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Abstract: The rapid development of the economy promotes the increasing of interactions between
cities and forms complex networks. Many scholars have explored the structural characteristics of
urban spatial interaction networks in China and have conducted spatio-temporal analyzes. However,
scholars have mainly focused on the perspective of static networks and have not understood the
dynamic spatial interaction patterns of Chinese cities. Therefore, this paper proposes a research
framework to explore the urban dynamic spatial interaction patterns. Firstly, we establish a dynamic
urban spatial interaction network according to monthly migration data. Then, the dynamic commu-
nity detection algorithm, combined with the Louvain and Jaccard matching method, is used to obtain
urban communities and their dynamic events. We construct event vectors for each urban community
and use hierarchical clustering to cluster event vectors to obtain different types of spatial interac-
tion patterns. Finally, we divide the urban dynamic interaction into three urban spatial interaction
modes: fixed spatial interaction pattern, long-term spatial interaction pattern, and short-term spatial
interaction pattern. According to the results, we find that the cities in well-developed areas (east-
ern China) and under-developed areas (northwestern China) mostly show fixed spatial interaction
patterns and long-term spatial interaction patterns, while the cities in moderately developed areas
(central and western China) often show short-term spatial interaction patterns. The research results
and conclusions of this paper reveal the inter-monthly urban spatial interaction patterns in China,
provide theoretical support for the policy making and development planning of urban agglomeration
construction, and contribute to the coordinated development of national and regional cities.

Keywords: urban spatial interaction network; dynamic spatial interaction patterns; dynamic community
detection; Baidu migration data

1. Introduction

In the process of urbanization in China, the rapid growth of the economy and the
development of science and technology greatly reduce the cost in the exchange of various
elements between cities. As a result, interactions between cities are becoming closer and
more diverse. Castells proposed the theory of ”space of flows“ to understand the interaction
of cities [1,2]. In the “space of flows” theory, the cities exist as the endpoint of the flow but
do not create the urban network themselves. The essence of the interaction of the urban
spatial interaction network are feature flows based on the urban infrastructure network, for
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example, the population flow, information flow, and commodity flow [3]. Therefore, we
can use these flow data to form urban spatial interaction networks. With the combination
of network data and the GI system, we have better approaches to understand the network
characteristics and spatial characteristics of spatial information networks [4–6]. Establishing
an urban spatial interaction network is an appropriate way to explore the network structure
characteristics and the spatial interaction patterns of cities. Many scholars put the attention
on it under various perspectives [7]. From the global perspective, urban spatial interaction
network research is conducive to providing a research basis and theoretical reference for
the formulation of urban agglomeration development policies and development direction.
In addition, under the perspective of an individual city, the results also help to clarify the
development orientation of the city itself and formulate reasonable development strategies
and planning.

In the era of big data, there are a lot of big geo-data. Many of these data carry spatial
interaction information between many cities. Scholars have used a variety of data to
build urban spatial interaction networks, such as traffic flow or cargo flow composed of
aviation flight data, railway transport, highway, and shipping data [8–11]; capital flow
data composed of company network distribution and enterprise relations [12–14]; and
information flow data composed of Twitter, Weibo, mobile call numbers, etc. [15–18]. This
series of flow data provides a variety of cases, which offer support for understanding urban
spatial interaction networks, but these data are biased and can only provide part of the
insights of interactions between cities. Population migration data has many advantages,
such as the wide coverage of people and comprehensive transportation modes, and is the
main driving force of other data flows [19]. Scholars have noticed networks of population
migration data and have used social network analysis (SNA) to understand the migration
structure [20]. Not only that, but researchers have also considered the spatial context of
migration data, such as by using gravity models with spatial distance [21,22] and analyzing
the rationality of administrative division through the spatial distribution of population
flow [23]. The network characteristics and spatial context of population migration data
have good applicability to the study of urban interaction. Therefore, studies on migration
networks and urban spatial interaction networks established by population flow have
emerged one after another.

In the study of urban interaction networks based on population migration, some schol-
ars have focused on the relationship between the volume of migration and the properties
and distance of the city itself. They fitted or predicted migration volume with the gravity
model and the radiation model [24,25]. Other scholars have focused on the study of urban
spatial interaction network structure. They [26–28] used indexes such as degree centrality,
clustering coefficient [29], and PageRank [30] to understand the characteristics of urban
spatial interaction networks and obtain the spatio-temporal interaction structure between
cities. Pitoski integrated relevant studies on migration data and proved the applicability of
these research methods [31]. Scholars have conducted a variety of spatial and temporal
research. Lai et al. studied the urban interaction structure during the Spring Festival
of 2016-2017 by using Tencent migration data from 346 cities in China [32]. Zhang et al.
described the structure of the national urban network and the regional urban network
under daily migration data [19]. In the study of inter-annual network structure, Xiang et al.
analyzed the spatial differences and spatio-temporal changes in urban interaction in recent
years by using the data of 2015–2019 inter-annual Spring Festival transport [33].

Many meaningful studies have been based on urban spatial interaction networks, but
all of them were carried out from the perspective of static networks. Obviously, urban
interaction is a dynamic process that changes over time. Although some scholars have
analyzed the spatio-temporal characteristics of urban spatial interaction networks, such
analyzes have failed to reveal the change processes of the networks. In addition, there have
been few studies on inter-monthly urban interaction patterns. Therefore, the introduction
of the dynamic network perspective into urban interaction networks can bring discoveries
to urban spatial interaction patterns. In the dynamic urban spatial interaction network,
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it changes over time. Nodes and edges can be added to or removed from the network.
In weighted networks, weights can also evolve [34]. The dynamic community detection
method can be used to explore the dynamic changes in nodes’ spatial interaction patterns
in networks. The results of dynamic community detection are communities composed of
closely related nodes. As the nodes and edges in the dynamic network change with time, the
communities also change, and these changes of the community are called dynamic events.
Dynamic community detection has also been applied to various fields, such as science
citation networks [35], social interaction analyzes [36,37], geographic interactions [38], brain
functional research [39,40], etc. In the dynamic network of urban interaction, the urban
communities and their dynamic events are the results of dynamic community detection.
The urban communities represent the groups of cities that are more connected internally
than externally, reflecting the urban agglomeration structure, as well as the dynamic events
which represent the changes in the urban agglomeration structure. According to various
events in the dynamic community (such as growth, contraction, merger, split, etc.) [41], the
inter-monthly dynamic change mode of urban agglomeration can be understood.

In order to explore the monthly dynamic patterns of the Chinese urban spatial in-
teraction network, this paper intended to use Baidu migration data from October 2020
to December 2021 to build monthly urban spatial interaction networks through data pre-
processing. The dynamic community detection algorithm, combined with the Louvain
algorithm and the Jaccard matching method, was used to mine dynamic urban communi-
ties and community dynamic events. Then, we used the hierarchical clustering algorithm
to cluster all the existing dynamic communities, and the clustering results represented the
monthly dynamic interaction patterns of Chinese cities. The contributions of this article are
as follows:

• This paper proposed a new research framework for learning urban dynamic interac-
tion, which used a dynamic community detection algorithm and a clustering algorithm
to mine the urban dynamic interaction patterns.

• By using Baidu migration data, we learned the inter-monthly dynamic interaction
patterns of Chinese cities.

The structure of this paper is as follows: Section 2 introduces the study area of this
paper, the datasets, and the data pre-processing. Section 3 introduces the principle and
application of the methods used in this paper. Section 4 shows the results of these methods.
In Section 5, we have a further discussion of these research results and conclude the paper.

2. Study Area and Datasets
2.1. Study Area

China is a vast country, with a land area of 9.6 million square kilometers, ranking
the third in the world, and a water area of more than 4.7 million square kilometers of
inland sea and marginal sea. China has forty-four provincial-level administrative regions,
including twenty-three provinces, five autonomous regions, four municipalities directly
under the central government, and two special administrative regions. China also has
333 prefecture-level cities [42]. In Figure 1, we show the administrative divisions at the
municipal level and above in China, which were used as the research areas of this study.
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2.2. Datasets and Data Pre-Processing

The main dataset used in this paper is Baidu migration data, one of Baidu Maps’ LBS
(location based on service) datasets. Baidu Maps is one of the largest providers of map
content, navigation, and location services in China. Baidu Maps records users’ location and
movement information to generate migration data. Baidu Maps generates migration data if
a user temporarily leaves the city where he or she lives for a long time and moves to another
city. We obtained Baidu migration data by posting HTML (Hyper Text Markup Language)
requests to the Baidu Migration platform [43]. However, for protecting users’ privacy, the
Baidu Migration platform only records the percentage of people moving daily in and out
of 368 prefecture-level and county-level cities (excluding Taiwan) (e.g., in data of people
from Shanghai moving into Beijing on a certain day, we can only know the proportion of
the migrating population from Shanghai to Beijing from the total migrating population,
but not the specific moving population). After data collection, we had total migration data
of 368 cities for 457 days from 1 October 2020 to 31 December 2021. The monthly snapshot
of the dynamic network was established by using these data, and the data pre-processing
process was as follows:

1. Spatial interaction strength definition.

Determining the interaction intensity between different cities is the premise of con-
structing an urban interaction network. To construct the monthly dynamic network, we
calculated the average of the monthly average percentage of immigration and emigration of
two cities to obtain the spatial interaction strength of two cities in a month. The calculation
equation of spatial interaction strength was as follows:

Si,j =
(

Pout
i,j /Pout

i + Pin
i,j/Pin

j

)
/2 (1)

where Si,j represented the spatial interaction strength of city i and city j. Pout
i,j represented the

monthly average emigration from city i to city j. Pout
i represented the total monthly average
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emigration of city i. Sin
i,j represented the monthly average immigration from city i to city j. Pin

j
represented the total immigration of city j. Finally, we obtained a city adjacency matrix for one
month. The matrix was a symmetric matrix with the main diagonal of zeros, and the elements
in the matrix represented the strength of the connection between two cities.

0 S1,2 · · · S1,j
S2,1 0 · · · S2,j

...
...

. . .
...

Si,1 Si,2 · · · 0

 (2)

2. Constructing Dynamic Urban Spatial Interaction Networks.

After the spatial interaction strength definition, we derived the city nodes table in-
cluding the names of the city nodes, locations of the city nodes (longitude and latitude),
and the intensities of the interactions. The sample data are shown in Table 1. We used
the city nodes table and the city adjacency matrix to construct urban spatial interaction
networks. To reduce the influence of edges with low interaction strength, we removed the
edges with interaction strength less than one, and established a weighted undirected graph
for each month. From October 2020 to December 2021, there were 15 city spatial interaction
networks with the same nodes in each network and a total of 368 city nodes.

Table 1. The city nodes table of the sample data.

City A Location A City B Location B Spatial Interaction Strength Month

Beijing 116.40, 34.90 Tianjin 117.20, 39.08 24.38 2021 Jan.
Beijing 116.40, 34.90 Shijiazhuang 114.51, 38.04 6.08 2021 Jan.
Tianjin 117.20, 39.08 Shijiazhuang 114.51, 38.04 3.95 2021 Jan.

... ... . . . . . . . . . . . .

3. Methodology

The technical route of this study is shown in Figure 2 below. According to Figure 2,
our work was divided into three parts: data pre-processing, dynamic community detection,
and urban community analysis. In Section 2.2, we introduced the data pre-processing
and construction process of the urban spatial interaction networks in detail. After that,
the research methods we used were mainly in the last two parts: in dynamic community
detection, we used the Louvain algorithm to obtain city communities and the Jaccard
matching method to derive their change events from the urban spatial interaction network.
In the urban communities analysis, we build event vectors for each urban community
and used the hierarchical algorithm to cluster event vectors. Finally, we summarized the
dynamic change in urban communities into several patterns. Here, the methods used in
this paper are elaborated.
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3.1. Dynamic Community Detection

At present, dynamic community detection algorithms are mainly divided into three
types: instant optimal community detection, temporal trade-off community detection,
and cross-time community detection [44]. Among them, the instant optimal dynamic
community detection algorithm was based on the well-studied static network community
detection algorithm and obtained community and community change events at each
moment. Based on the instant optimal community detection strategy, we combined the
Louvain static community detection algorithm and the Jaccard matching method as the
dynamic community detection algorithm.

3.1.1. Louvain Community Detection Algorithm

The Louvain algorithm is one of the most widely used community detection algorithms
at present. It was proposed by Blondel et al. in 2008 [45]. The algorithm is based on the
idea of greed, aiming at modularity optimization. Modularity was a common indicator to
evaluate the partition result of a community in the undirected weighted graph [46,47], as
shown in Equation (3).

Q =
1

2m ∑
i,j

[
Sij −

kik j

2m

]
δ
(
ci, cj

)
(3)
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where Q was the modularity, Sij represented the weight between node i and node j, ki and
k j were the sums of the weights of the edges attached to node i and node j, and m was equal
to half of the sum of all the edge weights. δ

(
ci, cj

)
was a binary function; the result was 1 if

ci= cj and 0 otherwise. The whole algorithm was divided into two steps, and the process
of the algorithm is shown in Figure 3.
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nodes as separate communities, (b) is the result of local modularity optimization, where different
colors mean different communities, and (c) is the result of folding communities into new nodes,
forming a new network, where the new network contains edges not only between nodes but also
within nodes.

1. First step: local modularity optimization.

At first, we assigned each node to a separate community, as in Figure 3a) Then, the
algorithm scanned all nodes in the network, traversed all the neighbor nodes of each
node, and measured the gain in modularity brought by adding the node to its neighbor’s
community. In addition, we selected the neighbor node with a maximum gain greater than
0 to join its community. This process was repeated until the community belonging to each
node was not changed, as in Figure 3b. The gain in modularity from node i to community
C was calculated by Equation (4).

∆Q =

[
∑in +2ki,in

2m
−
(

∑tot +ki
2m

)2
]
−
[

∑in
2m
−
(

∑tot
2m

)2
−
(

ki
2m

)2
]

(4)

where ∑in was the sum of the weights of edges inside C, ki,in was the sum of the weights of
edges from node i to nodes in C, ∑tot was the sum of the weights of edges that connected
to the nodes in C, and other variables were the same as in Equation (3).

2. Second step: folding the communities into nodes.

We folded each community formed in the first step. Then, we calculated the weights
of the edges in the newly generated nodes and the sum of the weights between newly
generated nodes, respectively, as in Figure 3c.

These two steps were repeated until the modularity no longer increased. Finally, the
final partition result was the calculation result of the algorithm.

3.1.2. Jaccard Matching Method

The Jaccard matching method is based on the Jaccard score. We could understand
the change events between communities by judging the Jaccard score of communities in
different months. The Jaccard score, also called intersection over union, is a statistic used to
compare the similarity and diversity of sets. The Jaccard score can measure the similarity of
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finite sample sets and is defined as the proportion between the intersection size and union
size of two sets [48,49]. The calculation formula of the Jaccard score was Equation (5):

J(A, B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∩ B| (5)

In the formula, J(A, B) meant to calculate the Jaccard score of community A and
community B; this value ranged from 0 to 1. The larger the value of the Jaccard score,
the more identical elements there were in the two communities. In this study, the higher
the Jaccard score of urban communities between two adjacent months was, the closer
the relationship between the two urban communities was. If the Jaccard score was 0, it
represented that there was no relationship between the two urban communities. In the
dynamic urban spatial interaction network, city nodes did not disappear or appear. In
addition, the emergence or disappearance of urban communities was the result of the split
or merger of previous urban communities. Therefore, this paper only set the following 5
event types [34].

• Growth: a community that grew by integrating new city nodes.
• Contraction: a community that contracted by rejecting some of its city nodes.
• Merge: two communities or more that merged into a single one.
• Split: one community that split into two or more communities.
• Continue: a community that did not change.

According to these event types, we defined events for the change in urban communities
according to the results of the Jaccard score of urban communities in different months, as
shown in Table 2. Setting thresholds was important for defining the events. In this study,
the distribution of the Jaccard score was used to determine the specific threshold.

Table 2. Event definition table. A is the urban community of the month before and B is the urban
community of the month after.

Jaccard Score Relationship Events

J(A, B) = 1 A = B Continue

Threshold ≤ J(A, B) < 1 A ⊆ B Growth
A ⊇ B Contraction

0 ≤ J(A, B) < threshold A ⊆ B Merge
A ⊇ B Split

0 - No event

3.2. Hierarchical Clustering Method

After dynamic community detection, we obtained the results of urban communities
and their dynamic events for each month. These urban communities represented urban
agglomerations. Although the dynamic interaction patterns in different urban agglomerations
were different, we could still cluster the types of interaction patterns of urban communities
according to their change patterns over time. Therefore, the events of urban agglomerations
were constituted into event vectors, the sample vector is shown in Equation (6).

{event(2020 Oct .-2020 Nov.), event(2020 Nov.-2020 Dec .) · · · , event(2021 Nov.-2021 Dec .)} (6)

Then, we adapted the hierarchical clustering method to cluster event vectors. Hierar-
chical clustering is a method of cluster analysis that seeks to build a hierarchy of clusters.
The strategies for hierarchical clustering generally fall into two types: bottom-up aggrega-
tion and top-down division [50]. The results of hierarchical clustering are usually presented
in a dendrogram [51]. Thus, the results of hierarchical clustering are more intuitive than
those of other clustering methods. The hierarchical clustering method includes a variety of
distance measure metrics. Since the elements in the event vector were not specific values,
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this paper used the Hamming distance as the distance function of the event vector [52].
The Hamming distance between the two event vectors was the number of different events
at the corresponding positions of the two vectors, and the equation was as follows:

Dhamming =
n

∑
i
(X [i]⊕Y[i]) (7)

where X and Y were the two urban communities’ event vectors, n was the length of the event
vectors, X[i]⊕Y[i] was the XOR operation (if X[i] and Y[i] are the same, return 0, otherwise
return 1). As we could see, the larger the Hamming distance was, the more differences
between the two event vectors there were. Hierarchical clustering was performed according
to the Hamming distance between the event vectors, and a clustering dendrogram was
obtained. In order to determine the reasonable clustering level, we used the silhouette
coefficient as the evaluation index of clustering results. The silhouette coefficient is a
method that reflects the consistency of data clustering results and can be used to evaluate
the degree of dispersion between clusters after clustering [53]. The equation was as follows:

S(i) =
b(i)−a(i)

max{a (i), b(i)} (8)

where a(i) was the average Hamming distance between event vector i and other event vec-
tors in the same cluster and b(i) was the average Hamming distance between event vector
i and other event vectors in different clusters. We usually choose the cluster number with
the highest silhouette coefficient as the best clustering result. These clusters represented
different types of dynamic patterns of urban communities.

4. Results

In this section, we detailed the results of dynamic community detection, that is,
dynamic communities and community events. The dynamic interaction model of the city
was reflected by the event vectors clustering of the community.

4.1. Urban Communities and Dynamic Events

We used the dynamic community detection algorithm for the monthly urban spatial
interaction network. The urban communities in each month were obtained, as shown in
Figure 4.



ISPRS Int. J. Geo-Inf. 2022, 11, 486 10 of 18
ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 4. The urban communities of each month. Each sub-plot represents the information of the 
urban communities in that month. 

According to Figure 4, there were 35 urban communities during the 15 months from 
October 2020 to December 2021. Because cities within a province were usually more 
closely connected, the coverage of the urban communities was usually composed of cit-

Figure 4. The urban communities of each month. Each sub-plot represents the information of the
urban communities in that month.

According to Figure 4, there were 35 urban communities during the 15 months from
October 2020 to December 2021. Because cities within a province were usually more closely
connected, the coverage of the urban communities was usually composed of cities in one
or more provinces. Thus, the urban communities were named by the abbreviation of
the provinces which the communities contained. Table 3 shows the names of the urban
communities and corresponding provinces, and readers can learn more about the provinces
from Figure 1.
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Table 3. The urban communities information table.

Communities Provinces Communities Provinces Communities Provinces

EX Hubei; Hunan JJJL Beijing; Tianjin; Hebei; Liaoning XIANG Hunan
GAN Jiangxi JJJLJ Beijing; Tianjin; Hebei; Liaoning; Jilin XIN Xinjiang
GCY Guizhou; Sichuan; Chongqing JZHH Jiangsu; Zhejiang; Shanghai; Anhui XQ Xinjiang; Qinghai
GM Jiangxi; Fujian LJ Liaoning; Jilin YG Yunan; Guizhou

GNMS Gansu; Ningxia; Inner Mongolia;
Shaanxi LJJJ Shandong; Beijing; Tianjin; Heibei YJ Henan; Shanxi

GQ Gansu; Qinghai LU Shandong YU Henan
GY Guangxi; Guangdong MIN Fujian YUN Yunnan
HEI Heilongjiang NMS Ningxia; Inner Mongolia; Shaanxi ZANG Tibet

HJ Heilongjiang; Jilin QIN Qinghai ZCY Tibet; Sichuan;
Chongqing

HLJ Heilongjiang; Jilin; Liaoning QIONG Hainan XIANG Hunan
EX Hubei; Hunan JJJL Beijing; Tianjin; Hebei; Liaoning XIN Xinjiang

GAN Jiangxi JJJLJ Beijing; Tianjin; Hebei; Liaoning; Jilin

These urban communities represented the urban agglomeration structure formed by
the interaction between cities in a certain month. As we could see, some urban communities
stayed the same from month to month (continue event), some urban communities changed
the number of cities they contained (growth or contraction event), and some disappeared
or appeared (split or merge event). Thus, events were formed by the monthly dynamics
of these urban communities. To define the dynamic events of the communities, we had to
define the thresholds in Table 2 beforehand. We calculated the distribution of the results of
the Jaccard scores in Figure 5.
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Figure 5. The distribution of Jaccard scores.

This threshold was used to distinguish between growth, contraction, split, and merge
events. A high value of the Jaccard score indicated growth or contraction, while a low value
indicated split or merging. According to the distribution in Figure 5, we set the threshold
at 0.8 to ensure the balance of the number of dynamic events.

According to Table 2 and the threshold of 0.8, we defined the dynamic events. We
calculated statistics on the dynamic events of urban communities in each period, and the
results are shown in Figure 6.
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Figure 6. The numbers of five dynamic events in each period.

In this figure, the vertical axis shows the number of events that occurred. The horizon-
tal axis shows the period in which they happened (e.g., 2020/11 means the period from
October to November 2020). From Figure 6, we obtained an overview of the dynamics of
these urban interactions. Continuous events dominated over all periods, but other events
still existed in each period, which indicated that the inter-monthly dynamic of interactions
in most cities was stable, and only a few cities changed their interaction states. Besides
the continue events, the high-frequency events were the split and merge events, and the
low-frequency events were the growth and contraction events. This phenomenon showed
that the dynamic change in urban interaction often manifested as the merger and separation
of urban agglomerations; this was mainly because most cities highly interacted within
the urban agglomeration, and few cities were transferred from one urban agglomeration
to another. Thus, the number of merge and split events was more than the growth and
contraction events. Here, it was only a preliminary description of the results of dynamic
community detection. Next, we further studied the clustering results of these urban com-
munity event vectors and explored the dynamic patterns of these urban agglomerations.

4.2. Dynamic Patterns of Urban Agglomeration

In Section 4.1, we derived the urban communities and their dynamic events and carried
out the overall statistical analysis. To further explore the dynamic interaction patterns
of these urban communities, we constructed event vectors for each urban community
and performed hierarchical clustering. Figure 7 shows the dendrogram of hierarchical
clustering and the Hamming distance between different urban communities.
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Through this dendrogram, we intuitively learnt the distance relationship of each event
vector. For finding the appropriate number of clusters, we used the silhouette coefficient,
and the result is shown in Figure 8.
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Figure 8. The silhouette coefficient under the different numbers of clusters.

According to Figure 8, when the number of clusters was five, the silhouette coefficient
had a maximum value of 0.426. Therefore, we set the number of clusters to five. The urban
communities contained in these five clusters are shown in Table 4.

Table 4. Clustering results of urban communities.

Clusters Urban Communities

C0 QIONG; JZHH; GY; YG; XIN; E
C1 HEI; CY; LJ; GQ; NMS; ZANG; JJJJ; XG

C2 XIANG; MIN; GM; JIN; GNMS; ZCY; GAN; QZ; LJJJ; JJJL; HJ;
JJJLJ; EX; QIN; HLJ; YUN; XQ; YJ; GCY

C3 YU
C4 LU

For understanding the dynamic pattern types of urban communities under different
clusters, we counted the number of periods each urban community existed. The number of
times urban communities existed is shown in Figure 9.
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By using information about the existence frequency of urban communities and the
clustering results, we divided the dynamic changes in these urban communities into three
dynamic spatial interaction patterns. We called these three dynamic spatial interaction
patterns fixed spatial interaction pattern, long-term spatial interaction pattern, and short-
term spatial interaction pattern.

1. Fixed spatial interaction pattern

The fixed spatial interaction pattern referred to the urban agglomeration with a very
stable interaction state. It was seen from Table 4 and Figure 9, that the urban community
in C0 existed for a long time and was characterized by stability. Due to the influence
of economic conditions, transportation, and other factors, there were both economically
developed urban communities and poorly developed urban communities with fixed spatial
interaction patterns. Cities in the Yangtze River Delta and cities in the Pearl River Delta had
good regional advantages, which drove the economic development of surrounding cities to
form a stable dynamic structure, such as JZHH and GY. For the less developed northwest
region, the influence of natural conditions and inconvenient transportation made it difficult
for urban agglomerations in these regions to connect with the other cities, so a stable urban
interaction structure formed, such as QIONG and XIN.

2. Long-term spatial interaction pattern

The long-term spatial interaction pattern referred to the fact that the interaction of
the city was in a stable state in most periods but changed in some special periods. In
C1, all the urban communities had a high frequency of existence and were characterized
by long-term interactions. In these urban communities, there were many typical urban
agglomerations in central and western China, such as CY, YG, and NMS. The development
levels of these cities were slightly lower than that of eastern urban agglomerations, but they
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had a higher influence in central and western regions. In some periods, they attracted urban
agglomerations in less developed areas to form new urban communities, such as in the
merger of CY and ZANG to form ZCY, and the merger of NMS and GAN to form GNMS.

3. Short-term spatial interaction pattern

The short-term spatial interaction pattern was a temporary urban interaction structure.
The urban communities in C2 belonged to short-term spatial interaction patterns. The
number of urban communities in this spatial interaction pattern was very large, and these
urban communities manifested by the split and merge results of the urban communities
in long-term spatial interaction patterns. Therefore, the urban communities of short-term
spatial interaction patterns were more complex and diversified.

Finally, we found that YU and LU in C3 and C4 were two spatial cases. Puyang city
was located at the junction of LU and YU. It had a close connection with both two urban
agglomerations. Therefore, the events of these two urban communities often focused on
growth and contraction and were very different from other urban community events. YU
and LU were clustered into individual clusters. However, the growth or contraction event
had little influence on the overall interaction structure of urban agglomerations. Hence, we
considered that LU and YU also belonged to the long-term spatial interaction pattern.

5. Discussion and Conclusions

In the paper, we obtained the spatial interaction patterns of urban communities. To
make the results easy to understand, we visualized the change times in urban community
affiliation for each city, as shown in Figure 10.
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As seen in Figure 10, cities with fewer changes tended to belong to urban communities
with fixed or long-term spatial interaction patterns. However, cities with more changes
belonged to short-term spatial interaction patterns. In addition, we also noted that not all
cities belonging to a province had the same number of changes. Based on the results and
Figure 10, we summarized some interesting findings:
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• The interaction between some cities on the edges of the provinces and cities of neighbor-
ing provinces was usually higher than those within the provinces, such as Hulunbeier
and Chifeng in Inner Mongolia. There were also cities on the edge of the provinces
that had strong interactions with both the cities within the provinces and adjacent
provinces, such as Puyang in Henan.

• Some provinces that the public thought were highly interactive seemed to be not
closely connected in the urban spatial interaction network. For example, the "three
provinces in northeastern China" (Heilongjiang, Jilin, and Liaoning), "YunGuiChuan"
(Yunnan, Guizhou, and Sichuan), and "Qinghai-Tibet Region" (Tibet and Qinghai),
often mentioned by people, had not formed long-term spatial interaction patterns.
Some provinces with large economic differences had formed fixed spatial interaction
patterns instead, such as GY. Maybe they shared the same regional culture.

In this study, we used Baidu migration data to explore dynamic urban spatial interac-
tion patterns and divided urban spatial interaction patterns into three types: fixed spatial
interaction pattern, long-term spatial interaction pattern, and short-term spatial interaction
pattern. Based on these results and above findings, we drew the following conclusions:

• Some cities both in developed and less developed areas showed relatively stable
urban interaction structures. However, the reasons for their formation were different.
Due to the radiation effect of big cities, economically developed areas interacted
stably with surrounding cities to form independent communities. However, in the
less developed regions, due to the limitations of geographical, economic, or traffic
conditions, these cities did not interact with external cities and formed independent
urban agglomerations themselves.

• The monthly dynamic changes in cities in medium-level developed areas were obvious.
These cities were in central and western China. The radiation capacity of these cities
was limited and only attracted other cities for a few periods. Therefore, the interaction
of these cities tended to split and merge in different periods, representing short-term
spatial interaction patterns.

Overall, the research framework of this paper provided a new idea for studying the
dynamic interaction between cities, and these research results and conclusions were also
beneficial to theoretical references for the formulation of urban and urban agglomeration
development planning. For example, for urban agglomerations with short-term spatial
interaction patterns in central China, the construction of urban agglomerations should be
strengthened. For the urban agglomerations with fixed interaction patterns in the under-
developed areas of northwest China, the transportation disadvantage should be remedied
and economic activities with the central cities should be strengthened.

Although the research results of this paper explored the dynamic interaction patterns
of Chinese cities, there were still some deficiencies.

• Data: The long duration and wide coverage of Baidu migration data have indeed
played an important role in mining the inter-monthly dynamic patterns of Chinese
cities. However, due to the protection of user privacy, we could not know the specific
migration volume, which limited the further study of this paper.

• Analysis: Some “Gordian knots” in spatial interaction networks still exist [54]. Current
visualization methods make it difficult to show the dynamic changes in urban spatial
interaction. In addition, there are a lack of relevant spatial analysis methods to
understand the driving force of dynamic change in urban inter-monthly interactions.
It is mainly because urban interaction is affected by many factors, such as urban
economic conditions, relevant policies of local governments, natural conditions of
different regions, etc. Due to the lack of monthly statistical data on the urban economy,
further analysis was not accessible.

Therefore, in future studies, we hope to add more data to explore the influencing
factors or mechanisms of urban inter-monthly interaction dynamics. At the same time, it is
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also an important direction of future research to integrate multiple flow data to understand
urban spatial interaction networks more comprehensively.
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18. Mønsted, B.M.; Sapieżyński, P.; Ferrara, E.; Lehmann, S. Evidence of complex contagion of information in social media: An

experiment using Twitter bots. PLoS ONE 2017, 12, e0184148. [CrossRef]
19. Zhang, X.; Luo, G.; Han, H.; Tang, Y. Research on the Characteristics of Urban Network Structure in China Based on Baidu

Migration Data. J. Geo-Inf. Sci. 2021, 23, 1798. [CrossRef]
20. Bilecen, B.; Gamper, M.; Lubbers, M.J. The missing link: Social network analysis in migration and transnationalism. Soc. Netw.

2018, 53, 1–3. [CrossRef]
21. Fagiolo, G.; Mastrorillo, M. International migration network: Topology and modeling. Phys. Rev. E 2013, 88, 012812. [CrossRef]
22. Tranos, E.; Gheasi, M.; Nijkamp, P. International Migration: A Global Complex Network. Environ. Plan. B Plan. Des. 2015, 42, 4–22.

[CrossRef]

http://doi.org/10.2747/0272-3638.20.4.294
http://doi.org/10.1111/j.0020-8701.2004.00499.x
http://doi.org/10.1080/13658816.2016.1153103
http://doi.org/10.1080/00045600903550428
http://doi.org/10.1080/13658816.2019.1567736
http://doi.org/10.1177/0042098010377368
http://doi.org/10.1007/s11442-018-1485-x
http://doi.org/10.1016/j.jtrangeo.2007.12.005
http://doi.org/10.11821/yj2001010005
http://doi.org/10.11821/dlxb201702004
http://doi.org/10.1177/0042098016685511
http://doi.org/10.11821/dlxb201904006
http://doi.org/10.18306/dlkxjz.2020.10.006
http://doi.org/10.1371/journal.pone.0131469
http://doi.org/10.1080/13658816.2012.689838
http://doi.org/10.1007/s10708-016-9743-x
http://doi.org/10.1371/journal.pone.0184148
http://doi.org/10.12082/dqxxkx.2021.210223
http://doi.org/10.1016/j.socnet.2017.07.001
http://doi.org/10.1103/PhysRevE.88.012812
http://doi.org/10.1068/b39042


ISPRS Int. J. Geo-Inf. 2022, 11, 486 18 of 18

23. Ratti, C.; Sobolevsky, S.; Calabrese, F.; Andris, C.; Reades, J.; Martino, M.; Claxton, R.; Strogatz, S.H. Redrawing the Map of Great
Britain from a Network of Human Interactions. PLoS ONE 2010, 5, e14248. [CrossRef] [PubMed]

24. Li, F.; Feng, Z.; Li, P.; You, Z. Measuring directional urban spatial interaction in China: A migration perspective. PLoS ONE 2017,
12, e0171107. [CrossRef] [PubMed]

25. Pitoski, D.; Lampoltshammer, T.J.; Parycek, P. Network analysis of internal migration in Croatia. Comput. Soc. Netw. 2021, 8, 1–17.
[CrossRef]

26. Wei, S.; Pan, J. Spatiotemporal Characteristics and Resilience of Urban Network Structure during the Spring Festival Travel Rush:
A Case Study of Urban Agglomeration in the Middle Reaches of Yangtze River in China. Complexity 2021, 2021, 1–18. [CrossRef]

27. Zhou, T.; Huang, B.; Liu, X.; He, G.; Gou, Q.; Huang, Z.; Xie, C. Spatiotemporal Exploration of Chinese Spring Festival Population
Flow Patterns and Their Determinants Based on Spatial Interaction Model. ISPRS Int. J. Geo-Inf. 2020, 9, 670. [CrossRef]

28. Pan, J.; Lai, J. Spatial pattern of population mobility among cities in China: Case study of the National Day plus Mid-Autumn
Festival based on Tencent migration data. Cities 2019, 94, 55–69. [CrossRef]

29. Opsahl, T.; Panzarasa, P. Clustering in weighted networks. Soc. Netw. 2009, 31, 155–163. [CrossRef]
30. Ishii, H.; Tempo, R.; Bai, E.-W. A Web Aggregation Approach for Distributed Randomized PageRank Algorithms. IEEE Trans.

Autom. Control 2012, 57, 2703–2717. [CrossRef]
31. Pitoski, D.; Lampoltshammer, T.J.; Parycek, P. Human migration as a complex network: Appropriate abstraction, and the feasibility

of Network Science tools. In Data Science–Analytics and Applications; Haber, P., Lampoltshammer, T., Mayr, M., Plankensteiner, K.,
Eds.; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2021; pp. 113–120. ISBN 978-3-658-32181-9.

32. Lai, J.; Pan, J. China’s City Network Structural Characteristics Based on Population Flow during Spring Festival Travel Rush:
Empirical Analysis of “Tencent Migration” Big Data. J. Urban Plan. Dev. 2020, 146, 04020018. [CrossRef]

33. Xiang, X.; Shi, K.; Yang, Q. Analysis of Urban Network Structure in China Based on Baidu Migra-tion Data——Take the Data of
Spring Festival in 2015 and 2019 for Example. J. Southwest China Norm. Univ. 2021, 46, 79. [CrossRef]

34. Cazabet, R.; Amblard, F. Dynamic Community Detection. In Encyclopedia of Social Network Analysis and Mining; Alhajj, R., Rokne,
J., Eds.; Springer: New York, NY, USA, 2014; pp. 404–414. ISBN 978-1-4614-6169-2.
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