8

10 0.2 0.7 1.1 1.7 1.7 2.2
25 4.2 5.1 5.5 6.6 6.6 7.0
50 14.5 15.0 15.3 15.9 15.9 16.3
75 29.6 28.9 28.9 28.6 28.6 28.0
90 46.7 45.3 43.6 42.6 42.0 40.8
95 57.4 55.5 53.6 52.8 51.6 49.4
99 82.9 77.8 77.5 76.3 73.5 72.3

Mean 19.6 19.6 19.6 19.6 19.6 19.5
SD 2 19.1 18.2 17.6 17.2 16.7 16.2

1 n: number of buffered segments. 2 SD: standard deviation.

2.4. Data Analysis

All the statistical analyses were conducted using R (version 4.0.5) [37]. Following
image segmentation (using Detectron2), two types of analyses were performed. First,
a Pearson correlation matrix was built to explore the associations between the four cate-
gories (tree, road, sky, building). Second, box plots, analysis of variance (ANOVA), and the
Kruskal–Wallis test by ranks were used to test whether the percentage of greenness varied
with the road types identified by OpenStreetMap. This allowed us to determine if a certain
road type had more greenness than others.

In line with the second objective—to verify whether video data might be an interesting
alternative to canopy data for quantifying the vegetation on a given route—bivariate
analyses (simple regression and correlation analyses) were performed with the greenness
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indicators obtained using Detectron2 (gS) and the canopy indicators (CS) for the buffered
segment from 100 to 400 meters.

3. Results
3.1. Tree Detection

The first results were obtained after the videos were processed to detect the compo-
nents (i.e., tree, road, sky, building). The algorithm was able to detect the trees in each image
quite accurately. Not all of the >300,000 images were revised by humans but each image
that was observed had a correct percentage of trees identified (Figure 6). These results are
in line with the literature, which shows that the Detectron2 library was accurate [24]. There
were some areas, such as the second picture in the set, where small shrubs were considered
trees, which might have impacted the results.

Figure 6. Detection of trees in different settings.
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The correlation matrix between the proportions of the four categories detected in the
311,446 images is reported in Table 4. The more roads, sky, or buildings detected in the
picture, the less greenness there was. The strongest negative correlation was observed
between the proportions of the tree and building categories (r = −0.452, p < 0.001). There
was also a positive correlation between the road and building categories (r = 0.113, p < 0.001).
These results might seem obvious but they present a good argument that image detection
works well. Thus, the Detectron2 algorithm can correctly determine the parts of the image
that correspond to each category.

Table 4. Pearson correlation matrix between the proportions of the four detected categories 1.

Tree Road Sky Building

Tree −0.364 −0.416 −0.452
Road −0.364 −0.200 0.113
Sky −0.416 −0.200 −0.151

Building −0.452 0.113 −0.151
1 All correlation values were significant at p < 0.001.

Once the greenness indicators at the GPS points and buffered segments were obtained,
they could be mapped with GIS software such as QGIS [38], as shown for a portion of a
route in Figure 7.

Figure 7. Mapping results along a route. (a) Google Maps imagery and 100 m buffered segment in
red. (b) GPS points and 100 m buffered segments. The greenness of the GPS points is defined as the
percentage of trees detected in the image using Detectron2.
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Unsurprisingly, the percentage of greenness (trees) varied according to the road type,
as illustrated by the box plots in Figure 8. The pedestrian streets had the most greenness,
most of them being located in large parks (e.g., Mont-Royal Park). Primary and secondary
roads had the least greenness because these roads, according to the OpenStreetMap clas-
sification, are the most important streets in the road network, most of them being larger
roads and used mainly by cars. It was also a design choice by the city of Montréal, meaning
that the results might differ in another city. Conversely, the presence of trees was more
important on residential streets, cycleways, and pedestrian streets.

Figure 8. Greenness per road type (i.e., percentage of trees). ANOVA: Welch’s F(8, 311,437) = 6842,
p < 0.001, Eta2 = 0.15. Kruskal–Wallis test: χ2(8) = 39,112, p < 0.001.

3.2. Correlation between Detected Greenness and Canopy Data

Simple linear regression and Pearson correlation coefficients were calculated to assess
the relationship between the percentage of trees detected in the images and the percentage
of canopy, with segments of 100, 150, 200, 250, 300, and 400 m (Figure 9). All the correlation
coefficient values were significant (p < 0.001) and varied slightly between 0.77 and 0.82.
The sensitivity analysis showed that the segment length did not have a significant effect on
the correlation between the video greenness (tree) and canopy coverage.
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Figure 9. Greenness and canopy correlation.

4. Discussion
4.1. Using Detectron2 to Detect Greenness

Using Detectron2 to detect trees works well according to the pictures created during
the generation of the greenness index. This indicates that it is possible to use videos
collected while riding a bicycle in cities to determine the number of street trees on a route.
This approach is particularly relevant for cities and towns that do not possess canopy
data—data that are often used in scientific research to determine greenness. This approach
could also be used to detect other urban features (e.g., roads, buildings, sidewalks), urban
objects (traffic lights, fire hydrants, street signs, stop signs, parking meters, benches),
and street users (motorized vehicles, pedestrians, cyclists). This is particularly relevant
for cities where Open GIS Data, Google Street View images, or satellite imagery are not
available. Moreover, because the videos are taken roughly at eye level, they better represent
the scenery observed while riding a bicycle in the city. It is easier to see the number of cars
on the street, which might hide some of the vegetation, rendering the route less green and
therefore less scenic (Figure 10).
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The greenness index created using the videos represents a more natural way of de-
termining greenness because the videos are taken at eye level. The videos were taken on
a certain day and time, meaning it is unlikely that the same route would return the same
value on another day. In other words, future works could explore how the amount of
vegetation visible to a cyclist could vary according to the time and day (e.g., rush hour
versus the rest of the day, weekdays versus weekends) or the season for the same route.
This is an advantage because eye-level greenness is more representative of the scenery than
satellite images.

Figure 10. Motorized vehicle blocking trees.

4.2. Comparing Canopy Data to Video Greenness

The strong correlation values (>0.75) obtained between the canopy data indicators
and video greenness demonstrate that the proposed approach to evaluating trees using
software object detection in videos is relevant. This finding should be validated in other
cities, particularly European cities and cities in the Global South, where the amount and
species of street trees could be very different.

However, two principal elements could explain the discrepancy between the two
datasets. The first is related to the chosen buffer width (15 m) representing the field of view.
Ideally, we would have the exact width of each street. Unfortunately, open GIS data on
street widths are not available for the study area, which is also true for many cities around
the world. The second is that the two indicators measured two different features: (1) the
canopy as seen from the sky, and (2) trees as seen from the street, with different obstacles
obstructing the view (e.g., motorized vehicles). Although there was a strong correlation
between the two, both could be used as distinctive variables in studies observing the
different impacts of greenness.

5. Conclusions

To conclude, this paper had two goals: (1) to determine whether videos recorded by
a camera fixed on a bicycle’s handlebar can be used to determine greenness, and (2) to
determine if videos can replace canopy data. For the first goal, we found that by using
Detectron2, we could accurately detect trees in images taken at eye level. The percentage of
trees (and other categories such as flowers and grass [35]) offers a more realistic view since it
records the same view as the cyclist including road obstacles. This may help in calculating
a more representative greenness level in different cities, especially when including all
types of greenness in the detection algorithm. For the second goal, strong correlations
were found between the two types of vegetation indicators. This means that canopy data
could be replaced by video-detected greenness. This finding can, therefore, be useful for
future urban mobility studies that already use cameras and take into consideration a user’s
perspective of vegetation. It could also be applied to other aspects of the built environment
such as buildings and roads.
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