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Gergő Pintér * and Imre Felde

John von Neumann Faculty of Informatics, Óbuda University, Bécsi út 96/B, 1034 Budapest, Hungary
* Correspondence: pinter.gergo@uni-obuda.hu

Abstract: The analysis of human movement patterns based on mobile network data makes it possible
to examine a very large population cost-effectively and has led to several discoveries about human
dynamics. However, the application of this data source is still not common practice. The goal
of this study was to analyze the commuting tendencies of the Budapest Metropolitan Area using
mobile network data as a case study and propose an automatized alternative approach to the current,
questionnaire-based method, as commuting is predominantly analyzed by the census, which is
performed only once in a decade in Hungary. To analyze commuting, the home and work locations
of cell phone subscribers were determined based on their appearances during and outside working
hours. The detected home locations of the subscribers were compared to census data at a settlement
level. Then, the settlement and district level commuting tendencies were identified and compared to
the findings of census-based sociological studies. It was found that the commuting analysis based on
mobile network data strongly correlated with the census-based findings, even though home and work
locations were estimated by statistical methods. All the examined aspects, including commuting
from sectors of the agglomeration to the districts of Budapest and the age-group-based distribution of
the commuters, showed that mobile network data could be an automatized, fast, cost-effective, and
relatively accurate way of analyzing commuting, that could provide a powerful tool for sociologists
interested in commuting.

Keywords: mobile network data; call detail records; data analysis; human mobility; urban mobility;
social sensing; urban geography; urban sociology; commuting; sustainability

1. Introduction

Hungary is a typical capital-oriented country. Budapest is the political, economic,
logistical, and cultural center of the country, where almost 18% of the population live [1].
In 2017, the population of Budapest was 1,749,734, and the population of Pest county
was 1,247,372. In the agglomeration of Budapest, 837,532 people lived according to the
Hungarian Central Statistical Office (HCSO) [2]. The Danube river divides the city into the
Buda and the Pest side.

Due to its central role, Budapest attracts a workforce from a relatively large area. This
process establishes a contact between the capital and the surrounding settlements, called
commuting. According to Kiss and Matyusz [3], commuting is the relation between two
locations. The inhabitants of one source location travel to work/study to another location;
this is called “out-commuting”. The target location receives a workforce that is called “in-
commuting”. The loss of the source location follows from the fact that (i) the out-commuter
does not use the local resources, (ii) does not create value, (iii) loosens their relation with
the source location, as it is partly relocated to the target location, and (iv) although it brings
back income, that is partly spent elsewhere. On the other hand, the target location (i) gains
human resources, (ii) can create more value in place, (iii) the local relations and society
become stronger, and (v) the local consumption increases.
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Kiss and Matyusz state that, although commuting is an important and common phe-
nomenon, its measurement by questionnaires (e.g., [4]) is occasional and inadequate to un-
derstand the detailed tendencies [3]. Commuting is analyzed by census data (e.g., [3,5–10])
in detail, but that is performed only once in a decade (in Hungary) and thus cannot fol-
low sudden but permanent changes. For these reasons, commuting should be examined
more continuously. This paper aims to provide a methodological overview for this task
using mobile network data and at the same time, a case study about the commuting in the
Budapest Metropolitan Area.

As questioning the population is a slow, tedious and expensive task, it would be
obvious to automate the process with the available infocommunication technologies (ICT).
In this study, the application of call detail record (CDR) processing is proposed to examine
commuting, and the findings are validated by the results of studies that analyzed commut-
ing using census data. In many cases, the findings are presented in a form as close to those
results as possible to aid the comparison.

This paper is closely related to the authors’ previous works. In [11], the home and
work detection framework was introduced with some macrolevel commuting analysis as a
validation. However, in this study, the commuting tendencies of the Budapest Metropolitan
Area are analyzed in more detail. In [12], the temporal differences in the mobile network
activity between the regions of Budapest are demonstrated, along with the typical times
when a group of subscribers “wakes up” from a mobile network perspective. Some analyses
regarding the length of the working hours are also presented.

The contributions of this paper are briefly summarized as follows:

1. Using anonymized mobile network data, the commuting tendencies of the Budapest
Metropolitan Area are analyzed.

2. The settlement level commuting trends are compared to the former census-based
commuting studies.

3. The scripts and queries used for the study have been made available.

The rest of this paper is organized as follows. First, we provide a brief literature
review in Section 2. The utilized data and the methodology are described in Section 3; then,
in Section 4, the results of this case study are discussed. Finally, in Section 5, the findings of
the paper are summarized.

2. Literature Review

Identifying the home and work locations of a cell phone subscriber is a common
and crucial part of the CDR processing, as a good portion of the people live their lives
in an area that is determined by only their home and workplace [13,14]. Since these
locations fundamentally determine people’s mobility customs, the commuting trends can
be analyzed between these locations. Commuting is studied using mobile network data
within a city [14,15] or between cities [16–19] and also examined by social network data,
such as Twitter [20–22].

Several approaches are known to determine the home location. Vanhoof et al. com-
pared five different home detection algorithms (HDA), selecting the home cell by (i) the
most activity, (ii) the greatest number of distinct days with phone activities, (iii) the most
activities within a time interval (between 19:00 and 7:00), (iv) the most activities within a
spatial perimeter, and (v) the combination of the temporal and spatial constraints [23]. The
method shown in this paper uses the most activities within a time interval (Section 3.3).

While Vanhoof et al. compared different algorithms, Pappalardo et al. [24] compared
different types of mobile network data (CDR, extended detail record (XDR) and control
plane record (CPR)) to estimate the home locations. Furthermore, they validated the
estimated home locations of sixty-five subscribers with the known geographical coordinates
of their residence location. They found that XDRs should be preferred when performing
home location detection.

Csáji et al. determined the subscribers’ most common locations and, based on weekly
calling patterns, identified the home and work locations, which showed a strong correlation
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with population statistics [25]. They also found that the commuting distances could be well
explained by a gravity model.

Besides the home and work locations—and the distance between them—other in-
dicators are used to measure the mobility of subscribers. One of the most popular one,
the radius of gyration, defines an area of a circle where an individual is usually located [26].
Pappalardo et al. used the radius of gyration to separate subscribers based on their mobility
customs and defined two classes: returners and explorers [13]. While in the case of return-
ers, the radius of gyration was dominated by their movement between a few preferred
locations, explorers tended to travel between a larger number of different locations. To
demonstrate this dichotomy, they defined the k-radius of gyration, which refers to the
gyration radius of the k most frequent locations. The gyration radius of a two-returner is
determined by the two most frequented locations, usually the home and work locations [13],
so this method can also be used as a home detection algorithm.

Xu et al. determined the home locations and then applied a modified standard distance
to measure the spread of each subscriber’s activity space [27]. These activity spaces were
broadly similar in concept to the radius of gyration, but the center was the home location,
instead of the locations’ center of mass.

As a part of the Data for Development (D4D) challenge, multiple mobile network
datasets from the Ivory Coast (and later Senegal) were made available for research. “The
goal of the challenge was to help address society development questions in novel ways
by contributing to the socioeconomic development and well-being of the Ivory Coast
population” [28]. The papers presented at the resulting conference (NetMob 2013) dealt
with tracking mobility, economic and social activity, and epidemics [29]. Besides the
scientific benefits, ethical and privacy concerns were also raised [29]. Using the same
data sets, Dong et al. measured the efficiency of the transportation networks [30], and
Šćepanović et al. analyzed the commuting patterns in the Ivory Coast and used them as a
measure of poverty [31].

Jiang et al. identified daily activity patterns (motifs) that could extend the home–
work location-based daily routine [14]; the home locations were validated with census
and household travel survey results. Shi et al. used a kernel density map approach,
from which they distinguished three types of community patterns: single-centered, dual-
centered, and zonal patterns. Yin et al. separated the different types of activity (home,
work, leisure, and school) with chains of activity [32], providing different approaches for a
similar purpose. Diao et al. applied a regression model to travel survey data to predict the
activity type (e.g., home, work, or social) of the mobile phone location data by considering
the temporal distributions of different activities [33].

Mamei et al. computed origin–destination flows with road network mapping and also
validated the home location estimation with census data [17]. Sakamanee et al. inferred
the street-level route choice of the subscribers for modeling transportation [34]. After the
home and work locations were estimated, a set of potential route choices were obtained
from the Google Maps Directions API, including choices of car and public transport. As
opposed to [17,34], this study did not take into consideration the means of transport, only
the origin–destination pairs.

Dannemann et al. [35] partitioned the city of Santiago (Chile) into several commu-
nities and identified the socioeconomic composition of these communities based on the
home–work trajectories. Hadachi et al. reconstructed trajectories and extracted the origin–
destination matrix to analyze commuting patterns [36]. They validated the detected homes,
which showed a strong correlation between the home registration data, but not the com-
muting patterns.

Burgdorf et al. analyzed long-distance (over 50 km) passenger transport in Germany,
including the means of transport [18]. They used mobile network data as an alternative
to the traditional approach, using official statistical data, and household and roadside
surveys. Burgdorf et al. found that the mobile network approach was broadly consistent
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with the reference for the overall values, but there were significant deviations on the level
of origin–destination pairs [18].

Hadachi et al. examined commuting to Tallinn, Estonia from the neighboring munici-
palities [36]. Šveda and Barlík also analyzed the commuting flows from the municipalities
to Bratislava, Slovakia. However, these studies did not validate the commuting ratios with
a census.

Pálóczi analyzed the country-wide commuting in Hungary, using the methods of
complex network analysis, based on the data from the 2011 census [6]. He considered
settlements as nodes, and commuters as a directed edge between the nodes, then applied
the disparity (Y2) parameter [37], which was developed to measure the heterogeneity of
weighted relations. If Y2 is close to one, it means that one destination dominates commuting.
Pálóczi demonstrated that the out-commuting dependency was not the greatest around
Budapest, but around Győr and Székesfehérvár [6], and it was also high at the centers of
the employment regions (e.g., chief towns of the counties).

Commuting is traditionally analyzed by census data or directed questionnaires. Ques-
tioning the population requires fieldwork, which is a slow, tedious, and expensive task.
Therefore, it is only performed occasionally, although more frequent data could help to op-
timize the public transportation system, or monitor the structure of the society, for example.
Using infocommunication technologies such as the mobile network can provide a more
cost-effective, frequent, and countrywide analysis of commuting.

Detecting home locations by mobile network data is a common practice in the literature.
Different HDAs have been described and compared, also using different types of mobile
network data. The detected home locations are often validated by official population data.
With workplace detection, commuting has been analyzed on a smaller and larger scale as
well. In this study, not only the home and workplace detection is validated via census data,
but also the settlement-level commuting tendencies themselves. In Hungary, commuting
is predominantly analyzed by census data, which is used as a reference to validate the
CDR-based results.

3. Data and Methods

Vodafone Hungary, one of the three mobile phone operators providing services in
Hungary with a 25.5% market share in 2017 Q2 [38], provided an anonymized mobile
network data set for this study. The observation period was one month, April 2017. The
observation area was Budapest, the capital of Hungary, and its agglomeration, which
is illustrated in Figure 1a in relation to Pest county. The areas of the capital and the
agglomeration are 525 km2, and 2538 km2, respectively. Budapest is divided into seven
district groups by the HCSO referenced later in this study and shown in Figure 1b.

The mobile network, during its operation, constantly communicates with cell phones.
This communication can be divided into two categories: (i) the passive, cell-switching
communication that keeps the cellphones ready to use the mobile network at any time,
and (ii) the active, billed usage of the mobile network including phone calls, text messages
or mobile internet usage. Therefore, the call detail records (CDRs) are collected for billing
purposes and contain information about the subscriber, the time of the activity, and the place
(via the cell), where the activity occurred, although the records include neither the type of
the activity (voice call, message, data transfer) nor the direction (incoming, outgoing).

The data set contained 955,035,169 CDRs collected by the operator for billing purposes,
from 1,629,275 SIM cards. Figure 2 shows the mobile network activity distribution between
the activity categories of the SIM cards. The left part of the figure displays the number of
CDRs that a group of SIM cards generated. The right part of the figure shows the number
of SIM cards in that group. Only 17.67% of the SIM cards generating more than 1000 CDRs
provided the majority (75.48%) of the mobile phone activity during the observation period.
Figure 3 has the same structure and shows the distribution of the SIM cards by the number
of active days. Only about one-third (33.23%) of the SIM cards have activity on at least
21 different days. Despite the relatively large number of SIM cards present in the data,
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most of them were not active enough to provide enough information about their users’
mobility habits.

Pest county
Agglomeration
Budapest

20 km

(a)

5 km

Inner Pest

South Pest

North Buda

North Pest

South Buda

Eastern Pest (inner)

Eastern Pest (outer)

(b)
Figure 1. The observation area (a) including Budapest (brown), and its agglomeration (green) in
relation to Pest county, and the district groups (b) of Budapest, defined by the Hungarian Central
Statistical Office (HCSO).

105106107108109

Number of call detail records

One activity

Fewer than 10 activities

Fewer than 100 activities

Fewer than 1000 activities

More than 1000 activities

0.01%

0.11%

2.09%

22.31%

75.48%

0.01%

0 100,000 200,000 300,000 400,000 500,000
Number of SIM cards

6.56%

13.29%

28.73%

33.75%

17.67%

Figure 2. The SIM cards in the “April 2017” data set categorized by the number of CDRs. The left
figure shows the number of CDRs and the right figure shows the number of SIM cards in each
category. The SIM cards over a thousand records (17.7%) provide the majority (75.48%) of the activity.

107108

Number of call detail records

One day

One to 7 days

7 to 14 days

14 to 21 days

21 to 28 days

At least 28 days

0.32%

2.30%

3.84%

8.74%

23.83%

60.97%

0.32%

0 100,000 200,000 300,000 400,000
Number of SIM cards

17.13%

25.73%

12.01%

11.90%

14.97%

18.26%

Figure 3. SIM card distribution of the “April 2017” data set, by the number of active days. The left
figure shows the number of CDRs and the right figure shows the number of SIM cards in each
category. Around 45.13% of the SIM cards have activity on at least 14 different days.
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The provided mobile network data included information about the age and the gender
of the cell phone subscribers in about 66.17% and 70.76% of the subscribers, respectively.
Figure 4a shows the number of subscribers by age category and gender. Figure 4b shows
the ratio of the generated CDRs of subscribers by age category and gender. Note that the
subscribers without age information are omitted from the figures. Most of the Vodafone
subscriptions—with information about the subscriber age—were owned by males in their
forties. It is also notable in Figure 4b that most of the mobile network activity is generated
by devices owned by subscribers in their thirties or forties.

[10, 20) [20, 30) [30, 40) [40, 50) [50, 60) [60, 70) [70, 80) [80, 90) [90, 100)
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8

10
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tiv

ity
 ra
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Figure 4. The number of cell phone subscribers (a), and the ratio of all mobile network activity (b) by
age category, when the subscriber age is known.

3.1. Data Engineering

The high-level data processing workflow is illustrated in Figure 5. Our previous
works [11,12,39,40] also relied on the first five stages. The cleaning stage simplified the pro-
vided information (Figure 5a). Originally, the device (or SIM) IDs were represented as long
alphanumeric hashes, which were replaced by ordered numbers in order of appearance,
partly to save disk space and partly because an integer comparison is faster.

Clean data (a) Merge cells (b) Normalize data (c) Load data into DBMS (d) Determine Home and Work (e) Analyze commuting (f)

Figure 5. Workflow of the data processing.

The obtained data used property labels such as “MALE” and “FEMALE” to indicate
gender, “CONSUMER” and “BUSINESS” for customer type, “PREPAID” and “POSTPAID”
for subscription type, and the “UNKNOWN” string was used to denote unknown values.
These strings were shortened, and the unknown values were represented with the proper
“NULL” value to save disc space. The longitude and latitude values, provided in EPSG:4326
projection (also known as WGS 84) were rounded to 6 decimals because further decimals
have no practical meaning in CDR positioning. The TAC is the first eight digits of the
International Mobile Equipment Identity (IMEI) number that can identify the manufacturer
and the model of the device wherein the SIM card is active. The TAC value was utilized
in [12,40].

The cell density is proportional to the population density and inversely proportional
to the cell sizes, which means that there are more and smaller cells downtown. There were
both 2G and 3G cells active during the observation period. In 2017 Q2, the 4G cellular
network technology was marginal in Hungary, and the 3G technology served 86.6% of the
mobile phone traffic [38]. The overlapping technologies could also cause very close cell
centroids (Figure 6a).

The close cells within 100 m were merged (Figure 5b) using the DBSCAN algorithm of
the Scikit-learn [41] Python package. The number of records associated with a cell during
the observation period was applied as weight. The less-active cells were merged into the
more active ones similarly, as in [15]. After the merge, the Voronoi tessellation was applied
to the merged cell centroids. Figure 6 shows the difference between the Voronoi polygons
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before (Figure 6b) and after (Figure 6c) the cell merge. The merged cell polygons became
larger on average and roughly covered a house block downtown.

(a) (b) (c)
Figure 6. Mixed cell centroid (a), Voronoi polygons using the original cells (b), and Voronoi polygons
after merging the close cells (c).

The obtained, “raw” data had a wide format (Figure 7a), which was normalized
(Figure 5c) before importing into the database. The CDR table only contained the SIM ID,
the timestamp, and the cell ID. A table was introduced to store the SIM-related properties
(such as subscription type, customer type, age, gender) and another to store the cell
properties (geographic coordinates). Figure 7b displays the normalized schema.

The rationale for the wide format may be that the subscriber data and the device can
be changed within the observation period. This occurred about 3000 times during the
observation period. The owner of the subscription can change its details and, of course,
change their device if they bought a new mobile phone, for example. Subscriber and
customer type were provided for every SIM, but age and gender were missing in many
cases, presumably due to the privacy options requested by the subscriber. The age was
available for 66.17%, and the gender was provided for 70.76% of the subscribers.

RAW_DATA

int device_id

timetstamp timetstamp

int cell_id

float longitude

float latitude

string customer_type

string subscription_type

string tac

int age

string sex

(a)

CDR

int device_id

timetstamp timetstamp

int cell_id

CELL

int cell_id

float longitude

float latitude

DEVICE

int device_id

string customer_type

string subscription_type

string tac

int age

string sex

(b)
Figure 7. The schema of obtained, “raw” data (a), and the normalized data tables (b).

The normalized data were loaded into a PostgreSQL database (Figure 5d) using the
schema of Figure 7b. Then, indexes were built for all columns of the database tables.
The database management system is an important part of the data processing framework.
For example, the first part of the home and work location estimation (Section 3.3) was
implemented as an SQL query. The PostGIS extension was also used, which added support
for geographic objects allowing location queries to be run in SQL.



ISPRS Int. J. Geo-Inf. 2022, 11, 466 8 of 20

3.2. Methodology

The mobile network data processing framework was introduced in the authors’ previ-
ous work [11], along with the home and work detection method. The queries and scripts
applied in this work have been published in a public repository [42], which contains the
home/workplace detection queries and the plotting scripts. Although the mobile network
data used in the study are not publicly available due to third-party restrictions, dummy
data were generated by a (pseudo)random generator (also published) making the code
executable. This also means that the figures in the repository are not valid, as only the
dummy data were used as an input. The scripts have been published in a Jupyter Notebook
format on GitHub (https://github.com/pintergreg/commuting_analysis, accessed on 11
August 2022).

In order to analyze commuting, the home and the work locations of the subscribers
had to be determined (Section 3.3). As the CDRs were anonymized, they did not contain
information such as a residential address. Even the workplace is not mandatory for a
subscription, and the operators cannot have that information. After these locations were
determined, they had to be validated. Although the applied approach was practically
equivalent to what can be found in the literature, the validity of the results was hard to
confirm. Pappalardo et al. validated the home locations in the case of sixty-five subscribers
whose home addresses were known [24]. However, this was not possible in our case as
no subscribers contributed their home addresses for this study. As a result, the settlement
and—in the case of Budapest—district-based population data [2] were applied from the
HCSO. The mobile-network-based results (e.g., detected population, detected settlement-
level commuting tendencies) were compared to the ground truth (census-based values
and studies based on the Hungarian census values) using standard statistical tools such as
linear regression or Pearson’s correlation coefficient.

Kernel density estimation (KDE) was used to analyze the most common target area
where the inhabitants of a settlement commute. After the origin–destination matrix (home
and workplaces) was determined, a settlement could be selected as an origin and the
work locations (cell centroids) could be passed to the KDE algorithm. This analysis was
performed in two ways: with and without the local workers, who worked in the same
settlement where they lived, as local workers were not relevant for the commuting analysis.

The commuting between the districts of Budapest was also treated as a network, where
the districts were nodes, and an edge represented a commuter that connected two districts.
The network-based commuting or traffic flow analysis also has a long history (e.g., [43,44]).
The NetworkX Python package [45] was used to build a graph, which was visualized by
the chord diagram of the “mne_connectivity” package.

The commuting trends were also analyzed regarding the age groups. In [9], the com-
muting from the urban agglomeration to Budapest was presented using census data. Along
with the obtained subscriber age information, the age-group-based analysis was performed
on the mobile network data.

3.3. Home and Work Locations

Most of the inhabitants in cities spend a significant time each day at two locations:
their home and workplace. To find the relationship between these most important locations
and the social economic status (SES), first, the positions of these locations (cells) have to be
determined. There are a few approaches used to find home locations via a mobile phone
data analysis [27,46,47].

The work location was determined as the most frequent cell where a device was
present during working hours, on workdays. Working hours were considered from 09:00
to 16:00. The home location was calculated as the most frequent cell where a device was
present during the evening and at night on workdays (from 22:00 to 06:00) and all day on
holidays. Although people do not always stay at home on the weekends, it was assumed
that most of the activity was still generated from their home locations.

https://github.com/pintergreg/commuting_analysis
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This method assumed that everyone worked during the daytime and rested in the
evening. Although in 2017, 6.2% of the employed persons regularly worked at night
in Hungary [48], the current version of the algorithm did not try to deal with night-
workers. Some of them might be identified as regular workers but with mixed home and
work locations.

Students, especially university students, might also be identified as workers with
the university as a workplace. From a commuting perspective, this does not cause any
problem, as from a transportation perspective, there is no difference between a worker and
a student. Children usually do not own a subscription. Even if they have a cellphone, it
might be registered to their parents. If these devices have enough mobile network activity,
they might be identified as workers.

As only one workplace was selected (the most frequent cell during working hours),
people with multiple workplaces or indefinite workplaces (e.g., couriers, taxi drivers,
or letter carriers) might have an incorrect workplace detected. Note that this approach
corresponds to common practice.

It also has to be noted that home and work locations could not be detected for SIM
cards with very few occurrences during the observation period—in other words with not
enough mobile network activity. SIM cards without home and workplaces were omitted
from the commuting analysis. 68.08% of the SIM cards had a detected home and workplace.

4. Results and Discussion

Figure 8 shows a comparison between the population registered by the HCSO and
the detected population using CDR data. When comparing the two maps, there are a few
differences: some parts of Budapest are not dark enough on the CDR data. For example,
Districts 16 and 17 seem not as populated as in the HCSO data, but the divergent districts
are on the Buda side: Districts 2 and 3. The difference may have ensued from the inaccuracy
of the home detection in that area or simply from the different preferences in mobile
operators of the inhabitants of the Buda Hills.
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(b)
Figure 8. Comparing the ground truth (the population registered by the HCSO [2]) (a) and the
detected population based on mobile network data (b). The district numbers of Budapest are
also displayed.

Apart from this, the findings based on CDRs correlated with the statistical data;
the Pearson’s R was 0.9213 (R2 was 0.8488), counting every SIM cards. Other studies
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found similarly strong correlation values between population statistics and the detected
homes [36,49]. Figure 9a shows this as a regression plot. As described in the authors’
previous work [40], the obtained call detail records contained information (TAC) about
the devices that used the mobile network. Based on this information, more than 300,000
SIM cards were identified that operated other types of devices than cellphones (e.g., 3G
modem), indicating that they did not represent people. Figure 9b illustrates the correlation
without these SIM cards. Although the population values were decreased, the correlation
did not seem significantly affected: Pearson’s R was 0.9125.
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Figure 9. Correlation between the population of the agglomeration and the 23 districts of Budapest
based on HCSO (ground truth) and mobile network data. The markers represent the settlements or
districts (in the case of Budapest). In left figure (a), all the SIM cards were used, in the right figure (b),
SIM cards that certainly operated in nonphone devices were excluded.

Numerically, the CDR data often showed significant mismatches, but they were not
easy to objectively compare. The available mobile network data originated only from
one operator, which had about 25% market share in the observation period [38]. This
market share is about the subscriptions, not the number of unique people. Furthermore, it
also has to be noted that this ratio represents a nationwide value. Since spatially, a more
detailed market share was not available, it was assumed that Vodafone Hungary had the
same market share in every subregion to make this comparison. Although this is unlikely,
one-fourth of the population values can be used as a rule of thumb.

4.1. Work Locations

Along with the home locations, the workplaces are the most important element of the
mobility and commuting analysis. During the COVID-19 pandemic, this changed. As part
of the social distancing directive, to slow down the spread of the disease, working from
home came to the fore. Presumably, the prevalence of a home office will be higher than it
was before the pandemic, as both the employers and the employees became used to this
situation, but many scopes of activities will still require a work location, so the importance
of this topic will remain the same. However, as the data sources used in this work predated
the pandemic, this question can only be answered in another work.

The workplaces were determined by considering the most frequent place where a
subscriber appears during work hours. See Section 3.3 for the details. For example,
querying the work locations of the inhabitants of an area, a settlement can be the initial
step of the commuting analysis. Figure 10 shows the typical workplaces of three selected
settlements and one district of Budapest, using Gaussian kernel density plots, in two
different versions: with (left column) and without (right column) those subscribers who
work in their home settlement. When the local workers are included, the darkest areas
are within the selected area itself, as many people work in the vicinity of their homes.
Excluding the local workers, Budapest becomes the main target for commuting.
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(a) District 5 (b) District 5, without local workers

(c) Budaörs (d) Budaörs, without local workers

(e) Dunakeszi (f) Dunakeszi, without local workers
Figure 10. Using kernel density plots (with Gaussian kernel) to display the typical working locations
for three selected settlements and a district of Budapest, with (a,c,e) and without (b,d,f) local workers.
The administrative boundaries of Budapest and the selected settlements are also displayed.

4.2. Commuting between Districts

As the origin and the destination of the commuting are determined, it is possible to
build a network, for example, considering the districts of Budapest nodes that are connected
by the commuters. Figure 11 shows the connections between the districts of Budapest. The
Buda districts are placed to the left, whereas the Pest districts are to the right, and the colors
of the nodes represent the district groups defined by HCSO [1] and match the colors of
Figure 1b. The edges represent commuters between districts, removing self-links, and the
weight of the edges denotes the number of commuters. The weight is expressed by colors,
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using darker colors for the stronger edges. The weakest links (w < 250) are omitted to
improve visibility.

Extending this topic to the level of the agglomeration, or the country, could be another
research direction: for example, to analyze the in-commuting and out-commuting. Pálóczi’s
work [6] could serve as a census-based reference.
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Figure 11. Connection by commuters between Budapest districts (numbered nodes) based on the
home and work locations. A link represents how strong the commuting between two districts is.
The weak links are omitted to improve visibility. The district nodes are colored by the district groups.

4.3. Validation by Census

In order to verify the reliability and accuracy of the method proposed for the home
and work location estimation, a comparative study was performed on the mobile network
data and the information processed from the census. In Hungary, a census is obtained
every ten years and a microcensus with a 10% corpus at halftime. The last census was
performed in 2011, while the last microcensus was in 2016. The next census should have
been performed in 2021, but it was postponed until October 2022 due to the COVID-19
pandemic. Based on these surveys, commuting to Budapest (and generally in Hungary) is
analyzed in studies such as [3,6,7,9]. These studies were used as a reference for comparing
the results.

Figure 12 shows the comparison between the CDR and the census-based (Figure 1
in [9]) traveling ratios of the commuters by the districts of Budapest and the home location
category. People who work in Budapest are represented, and the home location can be (i)
the same district where one works, (ii) another district of Budapest, (iii) the agglomeration,
and (iv) other settlements outside the agglomeration.

A good agreement mostly within Budapest was found on the proportions of the
commuters. The most significant difference can be seen with the “outside agglomeration”
category. This deviation, however, originated from the content of the data source, as the
mobile network data used in this study covered mainly the area of Budapest and its close
vicinity. It also contained phone activities from the surrounding county, but by moving
away from Budapest, the available data decreased.
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Figure 12. Comparison between the census-based (a) (Figure 1 in [9]) and the CDR (b) commuting
ratios for the districts of Budapest, from the same district, other parts of Budapest, the agglomeration
or out of the agglomeration.

The fraction of workers who have their homes in the same district was very close to
that of the census data in the outer districts (15–23) but generally overestimated in the core
districts (1, 5–9) and the inner districts (2–4, 10–14). The workers from other district groups
showed the best match to census data (where the CDR should have the best quality), while
the agglomeration was somewhat overestimated in many districts.

4.4. The Urban Agglomeration

The validation presented in this study used the results of [7], where a detailed anal-
ysis was presented in regard to commuting from the urban agglomeration to Budapest.
The urban agglomeration was divided into six sectors, and the commuting was examined
by origin (home sector, occasionally by towns) and destination (district group of Budapest).

Figure 13 shows the commuters’ distribution in the districts of Budapest, from the six
sectors of the agglomeration, based on the CDR evaluation. In representation, Figure 13a–f
are analogous to Figures 2–9 in [7] , and show to which districts the inhabitants commute
from the given sector of the agglomeration.

Lakatos and Kapitány analyzed the commuting tendencies of some settlements to the
districts of Budapest among censuses from 1990, 2001, and 2011 [7]. The same analysis
was conducted using CDR processing, and 6 settlements of the 13 thoroughly analyzed
in [7] are presented in this study. The results are summarized in Figure 14, compared with
the last three censuses. It contains a settlement from every sector of the agglomeration,
so it also serves as a more focused analysis of Figure 13. The location of the settlements
in relation to Budapest is also displayed on small maps to give context to the findings.
From towns west to the capital, the most common commuting targets are the Buda-side
and the inner districts, for example. Moreover, in many cases, the mobile-network-based
findings, which are six years older than the last census, indicate a clear continuation of the
previous tendency.

In the case of Budaörs (Figure 14a), albeit North Pest, outer Eastern Pest, and South Pest
were not significant commuting destinations, census data showed an increasing tendency,
which was confirmed by the mobile network data. The CDR-based results of South Buda
and Inner Pest also fitted the trend, but in an opposite tendency. The most considerable
discrepancy lay in the cases of North Buda and the inner Eastern Pest district groups.
The Pearson correlation coefficient, regarding all the six district groups, between the 2011
Census and the mobile network data was 0.8976.
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(a) Northern Sector (b) Eastern Sector

(c) Southeastern Sector (d) Southern Sector

(e) Western Sector (f) Northwestern Sector
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10%–15%
15%–20%
20%–25%
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Figure 13. Commuting from the six sectors of the urban agglomeration, based on CDR evaluation.

Dunakeszi (Figure 14b) is east of the Danube river and north of Budapest, which
implies the dominance of North Pest as the commuting destination, although its importance
has been decreasing over the last few decades, as well as Inner Pest. While South Buda,
South Pest, and the outer Eastern Pest had an increasing tendency, the inner Eastern Pest
and North Buda did not show such clear tendencies. The correlation coefficient (Pearson’s
R) between the 2011 Census and the CDR based results was 0.9416.

Vecsés is in the southeastern sector of the agglomeration, from where the majority
of the commuters work in the inner and outer Eastern Pest, Inner Pest, and South Pest
regions. North Pest and Buda was not a notable destination for the commuters, but the
results showed increasing trends (Figure 14c). The correlation coefficient, in the case of
Vecsés, was 0.924.

Dunaharaszti is in the Southern sector of the agglomeration and east of the Danube.
Consequently, the main destination of the commuters was South Pest. Moreover, Inner
Pest received a considerable number of in-commuters, but its importance seemed to be
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decreasing. The rest of the district groups had roughly the same trends (Figure 14d).
Dunaharaszti had the strongest correlation out of the examined settlements: Pearson’s R
was 0.971.

Érd has the largest population (65,857 in 2017 [2]) in the agglomeration and also
in the Southern sector. The detected commuting ratios fitted into the trends of the last
three censuses, although Eastern and South Pest seemed overestimated, and North Buda
underestimated by the mobile-network-data-based approach (Figure 14e). The correlation
with the ground truth was 0.8488 (Pearson’s R).

In the case of Szentendre (Figure 14f), the mobile-network-based results might show
the most significant discrepancy. Still, the correlation coefficient (Pearson’s R) was 0.9127.
Located in the Northwestern sector, west of the Danube, the most obvious destination for
commuting is North Buda. According to the census data, it had the most in-commuters,
even with a slightly increasing tendency. However, the CDR-based results underestimated
it, whereas Eastern and South Pest seemed overestimated. The result of Inner Pest lagged
behind that of the latest census data, but that fitted into the trend.

These detailed results demonstrate the applicability of the CDR processing for com-
muting analysis. It would be interesting to compare these results with the next census. That
would reveal how precisely these findings fit into the trend of the changing commuting
customs of the population of the agglomeration.
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Figure 14. Commuting to the seven district groups of Budapest from selected settlements of the
agglomeration, comparing census (1990, 2001, and 2011) and mobile network data. Next to the
legends, the location of the settlements in question is displayed on a map.
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4.5. Commuting by Age Groups

As the available mobile network data contained information about the age and the
gender of the subscribers—for the 66.17% and 70.76% of the subscriptions, respectively—the
commuting trends could be studied by age groups.

Koltai and Varró provided reference data for this analysis (Table 1 in [9]) . Figure 15a
shows the distribution of the commuters by age categories and the sector as the home
location. Only those commuters who work in Budapest were examined.

It was not clear from the paper what was the upper limit of the “60+” age category.
The people who usually go to work are assumed to be younger than 65 years old (the
current retirement age in Hungary), although people can work over 65. In the CDR-based
figure (Figure 15b), the 60+ means over 60 and less than 100. However, there were not
many subscribers over 70, only 2.48% of the SIM cards were owned by people older than
70 years.

Comparing data obtained by the microcensus and the cellular information, good agree-
ments (Pearson’s R is 0.8977) were found on the trends and measures of the distribution
of the commuters by age categories. The most significant difference between the census
and the CDR-based data were within the “60+” and the “50–59” categories. The number of
people in their fifties seemed underrepresented by the CDR data, while the “60+” category
was overrepresented, which might have been caused by the different interpretation of the
upper limit. On the other hand, the values were very similar in the other categories. Based
on the similarity of the results (Figure 15), it was confirmed that mobile network data can
be a reliable method for commuting analysis even regarding demographic features.
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Figure 15. Distribution of the commuters by age categories and the sectors of the agglomeration (%).
Comparison between microcensus data (Table 1 in [9]) (a) and mobile network data (b).

4.6. Limitations

This study used mobile network data from only one of three operators, so the results
did not represent a full population. As children and elders do not (or are less likely to)
own subscriptions, the data mainly represented the “working age” population. The OECD
defines working age between 15 and 64 [50]. In 2017, 6,255,448 people lived in Hungary
according to the HCSO, which is 63.85% of the full population [51]. Another limiting factor
was that the provided data included age information for about 66.17% of the subscribers.

Moreover, the service provider preference was unknown by settlement level and by
age group. Only the countrywide market share was known (25.5% in 2017 Q2 [38]), which,
however, referred to subscriptions.

The evaluation and the validation were performed based on the results of other studies
that analyzed commuting based on census data. With a direct access to the statistical data
from HCSO and other sources, more and finer aspects of the validation could be performed.
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Besides information availability, some socioeconomic groups of the society may have
been excluded, as CDRs reflect structural inequalities [52].

4.7. Privacy Concerns

The authors could not identify the subscribers by the provided device ID. The times-
tamps were truncated to 10 s by the data provider to mitigate the identifiability of an activity
(e.g., a voice call) in the data. As the call detail records were bound to a cell, the spatial
resolution was determined by the area that a cell covered, which was roughly a house block
downtown. There were some indoor cells, for example in malls, with a much finer spatial
resolution (a building).

One of the main issues working with CDRs was that the activity was sparse. The
cell-level location of the subscribers was known only when they actively used the mobile
network (making calls, sending short messages, or transferring data). The privacy concerns
would be much more serious if the cell-switching information had been included, in which
case the location (cell) would be known every time a phone connects to another antenna.
The cell-switching information would provide an almost continuous movement trajectory.
Taylor formulated the same concern [29].

When a home or work location was detected, a cell was selected. A cell was represented
by the centroid of the cell geometry (a circular sector from the top view). If a cell covered a
housing complex, the subscriber could be any of its residents. This resolution could seem
to be vague enough even with the age and gender information of the subscriber in an
urban environment.

The authors are aware that prior knowledge about a specific movement in the ob-
servation area might help to decipher the anonymity if, for example, a subscriber were
deliberately generating activity in well-recognizable places, or had a peculiar mobility
pattern. This is in agreement with Sharad and Danezis, stating that it is possible to identify
an individual in Orange’s Data for Development (D4D) challenge Dataset 2 by using their
movement records and a pre-existing location profile [53]. This could happen even in
an urban environment, not only in rural areas. For example, the identity of a famous
individual (e.g., politician, celebrity) whose workplace or home is publicly known can
be attacked.

Nonetheless, the mobility and commuting analysis using mobile network data has
great potential in social geography. The analysis presented in this paper could be executed
at the operators—in a controlled environment—and only the (aggregated) results would be
published, as the statistical offices publish results from the censuses.

5. Conclusions

In this study, the evaluation of cell phone subscribers’ home and work locations were
presented, and the results were compared to the population statistics. Though the detected
population numerically differed from the actual population, the distribution across the
settlements showed a strong correlation. This could be explained by the fact that the CDRs
were obtained from only one mobile network operator.

Based on the home and workplace detection, it was demonstrated that mobile network
data could be an effective solution for a commuting analysis. Besides the home locations,
the settlement-level and the age-group-specific commuting trends were also validated
from census data. The findings were presented in a form as close to the results of other
studies that examined commuting in the agglomeration of Budapest as possible to aid
the comparison. This work also served as a case study about commuting in the Budapest
Metropolitan Area using mobile network data, with the queries and (plotting) scripts
provided [42].

The district people commute to from the sectors of the agglomeration was examined.
In the case of some selected settlements, the destination districts of the commuters were
also presented in contrast to the last three censuses. It was found that the settlement level
commuting trends based on the mobile network did not just approximate the last census
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but also fitted the two-decade trends. The commuters were also analyzed by age groups,
which also showed good agreement with the census-based studies.

These results confirmed that mobile network data can be used for a commuting
analysis. Using mobile network data from all the operators of a country, a more precise
and representative analysis could be performed. Given the fact that mobile networks are
available in the most populated areas, mobile network data should be standardized for
statistical and sociological usage while respecting privacy and personal data.

Understanding the commuting patterns in detail can help urban planning and public
transport optimization. Providing viable public transport options to the workplaces can
reduce the commuting time and decrease the number of cars in the cities. Once-in-a-decade
questionnaires are not eligible to track the changes in commuting. Infocommunication
technologies such as the mobile network can provide a more cost-effective and frequent
analysis of commuting. Naturally, this application would require legal regulation, as a
cooperation with the mobile operators and the Central Statistical Offices.
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