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Abstract: The impact of COVID-19 across the United States (US) has been heterogeneous, with rapid 
spread and greater mortality in some areas compared with others. We used geographically-linked 
data to test the hypothesis that the risk for COVID-19 was defined by location and sought to define 
which demographic features were most closely associated with elevated COVID-19 spread and mor-
tality. We leveraged geographically-restricted social, economic, political, and demographic infor-
mation from US counties to develop a computational framework using structured Gaussian process 
to predict county-level case and death counts during the pandemic’s initial and nationwide phases. 
After identifying the most predictive information sources by location, we applied an unsupervised 
clustering algorithm and topic modeling to identify groups of features most closely associated with 
COVID-19 spread. Our model successfully predicted COVID-19 case counts of unseen locations af-
ter examining case counts and demographic information of neighboring locations, with overall 
Pearson’s correlation coefficient and the proportion of variance explained as 0.96 and 0.84 during 
the initial phase and 0.95 and 0.87 during the nationwide phase, respectively. Aside from popula-
tion metrics, presidential vote margin was the most consistently selected spatial feature in our 
COVID-19 prediction models. Urbanicity and 2020 presidential vote margins were more predictive 
than other demographic features. Models trained using death counts showed similar performance 
metrics. Topic modeling showed that counties with similar socioeconomic and demographic fea-
tures tended to group together, and some of these feature sets were associated with COVID-19 dy-
namics. Clustering of counties based on these feature groups found by topic modeling revealed 
groups of counties that experienced markedly different COVID-19 spread. We conclude that topic 
modeling can be used to group similar features and identify counties with similar features in epi-
demiologic research. 

Keywords: COVID-19; computational epidemiology; spatiotemporal modeling; interpretable  
predictions; infectious diseases; spatial clustering 
 

1. Introduction 
The COVID-19 pandemic is an unprecedented global health crisis that, as of May 

2022, infected more than 515 million people and has taken more than 6.2 million lives 
worldwide [1]. In the United States, the spread of COVID-19 rapidly outstripped public 
health systems, leading to an extremely deadly and widespread pandemic. Even after the 

Citation: Ak, Ç.; Chitsazan, A.D.; 

Gönen, M.; Etzioni, R.; Grossberg, 

A.J. Spatial Prediction of COVID-19 

Pandemic Dynamics in the United 

States. ISPRS Int. J. Geo-Inf. 2022, 11, 

470. https://doi.org/10.3390/ 

ijgi11090470 

Academic Editors: Wolfgang Kainz 

and Fazlay S. Faruque 

Received: 28 July 2022 

Accepted: 29 August 2022 

Published: 30 August 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



ISPRS Int. J. Geo-Inf. 2022, 11, 470 2 of 20 
 

 

initial case surge, the nation struggled to control disease spread as it faced ongoing limi-
tations in the availability of personal protective equipment, testing, intensive care unit 
beds, ventilators, and eventually vaccines. COVID-19′s long incubation period and pro-
pensity for asymptomatic spread mean that reactive measures are likely to be too late to 
quell widespread infection. Therefore, in future pandemics, targeting interventions to ge-
ographic areas at the greatest risk of disease spread could provide a means of suppressing 
the hot-spot formation and flattening the pandemic curve. 

A range of intersecting biological, demographic, and socioeconomic factors deter-
mine susceptibility to COVID-19 [2–4]. These factors vary significantly across geographic 
areas and often reflect society’s structural inequities. Spatial analysis employing Geo-
graphical Information Systems (GIS), in which data are layered upon spatial coordinate 
information, allows researchers to examine associations between biological, demographic, 
and socioeconomic factors and COVID-19 pandemic dynamics within and between geo-
graphically-defined regions. Research at the county level is well suited to understanding 
spatial features associated with the pandemic, as COVID-19 spread depends upon prox-
imity, and public health interventions and resources are generally organized at the county 
level. Studies utilizing GIS reported that, among counties in the United States, measures 
of income inequality, poverty, urbanicity, poor healthcare access, and increased propor-
tion of non-white individuals are associated with COVID-19 incidence and death [5–8]. 
Similarly, in England, relative humidity and hospital accessibility were negatively related 
to the COVID-19 mortality rate, whereas the percentage of Asian people, of Black people, 
and the unemployment rate were positively related to the COVID-19 mortality rate [9]. A 
recent study reposted that race/ethnic disparities in COVID-19 risk are higher even among 
insured adults [10]. 

In this study, we build upon these known demographic, medical, and social associa-
tions with the goal of developing more accurate predictions that capture the heterogeneity 
in associations between spatial structure and features and compare them across different 
temporal phases of the pandemic. We curated a large dataset of GIS-tagged demographic, 
socioeconomic, and political data and utilized the machine learning approach, structured 
Gaussian processes (𝑆𝑆𝑆𝑆𝑆𝑆) to develop dynamic prediction models of localized COVID-19 
cases and death counts. We applied this approach to both the initial spread of COVID-19 
across the US in spring 2020 and the dramatic expansion of infections during autumn 2020 
when the virus was ubiquitous. This allowed us to directly compare factors driving dis-
ease dynamics during different phases of the pandemic. Because many of the most prog-
nostic factors, such as household income and access to insurance, are geographically re-
stricted, we hypothesized that they served as surrogates for other unmeasured county 
characteristics. We, therefore, explored whether counties could be grouped by similar spa-
tial features using topic modeling (TM) with latent Dirichlet allocation (LDA) to predict 
those counties with the greatest COVID-19 case burden. Although TM was previously 
used for COVID-19 modeling, it was in the context of natural language processing, such 
as finding weekly COVID-19 concerns through LDA Topic Modeling [11], psychological 
assessments, and Twitter to understand the changes in COVID-19 spread [12]. To our 
knowledge, there are no studies investigating geographical and demographic characteri-
zations of US counties in relation to COVID-19 using TM. 

2. Materials and Methods 
We retrieved county-level daily case counts from 22 January 2020 to 21 March 2021, 

provided by the Center for Systems Science and Engineering at Johns Hopkins University. 
We extracted county-specific features from the United States Census Bureau and the Na-
tional Center for Health Statistics population estimates. County-specific features used in 
this study are shown in Table S1, along with the source information. Boundary shapefile 
of counties downloaded from TIGER/Line database (https://www.census.gov (accessed 
on 30 April 2020)). We normalized the daily confirmed COVID-19 case and death counts 
per 100,000 residents and then calculated the 7-day moving average.  
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2.1. .Supervised Prediction Algorithm: Gaussian Process Regression 
Gaussian process regression (𝐺𝐺𝐺𝐺𝐺𝐺) is suitable to capture highly complex dependen-

cies between input and output variables thanks to its nonlinear nature brought by kernel 
functions. We used a computational strategy based on 𝐺𝐺𝐺𝐺𝐺𝐺 that enabled us to perform 
predictions under spatial (i.e., predicting case counts for unseen locations) and temporal 
(i.e., predicting case counts for future time periods) for infectious diseases and proven to 
outperform existing methods frequently used and considered as the standard machine 
learning algorithms to capture temporal, spatial, and spatiotemporal dependencies in eco-
logical and epidemiological applications [13–15]. We used the Structured Gaussian Pro-
cess (𝑆𝑆𝑆𝑆𝑆𝑆) regression algorithm to predict case counts for each county of a given state. 
𝑆𝑆𝑆𝑆𝑆𝑆 allows performing spatiotemporal predictions thanks to the Kronecker multiplica-
tion of kernels calculated on spatial and temporal features. For a given training data set 
{(𝒙𝒙𝒊𝒊,𝑦𝑦𝑖𝑖)} with 𝑖𝑖 = 1, … ,𝑁𝑁,𝐺𝐺𝐺𝐺𝐺𝐺 uses a probabilistic formulation to model the relationship 
between the input covariates and the output as follows [11]: 

𝒚𝒚 = 𝒇𝒇 + 𝝃𝝃, 
𝒇𝒇 | 𝑿𝑿 ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝒇𝒇;𝟎𝟎,𝑲𝑲), 
𝝃𝝃 | 𝜎𝜎𝑦𝑦2 ~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁�𝝃𝝃;𝟎𝟎,𝜎𝜎𝑦𝑦2𝑰𝑰�, 

 

where 𝒚𝒚 =  [𝑦𝑦1 𝑦𝑦2 …𝑦𝑦𝑁𝑁]𝑇𝑇 is the vector of observed output values, 𝒇𝒇 =  [𝑓𝑓1 𝑓𝑓2 … 𝑓𝑓𝑁𝑁]𝑇𝑇 is the 
vector of underlying true values for the corresponding input data instances 𝑿𝑿 =
 [𝒙𝒙1 𝑥𝑥2 …𝒙𝒙𝑁𝑁]𝑇𝑇 , 𝝃𝝃 =  [𝜉𝜉1 𝜉𝜉2 … 𝜉𝜉𝑁𝑁]𝑇𝑇  is the vector of measurement noise values that are as-
sumed to follow an isotropic multivariate normal distribution with the variance parame-
ter 𝜎𝜎𝑦𝑦2, 0, and I are the vector of zeros and the identity of proper sizes, respectively, and 
𝑘𝑘(. , . ) is a kernel function that calculates a similarity measure between two data instances.  

In spatiotemporal modeling, we can represent each data instance 𝒙𝒙𝑖𝑖   as a pair of lo-
cation and time period vectors (𝒔𝒔𝒍𝒍, 𝒕𝒕𝒑𝒑), where 𝑙𝑙 indexes locations, 𝑝𝑝 indexes time peri-
ods, 𝐿𝐿 is the number of locations, and 𝑃𝑃 is the number of time periods. We can also form 
a response matrix of size 𝐿𝐿 ×  𝑃𝑃  to store 𝑦𝑦𝑖𝑖  values of these pairs.  

In this case, the kernel function between data instances can be written as the multi-
plication of two separate kernel functions: 

𝑘𝑘�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗� = 𝑘𝑘 ��𝒔𝒔𝑙𝑙 , 𝒕𝒕𝑝𝑝�, �𝒔𝒔𝑚𝑚, 𝒕𝒕𝑞𝑞�� = 𝑘𝑘𝑠𝑠(𝒔𝒔𝑙𝑙 , 𝒔𝒔𝑚𝑚)𝑘𝑘𝑡𝑡�𝒕𝒕𝑝𝑝, 𝒕𝒕𝑞𝑞�,  

where 𝑘𝑘𝑠𝑠(. , . ) gives the similarity between geographical locations using spatial features, 
and 𝑘𝑘𝑡𝑡(. , . ) calculates the similarity between time periods using temporal features.  

The kernel matrix calculated on the training instances can be written as the Kronecker 
product of two smaller kernel matrices calculated on the geographical locations and the 
time periods, respectively.  

𝑲𝑲 = 𝑲𝑲𝑠𝑠 ⨂ 𝑲𝑲𝑡𝑡  

where 𝑲𝑲, 𝑲𝑲𝒔𝒔, and 𝑲𝑲𝒕𝒕 are of sizes 𝐿𝐿𝐿𝐿 ×  𝐿𝐿𝐿𝐿, 𝐿𝐿 ×  𝐿𝐿, and 𝑃𝑃 ×  𝑃𝑃, respectively. 
We integrated spatial features (such as geographical coordinates and location-spe-

cific demographic information) and temporal features (such as the day, month, and year 
information of the reported case counts) for location and time period pairs that were used 
as data instances in our Gaussian process formulation. After calculating a Gaussian kernel 
for each spatial and temporal feature, spatial, and temporal kernels are combined sepa-
rately, then combined spatial and temporal kernels are unified with Kronecker multipli-
cation to a larger spatiotemporal kernel, which allows us to make predictions for each 
given location and time point (Figure A1). We calculated a Gaussian kernel for each spatial 
feature and added it to our feature set, but only if it improved the prediction quality on 
the validation set in terms of normalized root mean square error (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁), i.e., forward 
feature selection. We used the kernel calculated on the latitude and longitude of each 
county by default in the feature selection process. We set the standard deviation of meas-
urement noise values 𝜎𝜎𝑦𝑦 as the mean of pairwise Euclidean distances between training 
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instances. After performing cross-validation on the training set, we picked the kernel 
width parameter as the mean variance of log-scaled observed case counts of training in-
stances multiplied by the scaler hyperparameter. The parameter set used for cross-valida-
tion was 1/8, 1/4, 1/2, 1, 2, 4, and 8. Our implementation of SGP is publicly available at 
https://github.com/cigdemak/sgp_covid-19 (accessed on 26 July 2022) and 
https://doi.org/10.5281/zenodo.7013731 (accessed on 26 July 2022). 

For the regression algorithm, we designed two different prediction scenarios: spatial 
prediction and temporal prediction. We performed spatial prediction for (i) initial disease 
dynamics: the 30 days following the first case in each county and (ii) nationwide disease 
dynamics: the time period between 11 September 2020, when the nationwide rise in cases 
began, and 21 March 2021, when the epidemic curve was completed (see Figure A2). 

By Tobler’s first law of geography, near things are similar to each other more than 
distant things. This phenomenon, known as spatial autocorrelation, has unwanted conse-
quences, such as overfitting with non-causal predictors [16,17]. In order to overcome this, 
there have been studies suggesting designing the cross-validation for spatial models, such 
as block cross-validation when the folds are not randomly chosen but using a spatial strat-
egy to construct the folds [18,19]. However, COVID-19 cases/deaths may be very high in 
one county while the adjacent counties may have too low COVID-19 cases/deaths, thus 
here, we followed a similar approach to have a balanced representation of different 
case/death number distributions when selecting counties in our train and test sets to ad-
dress some of the aforementioned issues. 

For spatial prediction, we divided counties into three groups by first ordering their 
total case counts and then taking the counties numbered with the multiples of one and 
three as training set and the counties numbered with the multiples of two as the test set. 
We used the counties numbered with the multiples of one and three as two sets for cross-
validation to optimize the kernel width parameter. We first trained the spatial algorithms 
using case counts of two-thirds of the counties over the given number of days as the ob-
served response matrix, leading to a training set of 2/3 ×  𝐿𝐿 ×  𝑃𝑃 training instances with 
the optimized hyperparameter. We then tested the trained models by predicting observed 
case counts of one-third of the counties for the same time periods, leading to a test set of 
1/3 ×  𝐿𝐿 ×  𝑃𝑃 . For the initial phase of the pandemic predictions, the number of time 
points, 𝑃𝑃, is 30 days. For the nationwide phase of the pandemic predictions, the number 
of time points, 𝑃𝑃, is 426 days (from 12 April 2020 to 28 March 2021). For both of the spatial 
prediction models, the overall total number of locations, 𝐿𝐿, is 3071 counties.  

In temporal prediction, we are interested in finding case counts in observed locations 
for a future unseen time period. We predicted daily COVID-19 case counts/death counts 
for each location at the beginning of each week for a week starting from 6 April 2020, the 
peak of the first rise, until 21 March 2021. We used the last week of the training dataset as 
the validation dataset to select the spatial features with the forward selection method and 
also to optimize the model’s response noise parameter. Accuracy was assessed using Pear-
son’s correlation coefficient (𝑃𝑃𝑃𝑃𝑃𝑃), which showed how well the dynamics of the event 
counts was captured by the algorithms, and the proportion of variance explained (𝑅𝑅2), 
which showed the proportion of total variation in outcomes explained by the model. 𝑆𝑆𝑆𝑆𝑆𝑆 
implementation in 𝑅𝑅 is publicly available [13].  

2.2. Unsupervised Prediction Algorithm: Topic Modeling 
Topic modeling (TM) is an unsupervised machine learning technique that is capable 

of going over a set of documents, identifying the words that are distinctive to the docu-
ments within them, and automatically clustering word groups and similar expressions 
that best characterize a set of documents.  

In this paper, we used TM to cluster the US counties that were similar in their topics 
(i.e., spatial feature groups) and found the relation between COVID-19 cases/deaths of 
county clusters with their topics. We defined each county as a document and each spatial 
feature as a word in the topic modeling setting. With the extracted topics from spatial 
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data, we analyzed the topic scores of each county to extract information about the spatial 
dynamics of COVID-19 cases/deaths. 

𝑇𝑇𝑇𝑇 uses the Latent Dirichlet Allocation (LDA) algorithm as a baseline algorithm that 
associates words and documents to topics by linking together co-occurring words in k-
number of topics, which then can be related to the documents by comparing the relative 
occurrence of words in each topic, then outputs a topic-word and topic-document distri-
bution. Using this approach, 𝑇𝑇𝑇𝑇 finds sets of co-occurring spatial features (i.e., words) 
that can then link counties (i.e., documents) to topics.  

LDA derives, from the original high-dimensional data, (i) 𝜃𝜃, the probability distribu-
tions over the topics for each county in the dataset, and (ii) 𝜙𝜙 the probability distributions 
over the spatial features for each topic. 𝜃𝜃 and 𝜙𝜙 indicate how important a spatial feature is 
for a county and how important spatial features are for the topic, respectively. Here, we 
used a collapsed Gibbs sampler in which we assign each spatial feature in each county to 
a certain topic by randomly sampling from a distribution where the probability of a spatial 
feature being assigned to a topic is proportional to the contribution of that spatial feature 
to the topic and the contribution of that topic to the county.  

Given 𝑁𝑁 counties,  𝐷𝐷 spatial features, and a choice of 𝐾𝐾 topics, the model is therefore 
made up of two sets of Dirichlet distributions:  

𝜙𝜙𝑘𝑘 ∼ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑙𝑙𝑙𝑙𝑡𝑡𝐷𝐷(𝛽𝛽), 𝑘𝑘 = 1 …𝐾𝐾 
𝜃𝜃𝑑𝑑 ∼ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑙𝑙𝑙𝑙𝑡𝑡𝐾𝐾(𝛼𝛼),𝑑𝑑 = 1 …𝑁𝑁  

where  𝛼𝛼  and  𝛽𝛽  are vectors of length 𝐾𝐾  and  𝐷𝐷  representing the priors of per-county 
topics and per-topic spatial features, respectively. The use of smaller values of  𝛼𝛼  and  𝛽𝛽  
makes it possible to control the sparsity of the model (i.e., the number of topics per county 
and number of spatial features per topic). Then, 𝐿𝐿𝐿𝐿𝐿𝐿 models every county using the fol-
lowing generative process:  
1. For a given county d, the topic distribution, 𝜃𝜃𝑑𝑑 ∼ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑙𝑙𝑙𝑙𝑡𝑡𝐾𝐾(𝛼𝛼) is drawn.  
2. For the 𝑖𝑖𝑡𝑡ℎ  spatial feature in the county,  

(a) A topic assignment 𝑧𝑧𝑖𝑖~ 𝜃𝜃𝑑𝑑 is drawn,  
(b) and a spatial feature 𝑤𝑤𝑖𝑖  ~ 𝜙𝜙𝑧𝑧𝑖𝑖 is drawn and observed. 
We ran 𝐿𝐿𝐿𝐿𝐿𝐿 with the package ‘lda’ in R. Total number of topics was found using the 

rate of perplexity change elbow plot reported by Zhao and colleagues [20]. To visualize 
how cases and deaths related to topics, deaths, and cases from the initial phase and na-
tionwide phase, as described above, were binned into 5 categorical quintiles of mean 
cases/100K and deaths/100K and regressed against average topic scores.  

2.3. .Clustering Counties 
To group counties together by the relative contributions of topics to each county, we 

imputed the dimensionally reduced LDA topics into a Louvain clustering algorithm using 
a resolution of 0.7, which resulted in 9 clusters. Topic contributions were then shown by 
plotting the average z-score normalized topic scores across all counties within a given 
cluster. Then, to see which clusters had a high incidence of deaths/cases per capita, we 
plotted a histogram of the number of counties across each quintile.  

3. Results 
3.1. Defining Spatial Features 

We first sought to define the spatial features that predicted the initial rise in cases, 
defined here as the 30 days following the first confirmed case in each county. To do so, 
we trained an 𝑆𝑆𝑆𝑆𝑆𝑆 regression algorithm on two-thirds of the counties in each state (Fig-
ure 1a). For each state, the 𝑆𝑆𝑆𝑆𝑆𝑆 model used neighboring location case counts and demo-
graphic features to identify a different set of features to predict the dynamics of case 
spread in each county. We chose to restrict feature selection across counties at the state 
level because state borders represent the main political division at which public health 
systems implemented mitigation measures and other policies. The algorithm used these 
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state-by-state models to generate case predictions in the remaining one-third of “unseen” 
test counties (Figure 1b), and then compared them to the observed case counts in these 
counties (Figure 1c) to evaluate model performance. Figure A3a shows the features se-
lected for the prediction models in each state. The top three most predictive features across 
all states were Rural-urban continuum code (ranged between 0–9 with a higher score mean-
ing more rural), Vote difference 2020, and urban influence code (a higher score means more 
rural), all of which negatively correlated with case counts (Figure 1d). The next three most 
frequently selected features—Total households, total population and domestic migration rate 
(net of in-migration–out-migration)—are positively correlated with case counts and re-
flect the known strong association between population and COVID-19 spread [21,22]. The 
remaining top predictive features reflected the importance of health insurance, education, 
race, income, and population density in predicting case growth. The overall Pearson’s 
correlation coefficient (𝑃𝑃𝑃𝑃𝑃𝑃) and the proportion of variance explained (𝑅𝑅2) of this model 
applied across counties were 0.96 and 0.84, respectively (Figure A3b). Model performance 
varied across states, with a median 𝑃𝑃𝑃𝑃𝑃𝑃 of 0.98 and a median 𝑅𝑅2 of 0.94 (Figure 1e). 𝑅𝑅2 
was greater than 0.90 in the majority of states, demonstrating that the models built on 
spatial features could account for most of the variance in case counts. 

 
Figure 1. Spatial modeling of case dynamics during initial phase of pandemic. Blue shade indicates 
observed cases over first 30 days in counties used for model training (a) and testing (observed) (b), 
with predicted case counts in test counties shown in (c). Cases were aggregated over 30 days in each 
county in the maps. (d) The most predictive top 20 features selected overall by the algorithm for the 
initial phase. Purple-colored features are negatively correlated with case counts, and the orange-
colored features are positively correlated with the case counts. (e) 𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑅𝑅2 values of all pre-
dictions. 

We then applied an identical approach to generate a spatial model utilizing COVID-
19-associated deaths over the first 30 days following the first death in each county as the 
dependent variable (Figure A4). Consistent with prior reports, the features most fre-
quently selected to predict deaths included measures of advanced age and non-white race 
[23,24]. Vote difference 2020 remained the second most frequently selected feature to predict 
deaths.  
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3.2. Analysis of the Nationwide Phase Dynamics 
We next extended our analysis to a later phase of the pandemic, commonly called the 

“third wave,” which we defined as the period between 11 September 2020, when national 
case counts were at a local nadir, and 21 March 2021, which marked the next local nadir. 
In contrast with the initial case rise, during this phase, the SARS CoV-2 virus was circu-
lating in nearly all counties, testing was more broadly available, and there was a better 
understanding of modes of spread (droplets and aerosols) and effective mitigation 
measures, including distancing and masking. Case counts in training counties, predicted 
case counts in test counties, and observed case counts in test counties are shown in Figure 
2a–c, and feature selection for the models derived in each state is shown in Figure A5a. 
The results largely echoed those from the initial phase, with Urban influence code, Vote dif-
ference 2020, Total households, and Total population the most frequently selected features 
across all states (Figure 2d). The model again demonstrated a very strong 𝑃𝑃𝑃𝑃𝑃𝑃 of 0.95 
with a 𝑅𝑅2 of 0.87, although the model underestimated significant case growth across a 
subpopulation of counties (Figure A5b). Across states, the model median 𝑃𝑃𝑃𝑃𝑃𝑃 was 0.98 
and the median 𝑅𝑅2 was 0.95 (Figure 2e). We generated an independent model to predict 
deaths during the nationwide phase (Figure A6). Because the time interval included both 
a nationwide rise and fall in cases, which could be governed by different spatial factors, 
we repeated the models for case and death predictions over the rising phase alone, from 
11 September 2020 to 1 January 2021. The most frequently selected features during this 
interval closely reflected those selected over the full epidemic curve, although the total 
female population was selected more frequently in the models predicting deaths over the 
rising phase (Figure A7b). We provided a color-coded comparison figure of the top five 
most frequently selected features of the four prediction scenarios covered for spatial anal-
ysis of case and death counts during initial and nationwide phases of COVID-19 pandem-
ics, see Supplementary Material Figure S1. 

 
Figure 2. Spatial modeling of case dynamics during nationwide phase of pandemic. Blue shade in-
dicates observed cases over first 30 days in counties used for model training (a) and testing (ob-
served) (b), with predicted case counts in test counties shown in (c). Cases were aggregated over 
the time period after 11 September 2020 until 21 March 2021 in each county in the maps. (d) The 
most predictive top 20 features selected overall by the algorithm for the nationwide phase. Purple-
colored features are negatively correlated with case counts, and the orange-colored features are pos-
itively correlated with case counts. (e) 𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑅𝑅2 values of the predictive models on a state-by-
state level. 
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We generated daily case and death count predictions for each week t across all coun-
ties from 6 April 2020 to 21 March 2021 using the spatial features and case counts up 
through week t-1 as an internal validation of the selected features sets. Consistent with 
our other analyses, we found that the prediction models most frequently included features 
associated with population and urbanicity, presidential vote margin, and older age. State-
by-state case and death count predictions based on both the spatial and temporal models 
described above can be reviewed on interactive maps at https://cigde-
mak.shinyapps.io/sgp_covid-19/ (accessed on 26 July 2022).  

3.3. Topic Modeling and Unsupervised Cluster Analysis Reveals High Risk Counties 
One limitation of the spatial prediction models described above is that many features 

are similar, so the features selected by the 𝑆𝑆𝑆𝑆𝑆𝑆 modeling are not always the true driver 
of case growth. Indeed, sets of features cluster along well-described socioeconomic, edu-
cational, and health axes (Figure 3). Notably, neither Vote difference 2020 nor Vote difference 
2016 is strongly correlated with any spatial features, suggesting that the political leaning 
of a county is an independent risk factor for COVID-19 spread. Furthermore, the features 
selected in the models are heterogeneous across states, limiting the ability to define “high 
risk” locales. For that reason, we set out to group counties by sets of similar spatial fea-
tures that together are associated with the risk of COVID-19 spread. We used a topic mod-
eling (𝑇𝑇𝑇𝑇) framework using the Latent Dirichlet Allocation (𝐿𝐿𝐿𝐿𝐿𝐿) algorithm to reduce the 
dimensionality of the data. Using this approach, we utilized 𝑇𝑇𝑇𝑇  to find sets of co-occur-
ring features that can then link counties to topics (i.e., a set of features grouped together 
by 𝑇𝑇𝑇𝑇). 

 
Figure 3. Correlation matrix of the spatial features used in the 𝑆𝑆𝑆𝑆𝑆𝑆 model. Blue indicates positive 
correlation, red indicates negative correlation, and cross indicates no correlation. Shade indicates 
strength of correlation per scale shown at bottom of matrix. 

By applying 𝑇𝑇𝑇𝑇 we found sets of similar features that score each county and feature 
association to each topic (i.e., set of features grouped together by 𝑇𝑇𝑇𝑇). The top features 
contributing to each topic are shown in Figure A8. Topics grouped together many 
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geographically similar counties (Figure A9), such as topics 2 and 3, which occurred largely 
in the South and Midwestern regions of the US, respectively. 𝑇𝑇𝑇𝑇 also grouped geograph-
ically remote but demographically similar counties, such as topic 8, which largely showed 
features associated with low socioeconomic status. Notably, vote differences were not a 
primary contributor to any topic, consistent with the low correlation between political 
orientation and the other features in our dataset. To see how topics related to COVID-19 
spread, we looked at the relationship between COVID cases/deaths and topic scores by 
plotting topic scores against quintiles of cases or deaths for each phase in the pandemic. 
Several topics showed correlations with cases and deaths (Figure 4c,e). We provided the 
correlations of topics between initial and nationwide cases and deaths in the supplemen-
tary material, Figure S2. For example, topic 8 (e.g., less than high school diploma, percent 
of people in poverty, households with supplemental security income, and Medicaid) cor-
related positively with deaths during the nationwide phase (Figure 4d). Topic 10, which 
had high feature score contributions from higher education and access to services, showed 
a negative correlation to the death rate (Figure 4f). 

 
Figure 4. Topic modeling identifies associations between sets of spatial features and COVID-19 dy-
namics. (a) Top 10 feature scores for features associated with topic 8. (b) Topic 8 scores for each 
county in the US. Legend of the map is the same as the topic score heatmaps given in (c,e). (c) 
Heatmap of each county z-scored topic score against the mean deaths during the nationwide phase, 
binned into quintiles. To highlight the relationships between topic scores and deaths, the heatmap 
is sorted by topic 8. (d) Boxplot of topic scores for each county across death quintiles for topic 8, 
showing positive correlation with death counts. (e) Heatmap of each county z-scored topic score 
against the mean deaths during the nationwide phase, binned into quintiles. In order to highlight 
the relationships between topic scores and deaths, the heatmap is sorted by topic 10. (f) Boxplot of 
topic scores for each county across death quintiles for topic 10, showing negative correlation with 
death counts. (g) Top 10 feature scores for features associated with topic 10. (h) Topic 10 scores for 
each county in the US. Legend of the map is the same as the topic score heatmaps given in (c,e). 

We, therefore, clustered the counties using county-specific topic scores in a Louvain 
clustering algorithm to segregate discrete groups of counties with a similar set of spatial 
features (i.e., topic contributions). After clustering, counties with similar socioeconomic 
and demographic compositions tended to group together (Figure 5a). In order to highlight 
the feature and topic contributions of each cluster of counties, Figure 5b shows the mean 
topic score for each topic within each cluster of counties. For example, Cluster 1 is com-
posed of counties with high scores from topics 1, 3, and 9 and low topic 10 scores. This 
cluster highlights most of the Midwest region, where the largest surge in cases and deaths 
occurred during the autumn 2020 period of the nationwide phase of the pandemic (Figure 
5c). Clustering further delineated cases from deaths, and the initial phase from nationwide 
phase dynamics, highlighting plasticity in the composition of spatial features most 
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associated with COVID risk across the course of the pandemic. Cluster 3, which was geo-
graphically restricted to the Southeast US, was associated with high COVID-19 case 
counts during the initial phase. In contrast, Cluster 0, restricted to Texas, the lower Mid-
west, and the Rocky Mountain region, was associated with high COVID-19 spread during 
the nationwide phase (Figure 5c). 

 
Figure 5. Counties clustered using spatial topics show similar patterns in COVID-19 cases/death 
counts. Clustering by topics can identify high- and low-risk counties. (a) Geographical map of coun-
ties and their discrete cluster assignments when topic-county matrix inputted into Louvain cluster-
ing. (b) Mean topic score for each topic for each of the 9 clusters of counties. (c) Bar graph of the 
number of countries within each cluster that fall within each quintile bin of cases and deaths for the 
initial as well as nationwide phases of the pandemic. 
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We also performed predictions using SGP with topics (i.e., spatial feature groups) 
extracted from TM; however, prediction accuracies of SGP were not improved. Prediction 
in the early stage of the pandemic was especially unsuccessful using topics because there 
were fewer events to train our prediction model, and, therefore, using an approximated 
version of the spatial features failed to perform predictions. On the other hand, prediction 
accuracies of cases and deaths during the nationwide phase, when the number of events 
was far greater, yielded 𝑃𝑃𝑃𝑃𝑃𝑃 of 0.92 and 0.86 with a 𝑅𝑅2 of 0.80 and 0.73, respectively. The 
most frequently selected three topics were 3, 2, and 8 for nationwide case counts predic-
tions and 3, 8, and 10 for nationwide death counts predictions. 

4. Discussion 
We adopted 𝑆𝑆𝑆𝑆𝑆𝑆 analysis to generate highly predictive models for COVID-19 case 

growth and found that the majority of variance in COVID-19 spread can be explained by 
the spatial features included in each model. Both case and death counts in each county, 
measures of urbanicity, age, and presidential voting margin were found to be the most 
predictive features by 𝑆𝑆𝑆𝑆𝑆𝑆 algorithm. Mirroring well-established risk factors for COVID-
19 infection and mortality [25–29], we found that the most optimal spatial models fre-
quently included non-white race and measures of socioeconomic status. However, our 
𝑆𝑆𝑆𝑆𝑆𝑆 analysis showed that the factors predicting cases and mortality across the US differ 
geographically. This geographic heterogeneity makes it difficult to apply a uniform set of 
features to identify counties at greatest risk. Because many of the features are highly cor-
related, our 𝑆𝑆𝑆𝑆𝑆𝑆 modeling approach may have obscured stronger effects by diluting se-
lection among similar features. For example, urban influence code, rural–urban contin-
uum, population density, and total households all describe a county’s urbanicity, yet each 
individually shows up among the most selected features associated with COVID-19 dy-
namics, effectively competing for inclusion in the model. Furthermore, these measures of 
urbanicity also correlated with the number of individuals over 65 years old, who represent 
the highest risk cohort for COVID-19 mortality [30,31]. Correlation analysis also revealed 
interactions between socioeconomic, health, and racial features, complicating the inter-
pretation of the relationships between these features and COVID-19 dynamics. To com-
pensate for these deficits in the model, we sought to identify which combinations of spa-
tial features are most consistently associated with COVID-19 spread using topic modeling 
to reduce the dimensionality of the data. Although the data used to create the unsuper-
vised groupings did not include COVID-19 data, topics were correlated with both cases 
and deaths. Counties represented by similar topics clustered geographically, supporting 
the utility of this analysis to identify similar places. In accordance with our 𝑆𝑆𝑆𝑆𝑆𝑆 analysis 
and prior studies, topics associated with low socioeconomic status correlated with high 
case and death counts, whereas topics associated with increased wealth and education 
exhibited an inverse correlation with cases and deaths. By clustering counties according 
to their topics—the feature sets found through 𝑇𝑇𝑇𝑇—we were then able to identify those 
counties across the US that were demographically similar and found that combinations of 
topics were associated with more case and death burden. These combinations of features 
likely relate not only to factors that increase the rate of spread or mortality but also adher-
ence and implementation of mitigation measures.  

Aside from population metrics, presidential vote margin was the most consistently 
selected spatial feature in our COVID-19 prediction models. Notably, the presidential vote 
margin was not correlated with any other features, suggesting that political orientation 
represents an independent risk factor for COVID-19 spread. Politics played a prominent 
role in the US response to the coronavirus pandemic, with mitigation policies and adher-
ence varying widely between areas under Democratic or Republican governance. It is not 
clear whether this association stems from a “top-down” effect of the administration’s dis-
missive management and communication approach or reflects growing distrust in science 
on the ideological right [32,33]. Indeed, recent work linked partisanship to attitudes about 
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COVID-19 policy and mitigation measures from the beginning of the pandemic, before 
polarized messaging had developed [34–36].  

The development and implementation of spatially-informed prediction models suf-
fer from several limitations. Our models did not include mitigation measures or vaccine 
coverage due in part to inconsistencies in implementation and data availability. The end 
date for the nationwide phase analysis, March 31, was before vaccine availability was 
opened to the general public in most states, but differences in vaccine uptake to that point 
represented a potential confounder. Early case numbers were heavily influenced by low 
test availability, leading to significant missing data. However, our analyses found similar 
features predicted case dynamics throughout the pandemic, suggesting that the effect of 
this missing data may be minimal. Finally, 𝑇𝑇𝑇𝑇 and Louvain clustering generate highly 
overlapping feature sets that may be specific to the breadth of data included. Thus, while 
spatial analysis provides a powerful predictive tool, the precise effect of each feature or 
set of features is likely to be context-specific. 

In conclusion, we show that spatial features account for the majority of variation in 
COVID-19 case and death dynamics across the US. Predictive modeling based on combi-
nations of spatial features can identify counties at the greatest risk for COVID-19 spread 
and can be used to direct aggressive mitigation strategies and limited resource pools to 
these areas. Finally, we show that topic modeling provides a new approach to dimension-
ality reduction in epidemiologic data and may be of value in other datasets with highly 
collinear variables. 
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www.mdpi.com/article/10.3390/ijgi11090470/s1, Table S1: Spatial features, Figure S1: Color-coded 
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for spatial analysis of case and death counts during initial and nationwide COVID-19 pandemics, 
Figure S2: Topic correlations with initial and nationwide cases and deaths. 
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Appendix A 

 
Figure A1. Overview of our predictive computational framework structured Gaussian process re-
gression (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆). 

 
Figure A2. (a)US-wide total 7-day moving average case counts per 100 thousand population and 
the dates we selected for analysis of early and late pandemic dynamics. Red lines are at 6 April 2020, 
11 September 2020, and 21 March 2021. (b) 7-day moving average case counts of the first month 
with a case of each US county and US-wide cumulative case counts of the first month with a case. 
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Figure A3. (a) Selected predictive features for each state by the algorithm for the initial phase pre-
diction of cases. (b) 𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑅𝑅2 values of the predictions reported as a box plot. 

 
Figure A4. (a–c) On three different maps, we presented the data used for training our model for the 
initial phase prediction of deaths, the test data (i.e., holdback, observed) and our predictions for test 
locations. Deaths were aggregated over 30 days in each county in the maps. (d) Selected predictive 
features for each state. (e) 𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑅𝑅2 values of the predictions reported as a heatmap per state. 
One can identify the states falling far from the observed versus predicted line from the accuracy 
heatmap. (f) The most predictive top 20 features selected overall by the algorithm for the initial 
phase. Purple-colored features are negatively correlated with the death counts and the orange-col-
ored features are positively correlated with the case counts. (g) 𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑅𝑅2 values of the predic-
tions reported as a box plot. 
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Figure A5. (a) Selected predictive features for each state by the algorithm for the nationwide phase 
prediction of cases. (b) 𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑅𝑅2 values of the predictions reported as a box plot. 

 
Figure A6. (a–c) On three different maps, we presented the data used for training our model for the 
nationwide phase prediction of deaths, the test data (i.e., holdback, observed) and our predictions 
for test locations. Deaths were aggregated over the time period after 11 September 2020 until 21 
March 2021 in each county in the maps. (d) Selected predictive features for each state. (e) 𝑃𝑃𝑃𝑃𝑃𝑃 and 
𝑅𝑅2 values of the predictions reported as a heatmap per state. (f) The most predictive top 20 features 
selected overall by the algorithm for the nationwide phase. Purple-colored features are negatively 
correlated with the death counts and the orange-colored features are positively correlated with the 
case counts. (g) 𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑅𝑅2 values of the predictions reported as a box plot. 
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Figure A7. (a,b) The most predictive top 20 features selected overall by the algorithm for case and 
death count predictions from 11 September 2020 to 1 January 2021, respectively. Purple-colored fea-
tures are negatively correlated with the case/death counts and the orange-colored features are pos-
itively correlated with the case/death counts, respectively. 
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Figure A8. Top 10 feature scores for spatial features associated with each topic. 
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Figure A9. Normalized topic scores for each county in the US. Legend of the map is the same as the 
as the topic score heatmaps given in (Figure 4c,e) where given a topic, counties with colors closer to 
orange have a high topic value and counties with colors closer to purple have low topic value. 
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