
Citation: Ran, W.; Wang, J.; Yang, K.;

Bai, L.; Rao, X.; Zhao, Z.; Xu, C.

Raster Map Line Element Extraction

Method Based on Improved U-Net

Network. ISPRS Int. J. Geo-Inf. 2022,

11, 439. https://doi.org/10.3390/

ijgi11080439

Academic Editors: Jasmin Kale and

Wolfgang Kainz

Received: 6 May 2022

Accepted: 23 July 2022

Published: 3 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Raster Map Line Element Extraction Method Based on
Improved U-Net Network
Wenjing Ran 1,2 , Jiasheng Wang 2,3,*, Kun Yang 2,3, Ling Bai 4, Xun Rao 1,2, Zhe Zhao 1,2 and Chunxiao Xu 1,2

1 School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China;
rwenjing@user.ynnu.edu.cn (W.R.); rx5428@user.ynnu.edu.cn (X.R.); zhaoz@user.ynnu.edu.cn (Z.Z.);
xuchunxiao@user.ynnu.edu.cn (C.X.)

2 The Engineering Research Center of GIS Technology in Western China of Ministry of Education of China,
Kunming 650500, China; 3007@ynnu.edu.cn

3 Faculty of Geography, Yunnan Normal University, Kunming 650500, China
4 School of Foreign Languages & Literature, Yunnan Normal University, Kunming 650500, China;

bailingyyds@user.ynnu.edu.cn
* Correspondence: jersonwang@ynnu.edu.cn

Abstract: To address the problem of low accuracy in line element recognition of raster maps due to
text and background interference, we propose a raster map line element recognition method based
on an improved U-Net network model, combining the semantic segmentation algorithm of deep
learning, the attention gates (AG) module, and the atrous spatial pyramid pooling (ASPP) module. In
the proposed network model, the encoder extracts image features, the decoder restores the extracted
features, the features of different scales are extracted in the dilated convolution module between the
encoder and the decoder, and the attention mechanism module increases the weight of line elements.
The comparison experiment was carried out through the constructed line element recognition dataset.
The experimental results show that the improved U-Net network accuracy rate is 93.08%, the recall
rate is 92.29%, the DSC accuracy is 93.03%, and the F1-score is 92.68%. In the network robustness test,
under different signal-to-noise ratios (SNRs), comparing the improved network structure with the
original network structure, the DSC improved by 13.18–17.05%. These results show that the network
model proposed in this paper can effectively extract raster map line elements.

Keywords: map; line elements; automatic vectorization; deep learning

1. Introduction

Raster maps are among the most important data sources in geographic information
science (GIS) [1]. Maps contain rich cartographic information, such as the location of
buildings, roads, contours, and hydrology [2]. Essentially, these geographic elements of
colored, dotted, linear, and regional features are used to represent geographic information
about the Earth. In the past, many official maps were stored in paper form, but in recent
years, they have been scanned into raster maps and stored in computers. To make full use
of raster maps to carry out spatial analysis and thematic mapping, it is usually necessary
to transform the points, lines, and polygons in a raster map into vector graphics for
people to query and topologically analyze information. This process is called raster map
vectorization.

According to the degree of automation of vectorization, raster map vectorization can
be divided into manual, semi-automatic, and automatic vectorization. The manual vector-
ization method uses software to trace lines point-by-point along the raster map to form
a line or polygon. This method is inefficient and subjective, which affects the accuracy of
vectorization. The semi-automatic vectorization method firstly removes irrelevant elements
manually by image processing and obtains binary images composed of line pixels and
non-line pixels. Then, the line features are vectorized by the raster vectorization algorithm.
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It is difficult to apply this method when the map image has many annotations and a com-
plex background. In the automatic vectorization method, line features are automatically
extracted from a raster map and converted into binary images by the computer algorithm,
and then transformed into vector graphics by a raster data conversion algorithm. The
automatic algorithm of binary image to vector is mature, so the extraction of line features
has become the key step in the automatic vectorization of line features, which could directly
affect the efficiency and accuracy of vectorization.

At present, there has been substantial research on extracting geographical elements
from maps [3–7]. Such extraction is used, for example, to identify text elements from
maps [8–10] and map symbols by feature matching [11]. The computer science and geo-
graphic information science communities have been developing technologies for automatic
and semi-automatic map understanding (digital map processing) for almost 40 years [12].

At present, there are two main ways to extract map line elements. The first is to
draw lines point-by-point along the map with the help of relevant vectorization software
to form line features or polygons. The related software includes ArcGIS, WideImage,
SuperMap, MapGIS, etc. For example, Beattie [13] spent over 70 h on the human task of
extracting contour lines from two USGS historical maps. This method requires considerable
manpower and resources. The second main way to extract map line elements is to use
a traditional algorithm. These algorithms mainly include the threshold segmentation
algorithm [14–16], mathematical morphology operation [17], and the color segmentation
algorithm [18,19]. For example, the threshold segmentation algorithm is used to realize line
feature extraction of a contour color map. The existence of divergent color and mixed color
makes the extracted lines appear as fragments, breakpoints, adhesions, etc., increasing the
corresponding processing procedures. Both mathematical morphology algorithms and
skeleton line extraction algorithms are used to extract map line features. These methods
involve multiple manual adjustment parameters at the same time, and the accuracy is
unstable, the degree of automation is not high, and it is difficult to directly apply to the
common scanning map.

The main difficulties in extracting line features from raster maps by traditional meth-
ods are as follows. (1) The mixing of point markers and line features makes it easy to
identify the part of point markers as lines. (2) There are background colors or fill markets
in polygon features, which bring difficulties in line recognition. (3) The mixing of map an-
notations and line features may be mistaken for lines. These problems lead to low accuracy
of traditional methods in online feature extraction.

The deep learning method can form more abstract high-level representation attribute
categories or features by combining low-level features, which provides the possibility for
the accurate extraction of raster map line features [20]. In particular, the emergence of
convolutional neural networks (CNNs) and fully convolutional neural networks (FCNs)
realizes the classification of every pixel of the image—that is, the semantic segmentation of
the image. This is helpful in image processing. Duan et al. [21] used convolutional neural
networks to build a system for automatic recognition of geographical features on historical
maps. Uhl et al. [22] used the LeNet network to identify map symbols, and CNN to identify
buildings and urban areas on the map [23]. All these studies indicate that convolutional
neural networks have effective applications in map image processing.

Semantic segmentation uses deep learning technology for autonomous feature learning
of input data. The low-level, middle-level, and high-level features are extracted from the
image to consider local and global features at the same time. By fusing the features of
different levels and regions, the implicit contextual information in the image is captured,
thus realizing the segmentation, cognition, and understanding of the image at a higher level.
At present, many deep learning image segmentation networks are the improvement of
full convolutional neural networks. The U-Net network is the classic encoder and decoder
network, and there are many improved networks based on it, such as U-Net ++ [24] and
U-Net +++, which can realize the convolution operation of images of any size and obtain
the contextual information of the image through the maximum pooling sampling to reduce
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the amount of computation [25]. However, due to the repeated use of pooling operations in
U-Net, the resolution of feature maps is reduced, leading to rough predicted results. Using
down-sampling operations to extract abstract semantic information as features will lead
to the loss of some detailed semantic information, causing the problem of missing details
and semantic ambiguity in the extracted results. When the U-Net model is directly used
to extract line features of the raster map, there will be text interference and broken lines.
Therefore, it is necessary to combine other network modules to improve the performance.

To solve the problems existing in line feature extraction of scanned maps, we con-
structed test and training datasets based on a raster map. Based on the original U-Net
network model, the AG and ASPP modules were added, and an improved U-Net deep
network model was proposed to realize the automatic extraction of raster map line features.

2. Data and Methods
2.1. Building the Sample Dataset

Since there is no public dataset of line feature extraction from map images, we con-
structed a line feature extraction sample set. It mainly includes four processes: acquiring
map data, making labels, image segmentation, and dataset division (Figure 1).

2.1.1. Acquiring Map Data

The map data were downloaded from the Chinese Standard Map Service website
(http://bzdt.ch.mnr.gov.cn/ (accessed on 25 July 2022)). This web page provides standard
maps in JPG and EPS format. JPG is the raster image and EPS is the vector image, which
provides favorable conditions for generating label files quickly and accurately. Seven maps
with different scales and different areas were collected. The raster images are the images
for line feature extraction, and the vector images are used to make the corresponding label
files. Detailed attributes of the collected maps are shown in Table 1.

Table 1. Dataset details.

Map Width (Pixel) Height (Pixel) Resolution (dpi) Bit Depth Scale (Million)

A 2127 1628 300 24 1:32

B 5774 4218 300 24 1:7

C 3579 5021 300 24 1:2.1

B 2184 2622 300 24 1:30

E 4208 3178 300 24 1:16

F 1105 1348 300 24 1:60

G 8954 6413 300 24 1:11

2.1.2. Making Labels

A map in EPS format contains the interference elements, such as notes, point marks,
etc. Through vector data editing software, interference elements in each vector map are
deleted, and only line features are retained, and then saved as image data in JPG format.
Finally, the line features of JPG format image data are binarized to make label files. The
pixel value of the line feature is set to 255, and the pixel value of the background is set to 0.
Then, the binary images are used as label data for network training.

2.1.3. Image Segmentation

An entire map could not be fed directly to the input of the proposed network model.
Therefore, the size of the training images was reduced to 256 × 256. The sliding window
was used to cut out the origin image. The sliding window size was set to 256× 256, and the
position of the sliding window on the image was randomly generated to crop the image.
Finally, 1400 images with a size of 256 × 256 were obtained. To speed up the convergence
of the network, the images were normalized before being input into the network. To avoid

http://bzdt.ch.mnr.gov.cn/
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the interference of images of non-line features in network training, the small block images
of non-line features were deleted to obtain 1190 image sample datasets.

2.1.4. Dataset Division

The images were divided into a training set and a validation set in a 7:3 ratio. Among
them, 883 images were used for training, and 357 images were used for validation.

Figure 1. Training set construction process.

Figure 2 shows an example of the sample dataset. The whole color map is cropped into
256× 256 images, and the corresponding label data are also cropped into 256 × 256 images.

Figure 2. The map dataset.

2.2. Improved U-Net Model
2.2.1. Improved U-Net Model Architecture

Based on the classic U-Net network as the basic framework, we designed a more
conducive network model for the extraction of map line features. The improved U-Net
network structure is shown in Figure 3. U-Net is a network architecture composed of a
full convolution, used to perform semantic segmentation tasks. The network structure
is symmetric, with an encoder to extract spatial features from images and a decoder to
construct segmentation maps from coding features.
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Figure 3. The structure of the improved U-Net model.

The encoder follows the structure of a typical convolutional network. It contains a
total of four blocks. Each block in the contracting path consists of two successive 3 × 3
convolutions, followed by a ReLU activation unit and a max pooling layer. Considering
the influence of the ReLU activation function on the distribution of output data, the initial-
ization mode of the convolution kernel is set as a normal He initialization, he_normal. It
takes samples from truncated normal distribution, as shown in Equation (1), with standard
deviation so that the variance of the input and output data is consistent. To keep the size of
the feature graph obtained after convolution unchanged, the filling method of the feature
graph is set as padding. After the convolution operation, a neuron random inactivation
(dropout) layer is added after the convolution layer to avoid overfitting. That is, a certain
proportion of convolution kernels in the previous layer are randomly inactivated so that
they cannot participate in feature extraction in this round of training, and the parameters
of these convolution sums are not updated. The ratio of random inactivation of neurons
set in this paper is 0.2. Then, there is a maximum pooling operation with a pool size of
2 × 2 and a step of two. This sequence is repeated four times, and in each down-sampling
process, the number of filters in the convolution layer is doubled, amounting to 32, 64, 128,
and 256, respectively.

std = sqrt(2/ f an_in) (1)

here, std stands for the standard deviation and f an_in refers to the number of input units
in the weight tensor.

Between the encoder and the decoder, the ASPP module is used to connect them. In
the ASPP module, the dilated convolution with sampling levels of 1, 2, 4, and 8 is used for
convolution calculation of input features, so that the size of the receptive field is 3, 7, 15,
and 31, respectively. New feature maps are obtained by fusing feature maps of different
sampling levels. The ASPP module is described in detail in a later section.

The decoder and the encoder belong to a symmetric structure, and the decoder
part also contains four blocks. Each block up-samples the feature map using 3 × 3 up-
convolution, and the number of filters in the convolution layer is 256, 128, 64, and 32.
Then, the feature map from the corresponding layer in the contracting path is cropped and
concatenated onto the up-sampled feature map. The initialization mode of the convolution
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kernel is still set as He initialization, and the feature graph is filled with padding. Finally,
a 1 × 1 convolution operation is connected to change the channel number of the feature
graph into the category number of classification, and Sigmoid is used for the activation
function. The AG module is described in detail in the following sections.

2.2.2. The AG Module in the Model

The idea of the AG module is to enhance the learning ability of the convolutional neural
network model to line features by increasing the weight of line features of the color map, to
suppress the noise of text in the map background and improve the extraction effect of map
line features (Figure 4). xl

i represents the feature graph obtained by the encoder module,
and gi represents the feature graph obtained by the decoder module through up-sampling.
Xi is convolved with 1× 1 to obtain the weight Wx, and gi is convolved with 1× 1 to obtain
the weight Wg, and then they are added together. ql

attn is obtained by using the ReLU
activation function and convolution function, ψ, for a 1 × 1 × 1 convolution operation, and
then the final attention coefficient ql

attn is obtained by using the activation function Sigmoid
for ql

attn. Finally, the attention coefficient obtained is multiplied by the input feature xl
i to

obtain the final output feature x̂l
i,c. The calculation formulas of the attention coefficient of

the attention mechanism in the AG module are Equations (2) and (3), respectively:

ql
attn = Ψ[σ1(WT

x xl
i + WT

g gi + bg)] + bΨ, (2)

αl
i = σ2(ql

attn), (3)

where Ψ represents the convolution function of size 1 × 1 × 1, σ1 represents the ReLU
activation function, Wx is the corresponding weight value of input feature xl

i , xl
i is the input

feature, Wg is the weight value corresponding to the selected communication number gi, gi
is the optional communication number, bg is the offset value of the selected communication
signal, bΨ is the bias value corresponding to the convolution function of 1 × 1 × 1, and σ2
is the Sigmoid activation function.

Figure 4. Schematic diagram of AG module implementation.

2.2.3. The ASPP Module in the Model

The latest ASPP module was proposed by Chen et al. [26]. It integrates multi-scale
information into ASPP through parallel multiple cavities’ convolution with different pro-
portions to obtain fine segmentation results. The ASPP module has better detection perfor-
mance for map line features with different scale shapes.

Aiming at the extraction of slender map line features, the ASPP module is added to the
last layer of the encoder. The ASPP module adds voids to the general convolution kernel,
and the voids of different levels of convolution kernels realize the increase in the receptive
field without increasing the computational load (Figure 5). The calculation method of
dilated convolution is shown in Equation (4). In this structure, different sampling layers in
the coding layer are used as input, and the output of the corresponding upper sampling
layer is summed up as the input of the next upper sampling layer. The dilated convolution
structure uses the dilated convolution with the sampling levels of 1, 2, 4, and 8 to carry out
convolution operation on the input feature graph, so the receptive field size of each layer
is 3, 7, 15, and 31, respectively. Feature maps of different sampling levels are used for the
model calculation to obtain different scale features, and finally, the fusion between features
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is carried out. Multi-scale spatial information of feature maps is fully extracted and used to
adapt to line feature extraction of the map.

y[i, j] =
k

∑
k=1

x[i + r ∗ k, j + r ∗ k]ω[k], (4)

here, y[i, j] is the output of the dilated convolution, x[i, j] is the input, ω[k] is the convolution
kernel of size k, and r represents different sampling levels of the convolution kernel.

Figure 5. Schematic diagram of obtaining features of different scales.

2.3. Network Parameter Design

The loss function, optimizer, and learning rate settings used in the improved network
are as follows.

2.3.1. Loss Function

Dice loss [27,28] was selected as the loss function. The Dice coefficient is a function of
set similarity measurement, usually used to calculate the similarity of two samples, and its
value ranges from 0 to 1. The calculation formula of Dice loss is shown in Equation (5):

Loss = 1− 2|X ∩Y|
|X|+|Y| , (5)

here, |X ∩Y| represents the intersection between X and Y, and |X| and |Y| represent the
number of pixels in the predicted label X and the ground truth Y, respectively.

2.3.2. Optimizer

We selected the Adam optimizer in the neural network training. Compared with other
optimizers, the Adam optimizer has significant advantages [29]; for example, parameter
update is not affected by gradient scaling transformation. Moreover, the Adam optimizer
has efficient computing and fewer memory requirements, the updated step size can be
limited to a rough range, etc.

2.3.3. Learning Rate

The learning rate is the hyperparameter of network weight adjusted by the gradient
of the loss function. The initial learning rate is set to 0.001, and the loss platform is set.
Training ten times per iteration, if the loss rate does not change much, the learning rate will
decrease. The decrease in the learning rate is shown in Equation (6), and the minimum
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value that the learning rate can decrease to is set as 0.000001. We setup the early stop
mechanism to avoid network overfitting during training.

lr = lr0 × 0.1 (6)

here, lr represents the learning rate, and lr0 represents the initial learning rate.

2.4. Model Validation Method

To evaluate the results more comprehensively, we adopted both regional and classifi-
cation accuracy evaluation indices [30,31]. The selected evaluation indices include the Dice
similarity coefficient (DSC), precision, recall, and F1-score.

The Dice coefficient is a region-based evaluation index, focusing on the overlap be-
tween the label reference region and automatic segmentation results in the spatial dimen-
sion. DSC evaluation experiment results are pixel-level evaluations. The real line feature
appears in area A, and the line feature predicted by the network model appears in area B.
The Dice coefficient formula is Equation (7):

Dice =
2|A ∩ B|

A + B
(7)

The extraction of map line features is a dichotomous problem. Precision, recall, and F1-
score are the evaluation indexes based on pixel classification, focusing on the coincidence
degree between the label reference area and the contour of the automatic segmentation
result. The line feature information is a positive sample, and the background information
is a negative sample. All the prediction results can be divided into four categories: the
true positive (TP) represents the number of pixels of elements on the correct classification
line, the true negative (TN) represents the number of background pixels that are correctly
classified, the false positive (FP) represents the number of background pixels that are mis-
takenly divided into line features, and the false negative (FN) represents the number of line
feature pixels mistakenly classified as background pixels. According to these indicators, the
calculation formulas for precision, recall, and F1-score are Equations (8)–(10), respectively.

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 =
2× Precision× Recall

Precision + Recall
(10)

3. Experimental Results and Analysis

This experiment was run in a Linux system environment. The running framework
was Tensorflow2.5, and GPU acceleration was used. The server processor was Intel(R)
Core (TM) (Intel Corporation, Santa Clara, CA, USA) i9-10980XE GPU @ 3.00 GHz, and the
graphics card was NVIDIA GeForce GTX 3080(Santa Clara, CA, USA). The programming
environment was Python 3.8.8(Guido van Rossum, The Netherlands). Table 2 shows the
experiment’s parameter settings.

Table 2. Parameter settings.

Experimental Data Number
Experimental Environment Parameters

Frame TensorFlow

Training set 833 Initial learning rate 0.01

Validation set 357 Optimizer Adam

Test set 50 Batch size 10
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3.1. Influence of Different Network Depths on Extraction Results

Different network depths were selected to analyze their influence on map line feature
extraction. Table 3 shows the number of network parameters when the network depth is
4, 6, and 8. As can be seen from Table 3, as the number of network layers deepens, the
number of network parameters increases at double the speed. Table 4 shows the accuracy
evaluation results after experiments with different network depths. It can be seen that with
the increase in network depth, the values of DSC, precision, and recall in the test set reached
the optimal values, which were 94.05%, 95.86%, and 92.34%, respectively. Although the
number of network parameters at layer 8 is larger than that at layers 4 and 6, the increase
in parameters can be ignored compared with the accuracy of its extraction.

Table 3. Network parameters at different depths.

Network Depth
(MB)

Total Parameters
(MB)

Trainable
Parameters (MB)

Nontrainable
Parameters (MB)

4 2.8247 2.8243 0.00037

6 3.8966 3.8957 0.00085

8 7.3685 7.3667 0.00183

Table 4. DSC, precision, and recall rates of networks with different depths.

Validation Set Test Set

Network
Depth DSC (%) Precision

(%) Recall (%) DSC (%) Precision
(%) Recall (%)

4 89.37 91.51 87.14 91.73 93.96 89.57

6 90.44 93.23 88.87 92.67 95.08 90.43

8 92.07 95.28 89.12 94.05 95.86 92.34

Figure 6 shows the comparison of map line feature extraction results of different
networks. The red boxes in the figure indicate the obvious differences. As can be seen
from the figure, when the network depth is 4, the interference of text information in the
extraction results is more serious, the extraction effect of map line features details is not
favorable, and there is noise interference. When the network depth is 6, the extraction result
is better than when the network depth is 4, but there still exists the interference of text.
When the network depth is 8, there is almost no text interference in the network, and the
details of online feature extraction are also better. The results show that with the deepening
of the network, the text interference gradually decreases, and the extracted lines become
more and more complete.

When the network depth is 8, the line feature extraction has reached the ideal effect;
therefore, we selected 8 layers for the final network depth.

3.2. Influence of Different Addition Modules on Extraction Results

By adding different modules, the influence of the network on the line feature extraction
was tested. The experimental results are shown in Table 5, where U_Net_D represents
adding a random inactivation layer after the convolution layer. U_Net_A represents the
network added to the attention mechanism module, U_Net_A_D represents the network in
which the random inactivation layer of neurons and the attentional mechanism module are
added simultaneously, and U_Net_A_D_AS represents the network in which the random
inactivation layer of neurons and the ASPP module are added simultaneously. It can be
seen from Table 5 that compared with the original U-Net network, the network integrating
the attention mechanism and ASPP module improved the DSC by 7.10%, the precision by
6.39%, the recall by 8.16%, and the F1-score by 7.29% in the test set. When only the attention
mechanism module was added to the network, the precision reached the highest value of
94.88%, but the DSC was not as high as that when adding the attention mechanism and
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the ASPP module at the same time. When the attention and ASPP module were added at
the same time, the DSC and the recall reached the highest values of 93.03% and 92.29%,
respectively.

Figure 6. The network extraction results of different depths: (a) cropped color map image blocks,
(b) labels of map line features produced, (c) the result of the network depth is 4, (d) the result of the
network depth is 6, and (e) the result of the network depth is 8.

Table 5. DSC, precision, recall, and F1-score of different basic networks.

Network DSC (%) Precision (%) Recall (%) F1 (%)

U_Net 85.93 86.69 84.13 85.39

U_Net_D 91.18 91.73 90.70 91.21

U_Net_A 92.66 94.88 91.80 93.31

U_Net_A_D 92.57 93.22 91.99 92.60

U_Net_A_D_AS 93.03 93.08 92.29 92.68
Bold is the optimal value for each column.

The learning curve of the training in the experiment is shown in Figure 7. In the figure,
the red curve is the loss curve of the training set, and the blue curve is the loss curve of the
verification set. The horizontal axis is the number of training iterations, and the vertical
axis is the loss value. In the experiment, the total number of training times was 100, because
the number of datasets was relatively small, and the network model was relatively simple.
As can be seen from the learning curve of the training set, the final trend of the loss curve
in the improved U-Net model proposed in this paper tended to be stable, and the accuracy
was significantly improved compared with other networks.

Figure 7. Cont.
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Figure 7. Learning curve of network training with different modules: (a) the learning curve of U-Net,
(b) the learning curve of U_Net_D, (c) the learning curve of U_Net_A, (d) the learning curve of
U_Net_A_D, and (e) the learning curve of U_Net_A_D_AS.

The map line feature extraction results after adding different modules are shown in
Figure 8. As can be seen from the resulting figure, the extracted line features also contain
certain text information, marked with red circles in the figure. Figure 8g is the extraction
result of the model proposed in this paper. It can be seen from the resulting figure that the
influence of characters has been greatly improved.

Figure 8. The extraction results of line features: (a) cropped color map image blocks, (b) labels of map
line features, (c) the U-Net result, (d) the U_Net_D result, (e) the U_Net_A result, (f) the U_Net_A_D
result, and (g) the U_Net_A_D_AS result.

3.3. Test of Map Images with Different Language Characters

We use the trained model to test map images annotated as English characters. A
total of 99 map images were tested. The experimental results are shown in Table 6. It
can be seen from Table 6 that the accuracy will be much lower than that of map images
with Chinese characters. We compared the results of the Chinese character map obtained
in Table 5 with those of the English character map obtained in Table 6 by selecting the
highest evaluation indexes. We found that the DSC decreased by 21.91%, the precision
decreased by 32.58%, the recall decreased by 9.25%, and the F1-score decreased by 22.3%.
This is because the images in the training set used in the training model are all map
images of Chinese characters. However, characters in different languages have different
characteristics. Therefore, if the model without English character map training is directly
applied to the map image with English characters, its accuracy will considerably decrease.
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Table 6. Test results of English character map.

Network DSC (%) Precision (%) Recall (%) F1 (%)

U_Net 67.69 58.83 79.95 67.78

U_Net_D 68.28 58.09 82.98 68.34

U_Net_A 71.12 62.28 82.30 70.90

U_Net_A_D 71.08 61.80 83.04 70.86

U_Net_A_D_AS 70.95 62.30 82.56 71.01

The extraction results of line features of the English character map are shown in
Figure 9. Compared with the original U-Net network, the improved U-Net network also
had a better effect when tested with English character map images. It can be seen from the
result that the size of English characters has a certain influence on the extraction of map
line features. If the English characters in the map are too large, they will be easily confused
with the line features of the map.

Figure 9. Extraction results of English character map: (a) cropped color map image blocks, (b) labels
of map line features, (c) the U-Net result, (d) the U_Net_D result, (e) the U_Net_A result, (f) the
U_Net_A_D result, and (g) the U_Net_A_D_AS result.

3.4. Improved U-Net Model Robustness Test

The robustness of the network was tested by adding random noise to the raster map.
In the image, the signal-to-noise ratio (SNR) is usually used to measure the image noise. In
this paper, the proportion of signal pixels was used as the SNR to measure the amount of
added noise. In this paper, the SNRs of 0.01, 0.02, 0.03, 0.04, and 0.05 were selected to test
the effect of network extraction of map line features.

Table 7 shows the DSC comparison of extraction results of different SNR line features.
Compared with the original U-Net network, the improved U-Net network model in this
paper has a greatly improved anti-noise ability. When the SNR was 0.01, the DSC of the
improved network increased by 17.05%. When the SNR was 0.02, the DSC increased by
15.11%. When the SNR was 0.03, the DSC increased by 14.41%. When the SNR was 0.04,
the DSC increased by 13.18%. When the SNR was 0.05, the DSC increased by 14.55%.

Figure 10 shows the line feature extraction results of a sample in the test set. Figure 10a
is the label of the selected sample, and Figure 10b–f show the extraction results of map line
features of color maps with SNRs of 0.01, 0.02, 0.03, 0.04, and 0.05, with the original U-Net
network and improved U-Net network.
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Table 7. Comparison of DSC between the improved network and the original network.

SNR 0.01 0.02 0.03 0.04 0.05

U_Net 46.80 42.85 39.64 36.31 32.46
U_Net_D 46.54 39.34 35.43 32.92 32.01
U_Net_A 48.99 42.03 37.35 33.39 30.56

U_Net_A_D 48.26 41.75 36.46 32.06 28.27
Improved U-Net 63.85 57.96 54.05 50.12 47.01

Figure 10. Experimental results with different SNRs: (a) map line feature labels, (b) the results with
SNR of 0.01, (c) the results with SNR of 0.02, (d) the results with SNR of 0.03, (e) the results with SNR
of 0.04, and (f) the results with SNR of 0.05.

The red box in Figure 10 highlights an obvious difference. When the SNR was 0.01, the
original U-Net network had broken lines and lost line features, as marked in the red box
in the image extracted by U-Net in Figure 10b. However, when the SNR of the improved
U-Net network was 0.05, the disconnection occurred, as indicated in the red box in the
improved U-Net extraction result in Figure 10f. The original U-Net lost line features more
seriously when the SNR was 0.05. It can be seen from the experiment that the improved
U-Net network proposed in this paper has better robustness in online feature extraction
than the traditional U-Net network.

4. Discussion

Maps store valuable information documenting human activities and natural features
on Earth over long periods of time. Understanding how to make full use of the data
information in maps has become a difficult point in research. Due to the complexity of
map images compared with general images, various elements on maps are interlaced and
overlapped, which increases the complexity of map elements’ extraction. Much existing
research on maps is aimed at the recognition or detection of symbols on maps [7,9,16,23],
such as identifying urban districts, hotels, and architectural markers on a map. The
recognition and extraction of map line features are mostly based on traditional algorithms.

There are two major challenges in applying semantic segmentation CNNs to maps
for automatically extracting geographic features. The first challenge is generating accurate
object boundaries, which is still an open research topic in semantic segmentation. The
second challenge is that semantic segmentation models trained with the publicly available
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labeled datasets do not work well for maps without a sufficient amount of labeled training
data from map scans. To fully take advantage of the valuable content in historical map
series, advanced semantic segmentation methods that can handle small objects and extract
precise boundaries still need to be developed.

The model for extracting geographic line features trained in this paper has certain
limitations. Since the dataset used in training the model is relatively simple, there is
no adequate generalization for maps with different characters in different countries and
languages. To make the model more generalized, it is necessary to enrich the types of map
samples in the training set. Overall, the sample size of the current dataset is not large
enough to apply the model to more kinds of maps.

5. Conclusions

In this paper, we introduced ASPP and AG modules into the traditional U-Net network,
constructed the sample set of map line feature extraction, and proposed an improved U-Net
network model for scanning map line feature extraction. The AG module increased the
weight of line feature extraction and reduced the interference of background text. The ASPP
module was used to extract features of different scales to improve the segmentation effect.
Through comparative analysis of experiments designed with different network depths,
network modules, and robustness testing, our conclusions are as follows:

1. The improved U-Net network we proposed achieved the accurate automatic extraction
of grid map line features, and the DSC accuracy of the extraction results reached 93.3%.
Compared with the traditional U-Net network model, the DSC was increased by 7.1%,
the accuracy was increased by 6.39%, and the recall rate was increased by 8.16%. In
the presence of noise, when the SNR was 0.01, the accuracy of DSC was improved by
17.05%. When the SNR was 0.02, DSC increased by 15.11%. When the SNR was 0.03,
DSC increased by 14.41%. When the SNR was 0.04, DSC increased by 13.18%. When
the SNR was 0.05, DSC increased by 14.55%.

2. The improved U-Net network proposed here had better anti-noise ability and better
robustness in raster map line feature extraction than the traditional U-Net network,
indicating its superior extensibility.

In this work, we achieved automatic extraction of raster map line features based
on the deep learning method. However, due to the limitations of data sources and the
heavy workload of manual vectorization of maps, the map styles and types in the sample
dataset created in this paper are slightly monotonous. The network model proposed in this
paper must be further tested and improved for more line feature extraction sample sets in
the future.
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