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Abstract: Quantile, equal interval, and natural breaks methods are widely used data classification
methods in geospatial analysis and cartography. However, when applied to data with skewed
distributions, they can only reveal the variations of either high frequent values or extremes, which
often leads to undesired and biased classification results. To handle this problem, Esri provided a
compromise method, named geometric interval classification (GIC). Although GIC performs well for
various classification tasks, its mathematics and solution process remain unclear. Moreover, GIC is
theoretically only applicable to single-peak (single-modal), one-dimensional data. This paper first
mathematically formulates GIC as a general optimization problem subject to equality constraint.
We then further adapt such formulated GIC to handle multi-peak and multi-dimensional data.
Both thematic data and remote sensing images are used in this study. The comparison with other
classification methods demonstrates the advantage of GIC being able to highlight both middle and
extreme values. As such, it can be regarded as a general data classification approach for thematic
mapping and other geospatial applications.

Keywords: data classification; thematic mapping; optimization; cartography; geospatial analysis

1. Introduction

The objective of classification is to group the data into several classes for an aggregated
presentation and characterization [1]. The data to be classified can be associated with
an areal unit (e.g., administrative boundaries) or a particular geographic location (e.g.,
remote sensing images) for thematic mapping. Each class should have small within-class
scatter, while different classes usually have larger between-class scatter. The widely used
data classification methods in cartography science are quantile, equal interval, and natural
breaks [2–4]. Two parameters are often used to describe the classification results, i.e.,
the class intervals (or breaks) and number of classes. The number of classes for these
classification methods is usually predefined. The quantile method aims to make each class
contain the same number of data samples (elements). The equal interval method divides the
range of data values into equal parts. The natural breaks method determines breaks where
data values have large differences. Although the idea of determining class intervals based
on data distribution has existed for a long time [5], the above methods are most suitable
for data with specific distribution patterns [6], such as linear or uniform. However, these
methods emphasize the variations either in the middle of the data or at the extremes (ends)
of the data, and often cause misleading classification results and presentation, especially
for continuous data with skewed distributions [7]. The skewed continuous distribution
is common in many natural and social phenomena. For example, in urban environments,
there are much more small-sized blocks than large-sized ones, and much more cities
with small populations than mega-cities with very large populations [8]. More effective
classification methods that can accommodate skewed data should be developed.

Considering these drawbacks, Esri had a compromise, proprietary solution that is more
applicable to continuous data, named smart quantile or geometric interval classification
(GIC) [9]. It partitions sequential data values to produce different classes with geometric
intervals. The ratio between adjacent intervals is called the geometric coefficient, which is a
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constant or the inverse of this constant [10]. Under this requirement, the proprietary GIC
approach intends to minimize the squared sum of the number of data samples per class
so that the number of samples in each class is approximately equal. GIC works well for
the classification and visualization of heavily skewed continuous data [11]. Comparing
to the GIC, the quantile method only considers the number of samples per class. As
such, it could result in samples with similar values being classified into adjacent classes,
whereas samples with much different values being classified into the same class [12]. A
comparison of ArcGIS-based breaks obtained by smart quantile (i.e., the GIC) and quantile
method is shown in Figure 1, where the histogram is from the blue band of a Landsat-8
image. The information entropy is maximal when the number of samples in each class
is the same [13,14]. In the quantile method, the number of data samples in each class is
equal, whereas GIC produces more classes at the ends of the data values while keeping a
reasonable division in the middle of the distribution. Furthermore, the introduction of the
inverse of the geometric coefficient can highlight changes in both the middle part and the
extreme parts of the data [15,16]. The in-class differences of low-frequent values are also
reduced by smaller intervals for the corresponding classes.
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Figure 1. Comparison of the class breaks (tics at the bottom) for quantile (top) and GIC (bottom)
methods for the blue band of a Landsat-8 image. The bar charts are the histogram of the image.

With the above-mentioned advantages, GIC has been applied to various classification
tasks, such as producing flood potential maps [17–19], suitability maps for planning [20],
creating crime density maps [21] and soil erosion hazard zones [22], and finding urban heat
islands [23]. Huan et al. (2012) built an index system and applied the geometric interval,
equal interval, natural breaks, and quantile methods to map the groundwater vulnerability
to nitrate based on these indices. The results showed that GIC obtained more accurate and
rational vulnerability maps than other classification methods. Costache et al. classified
the flash-flood potential index into five classes using the natural breaks, quantile, equal
interval, and geometric interval classification methods [7]. Better classification results are
achieved by GIC and natural breaks, where the areas classified with a high potential for
floods contained more torrential pixels.

The Esri’s procedure of this method remain unclear to public. To the best knowledge
of the authors, there was only one published work that tried to implement GIC by Python-
based coding [24]. The upper limits of all classes were defined by a geometric series. The
geometric coefficient was calculated based on the ratio of the lowest and highest sample
values and remained constant for each class. The classification results were compared with
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those of the equal interval, quantile, standard deviation, natural breaks, and logarithmic
scale methods. It was found that GIC achieved a more realistic results than other methods
for right-skewed data [12,24]. However, the reported algorithm is only applicable to data
where the number of samples decreases as the data value increases and is right-skewed,
such as archaeological data.

In summary, the existing knowledge gaps on GIC include: (1) no or minimal docu-
mented theoretic formulation; (2) no corresponding mathematical solution to the problem;
(3) unable to handle data with multiple peaks or multi-modals; and (4) generality to multi-
dimensional data, such as images. Our contributions can be outlined as follows. Firstly, the
GIC method is mathematically formulated as an optimization problem and solved itera-
tively to obtain the geometric intervals and class breaks. We investigate the applicability
and properties of this formulation by using different kinds of data, such as population
data and remote sensing images. Secondly, the setting of the geometric coefficient has
been extended to make GIC to be adaptive, or AGIC, to handle data with multi-peak
distributions and multi-dimensions. To demonstrate such properties of the adaptive GIC,
we compare the results of the GIC with other classification methods commonly used in
thematic mapping, including the equal interval, quantile, and natural breaks.

2. The Geometric Interval Classifier
2.1. Formulation of GIC

Given ascending sorted N data samples,

si ∈ S = {s1, s2, · · · , sN} (1)

Our task is to classify them into K classes by determining the breaks, bc−1 and bc
(c = 1, 2, . . . , K), which are the lower and upper bounds (breaks) of the data range for
class c, respectively. Among the break points or simply breaks, b0 = s1 and bK = sN are,
respectively, the minimum and maximum data values. The breaks and corresponding class
intervals are illustrated in Figure 2. In the GIC method, the class intervals δ1, δ2, . . . , δK
form one or more geometric series, whose geometric coefficient is either q or its inverse q−1.
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Figure 2. Break points and the corresponding intervals for geometric interval classifier.

The objective of GIC is to balance the number of data samples in each class under
the constraint that the class intervals form geometric series. The numbers of samples with
extreme values are usually smaller than other samples. To make the sample size of each
class similar, the intervals of the classes with more frequent values should be small, while
the intervals of the classes with extreme values should be large. The idea of formulating
GIC is to adjust the class interval so that the number of samples in each class is similar. At
the same time, the distribution of the data shall be considered. For data with a single-peak
distribution, extreme data values at the ends (tails) of the histogram should be divided into
more classes, which reduces information loss and provides a more detailed interpretation
of the extreme values. Figure 3 shows an example of Indiana population data where there
is a peak on the left of the histogram. The corresponding class intervals for GIC and
quantile methods implemented by ArcGIS become smaller first and then larger to balance
the number of samples in each class. The variation of class intervals obtained by GIC is
smoother than that of the quantile method. Comparing the number of samples per class in
Figure 3c, the quantile method can achieve a more balanced class size. The GIC can be a
compromise between the equal interval and the quantile methods [16].
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2.2. Solution of GIC

We introduce an optimization framework to determine the parameters of GIC. The
optimization problem can be defined as:

Objective function:

min
K−1

∑
c=0

count(bc ≤ ∀si < bc+1)
2 (2)

Subject to:

b0 + mq0 + mq−1 + mq−2 + · · ·+ mq−I + mq−I+1 + · · ·+ mqK−2I+1 = bK (3)

I ∈ [2, 3, . . . , K− 1] indicates where to inverse the geometric coefficient, whereas
I = 1 or K means no inverse occurs. This is a nonlinear optimization problem subject to
an equality constraint. The constraint is multiplied by a Lagrange multiplier and added
to the objective function, which leads to a differentiable Lagrangian function [25]. This
optimization problem can be solved iteratively. The basic idea is to convert a constrained
problem into a form such that the derivative test of an unconstrained problem can still
be applied.

The current GIC implementation needs a pre-defined number of classes K. However,
this information may not be known in many applications. Hence, we further modify the
GIC to automatically determine K. Based on the idea that the variations within a class
should be small, we set a threshold to the coefficient of variation cvc [26] within each class
c as

cvc =
σc

µc
(µc 6= 0) (4)

where µc and σc are, respectively, the mean and standard deviation of the data values of
class c. We introduce this as a constraint to determine the number of classes when it is
not given.

Such formulated GIC will determine its parameters through optimization, m, q, I, as
well as K, when it is not predefined. The calculation will start with an initial number of
classes. After solving the optimization problem, the cvc of each class is calculated. When
cvc is larger than a predefined threshold θcv, the corresponding class is divided into two
classes with equal intervals and the number of classes should be increased by 1. A group of
new break points is obtained, which is then used as the initial values for the next iteration.
This process stops until the cvc of all classes are less than the threshold θcv. It should be
noted that, when the threshold is large, the categories are not divided, while when the
threshold is small, the number of classes are large.
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3. Adaptive GIC

The above section formulated GIC method and provided a solution accordingly.
This section will extend the above formulation to handle multiple-peak, multiple dimen-
sional data.

3.1. Adapting GIC for Multi-Peak Data

In the above GIC formulation, the geometric coefficient q can only be inversed at most
once, which limits the applicability of GIC to data with more complex distributions. The
geometric interval usually decreases first and then increases. This property means that GIC
is suitable for data with a distribution of one peak in the middle of the histogram. For data
with multiple peaks, we need to modify the formulation and develop a new approach to
determine where and how many times to inverse the geometric coefficient.

The formulation of Equation (3) only considers the scenario of one geometric series
with geometric quotient q. However, the general situation is that this idea can be used
recursively multiple times, i.e., there can be more than one geometric series with geometric
coefficient of either q or its inverse q−1, and each of them may start at any place in the given
data samples.

We propose an algorithm that determines the inverse position based on the inhomo-
geneity of the data distribution. Two sets of breaks can be obtained by equal interval and
quantile, denoted as be

c and bq
c (c = 1, 2, . . . , K), respectively. For data with multi-peak

distribution, the geometric coefficient is inversed at the Ij-th interval for j-th times when
the bq

Ij−1 > be
Ij−1 and bq

Ij+1 < be
Ij+1 (or bq

Ij−1 < be
Ij−1 and bq

Ij+1 > be
Ij+1), which can be

described as(
bq

Ij−1 − be
Ij−1)×

(
bq

Ij+1 − be
Ij+1

)
< 0 , 2 ≤ Ij ≤ K− 1, 1 ≤ j ≤ i (5)

This condition can determine how many times in total the geometric coefficient should
be inversed.

The interval for class c can be calculated as

δc = mq∑i
j=1 (−1)j(Ij−Ij−1)+(−1)i+1(c−Ii), 1 ≤ c ≤ K (6)

where δ1 = m is the first interval. The geometric coefficient has been inversed i ∈ [0, c− 2]
times when it reaches class c. Ij ∈ [2, c− 1] (j ∈ [1, i]) represents where to inverse the
geometric coefficient for the j-th time, and the ratio of the two adjacent intervals δc/δc−1 is

q(−1)j
for c ∈[Ij−1+1, Ij]. I0 is set to 1 and

i
∑

j=1
(−1)j(Ij − Ij−1

)
is set to 0 when i = 0, which

indicates that there is no inverse of the geometric coefficient.
Figure 4 illustrates an example of eight classes and the geometric coefficient is inversed

at I1 = 5 and I2 = 6. For the case of inversing q for two times (i = 2), the equality constraint
of Equation (3) for the optimization problem should be modified as

b0 + mq0 + · · ·+ mq−I1 + mq−I1+1 + · · ·+ mqI2−2I1+1+
mqI2−2I1 + · · ·+ mq2I2−2I1−K+1 = bK

(7)

where quotient q is inversed at class Ij (j = 1, 2).
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3.2. Adapting GIC for Multi-Dimensional Data

The GIC formulation above is designed for classifying data of one dimension, which is
the data values of the samples. When dealing with multi-dimensional data, i.e., the sample
data has multiple attributes, we form a feature space by calculating the Euclidean norm [27]
of these attributes. The definition of the Euclidean norm for 3D data x ∈ N1 × N2 × N3 is

sij =

√√√√ N3

∑
k=1

x2(i, j, k) , i ∈ {1, N1}, j ∈ {1, N2} (8)

where x(i, j, k) is a sample or pixel in the k-th band of the image with a dimension N1×N2,
and N3 is the number of bands. sij is the transformed feature, which in this case is simply
the squared sum of pixel values in a multispectral image. The break points and geometric
coefficient will then be generated for this transformed feature sij.

4. Test Data and Experiment Design
4.1. Test Data

This study used different data at various scales to evaluate the performance of the
adaptive GIC method, including GIS population data and remote sensing images. Figure 5
shows the population per census tract of the State of Indiana, population per zip unit of the
City of Chicago. Additionally, to better demonstrate the effectiveness of GIC for multi-peak
data, simulated population data for the State of Georgia with multi-peak distribution were
created by specifying the population of each county in Georgia (Figure 5c). To investigate
the effectiveness of GIC on remote sensing images, we chose the blue band (band 1), cirrus
band (band 9), and thermal band (band 10) of Landsat 8. Furthermore, the RGB composite
of a Landsat 8 image was employed to show the classification performance of the adaptive
GIC for multi-dimensional data. The Landsat 8 images of a field on the border of the
Warren County in Indiana and the Vermilion County in Illinois are shown in Figure 6.
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Figure 6. The blue (a), cirrus (b), thermal (c) bands, and RGB composite (d) of a Landsat 8 image
in Indiana.

4.2. Experimental Design

The experimental settings in this work are summarized in Table 1. The performance of
GIC was evaluated on the population of Indiana, Chicago, and the simulated population of
Georgia, as well as the blue band, cirrus band, and thermal band of a Landsat 8 image. The
initial number of classes was set to 5 and the threshold of coefficient of variation (θcv) was
selected empirically as 0.25. For comparison, other classification methods, including the
equal interval, quantile [28], and natural breaks [4,29], were also applied through ArcGIS
Pro. The number of classes was set to 10 for all methods in the comparison experiments. The
effectiveness of the adaptive GIC for multi-peak data was evaluated on the population data
and the Landsat image. The number of times that q needs to be inversed was automatically
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determined, which can be 0, 1 or more. The RGB composite of the Landsat 8 image was
employed to assess the performance of adaptive GIC for multi-dimensional data.

Table 1. Experimental settings.

Method Data Description

GIC
Population of Indiana, Chicago, and
simulated population of Georgia (1) Apply GIC to classify population and Landsat data by solving the optimization problem.

(2) Compare the results of GIC with those from equal interval, quantile, and natural breaks.
Landsat 8 single band images

Adaptive
GIC

Population of Indiana, Chicago, and
simulated population of Georgia
Landsat 8 single band images

(1) Adaptively determine the number of times that q is inversed
(2) Study the classification of multi-peak data.

Landsat 8 RGB composite (1) Perform GIC on multi-dimensional data.

5. Results and Discussion
5.1. Single-Peak Data

Figure 7 shows the classification maps for the population data using GIC. The popula-
tion data are classified into eight or five classes, with larger class IDs representing more
population. The GIC results clearly demonstrate the distribution of population over these
areas. Additionally, Table 2 also lists the break points of our results and the ones from the
GIC method in ArcGIS Pro (Esri proprietary solution); they are similar and consistent.
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Figure 7. Classification results of population data using GIC for Indiana (a), Chicago (b), and
simulated population data of Georgia (c). The larger the class ID, the more the population.
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Table 2. Break points of GIC for populations of Indiana, Chicago, and simulated population
of Georgia.

Indiana Chicago Georgia

GIC-ArcGIS GIC-Author GIC-ArcGIS GIC-Author GIC-ArcGIS GIC-Author

6.00 6.00 823.00 823.00 5.10 5.10
672.71 676.00 30,479.18 30,644.84 31.57 30.06
981.11 986.67 49,394.02 49,478.53 47.82 46.07

1123.76 1130.73 61,457.98 61,372.77 57.79 56.33
1432.16 1441.41 80,372.82 80,206.47 63.91 62.91
2098.87 2111.41 110,029.00 110,029.00 67.66 67.13
3540.18 3556.33 73.78 73.72
6656.04 6672.45 83.75 83.98

13,392.00 13,392.00 100.00 100.00

Figure 8 shows the classification maps of the single-band remote sensing images using
GIC. The histograms of the blue, cirrus and thermal bands are very different. The his-
tograms of the blue band and thermal are, respectively, right and left skewed, whereas the
cirrus band is overall Gaussian, though with multiple peaks. Through the GIC classification,
different objects can be distinguished by GIC based on the pixel values of the blue and
thermal bands, such as water, tree, grass, bare soil, and building. For the cirrus band,
GIC can also recognize the pixels that are affected by clouds. It should be noted that the
geometric coefficient is expectedly inversed at the peaks of the histogram. As the result,
the class of frequent values has a smaller interval, while the class of extreme values has a
larger interval. Comparing the quantile method, the formulation and solution of the GIC
indeed allows for a more balanced number of samples in each class and at the same time
ensures that samples with similar values are classified into the same class. Additionally,
the variation of intervals is very smooth (as geometric sequences), making it suitable to
classify continuous data, e.g., remote sensing images.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 9 of 19 
 

 

3540.18  3556.33    73.78  73.72  
6656.04  6672.45    83.75  83.98  

13,392.00  13,392.00    100.00  100.00  

Figure 8 shows the classification maps of the single-band remote sensing images us-
ing GIC. The histograms of the blue, cirrus and thermal bands are very different. The his-
tograms of the blue band and thermal are, respectively, right and left skewed, whereas 
the cirrus band is overall Gaussian, though with multiple peaks. Through the GIC classi-
fication, different objects can be distinguished by GIC based on the pixel values of the blue 
and thermal bands, such as water, tree, grass, bare soil, and building. For the cirrus band, 
GIC can also recognize the pixels that are affected by clouds. It should be noted that the 
geometric coefficient is expectedly inversed at the peaks of the histogram. As the result, 
the class of frequent values has a smaller interval, while the class of extreme values has a 
larger interval. Comparing the quantile method, the formulation and solution of the GIC 
indeed allows for a more balanced number of samples in each class and at the same time 
ensures that samples with similar values are classified into the same class. Additionally, 
the variation of intervals is very smooth (as geometric sequences), making it suitable to 
classify continuous data, e.g., remote sensing images. 

   

 

   
(a) (b) (c) 

Figure 8. GIC classification results of the Landsat 8 images and corresponding break points for the 
blue band (a), cirrus band (b), and thermal band (c). 

We further examined the performance of GIC in terms of the distribution character-
istics of the data. As shown in Table 3, the skewness and kurtosis [30] of the population 
data and remote sensing images ertr calculated to describe the distribution of the data. 
The classification performance of GIC was quantitatively evaluated by calculating the be-
tween-class (𝑆 ) and within-class scatter (𝑆 ) and their ratios (𝑆 /𝑆 ). When analyzing 
the classification results and corresponding skewness and kurtosis, GIC is more perfor-
mant for data with skewness that is far from 0 (normal distribution) and with kurtosis that 
differs greatly with 3 (normal distribution). It is noticed that GIC demonstrates superiority 
and suitability when working with non-normal distributed data, i.e., single-peak and 
multi-peak data with a completely different skewness and kurtosis from the normal 

Figure 8. GIC classification results of the Landsat 8 images and corresponding break points for the
blue band (a), cirrus band (b), and thermal band (c).



ISPRS Int. J. Geo-Inf. 2022, 11, 430 10 of 19

We further examined the performance of GIC in terms of the distribution characteristics
of the data. As shown in Table 3, the skewness and kurtosis [30] of the population data
and remote sensing images ertr calculated to describe the distribution of the data. The
classification performance of GIC was quantitatively evaluated by calculating the between-
class (SB) and within-class scatter (SW) and their ratios (SB/SW). When analyzing the
classification results and corresponding skewness and kurtosis, GIC is more performant for
data with skewness that is far from 0 (normal distribution) and with kurtosis that differs
greatly with 3 (normal distribution). It is noticed that GIC demonstrates superiority and
suitability when working with non-normal distributed data, i.e., single-peak and multi-
peak data with a completely different skewness and kurtosis from the normal distribution.
Both the variations of high frequent values and low frequent extremes can be visible in the
classification maps.

Table 3. Fisher’s linear discriminant, including SW , SB, and SB/SW , of the GIC classification results
in terms of skewness and kurtosis of the population data and remote sensing images.

Population Landsat 8

Indiana Chicago Georgia Blue Cirrus Thermal

skewness 3.360 −0.030 −0.390 2.820 0.070 −1.520
kurtosis 30.080 2.330 2.360 68.910 3.160 8.520

SW 11.323 134.140 41.689 12.681 124.240 191.160
SB 189.130 4897.800 4892.400 183.640 1791.400 3332.200

SB/SW 16.703 36.513 117.360 14.481 14.419 174.315

5.2. Multi-Peak Data

When exploring the scenario that the distribution of the data has multiple peaks,
we applied the conditions (Equation (5)) to determine whether and where the geometric
coefficient q need to be inversed. For data whose distribution has multiple clumps of values
(peaks), i.e., the Indiana population data, the thermal band of the Landsat 8 image, and the
simulated Georgia population data, the classification maps, and the corresponding break
points are shown in Figure 9. It can be noticed that the geometric coefficient q tends to be
inversed when there is a peak in the histogram, and the number of inversions is almost
equal to the number of peaks of the data. This makes the number of samples for each class
more balanced, compared with the results obtained by the current Esri GIC, which inverses
q for only once. For example, compared to Figure 8c, the classification map of the thermal
band shown in Figure 9c shows more details with more balanced number of samples for
each class. The samples of the dominant classes are further classified into different classes.
Given the same number of classes, the adaptive GIC for multi-peak data allows for a more
detailed consideration of the data distribution while keeping the number of samples in
each class balanced.
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Figure 9. Classification results of the population of Indiana (a), the simulated population of Georgia
(b), the thermal band (c), and the break points using adaptive GIC for multi-peak data.

5.3. Multi-Dimensional Data

To deal with multi-dimensional data, we transformed the RGB composite into a new
feature space by calculating the Euclidean norm of each pixel. Figure 10 shows the feature
map and the classification results using the adaptive GIC. This feature maintains the
representative information of higher dimensions, i.e., the spectral domain, and reduce the
dimensionality to make GIC applicable. Most objects in this study area can be distinguished,
such as water, tree, grass, and bare soil. The Euclidean norm provides an effective way
to extract the variations from data values of high dimensions. The variations of both the
frequent small data values and less frequent extremes, as shown in Figure 10b, can be
highlighted. This result indicates the advantage of the adaptive GIC, which leads to a
balanced number of samples for each class as well as high separability of the classes.
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Figure 10. GIC classification results of the Landsat 8 RGB composite. Euclidean norm of the composite
(a), classification map (b), and corresponding breakpoints shown in the histogram (c).

The spatial resolution can also affect the classification results. The difference in spatial
resolution may lead to a change in data distribution characteristics, which in turn may
have an effect in the classification outcome. To investigate the effect of spatial resolution
on the performance of GIC, the RGB composition of a Landsat 8 image and an aerial RGB
color image for the same study area are selected (Figure 11). This area is part of West
Lafayette, Indiana. Both images are scaled to 0–255 gray levels and converted to the feature
space in Section 3.2. Figure 11 shows the classification maps and break points on the
histograms and Table 4 provides the results of Fisher’s discriminant analysis. The skewness
for the Landsat 8 image and the aerial image is, respectively, 2.5077 and 0.0899, while
the kurtosis is, respectively, 16.1109 and 2.6783. The Landsat 8 medium resolution data
are highly right-skewed and have kurtosis that is much larger than 3 (i.e., away from the
normal distribution), whereas the high-resolution aerial data have a skewness close to 0
and kurtosis close to 3, which is more similar to the Gaussian distribution. Nevertheless,
it can be noticed that the aerial image exhibits multiple peaks in its distribution and the
Landsat 8 image has a highly right-skewed, largely single-peak distribution.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 12 of 19 
 

 

Figure 10. GIC classification results of the Landsat 8 RGB composite. Euclidean norm of the compo-
site (a), classification map (b), and corresponding breakpoints shown in the histogram (c). 

The spatial resolution can also affect the classification results. The difference in spa-
tial resolution may lead to a change in data distribution characteristics, which in turn may 
have an effect in the classification outcome. To investigate the effect of spatial resolution 
on the performance of GIC, the RGB composition of a Landsat 8 image and an aerial RGB 
color image for the same study area are selected (Figure 11). This area is part of West 
Lafayette, Indiana. Both images are scaled to 0–255 gray levels and converted to the fea-
ture space in Section 3.2. Figure 11 shows the classification maps and break points on the 
histograms and Table 4 provides the results of Fisher’s discriminant analysis. The skew-
ness for the Landsat 8 image and the aerial image is, respectively, 2.5077 and 0.0899, while 
the kurtosis is, respectively, 16.1109 and 2.6783. The Landsat 8 medium resolution data 
are highly right-skewed and have kurtosis that is much larger than 3 (i.e., away from the 
normal distribution), whereas the high-resolution aerial data have a skewness close to 0 
and kurtosis close to 3, which is more similar to the Gaussian distribution. Nevertheless, 
it can be noticed that the aerial image exhibits multiple peaks in its distribution and the 
Landsat 8 image has a highly right-skewed, largely single-peak distribution. 

   

   

 

Figure 11. GIC classification results for the Landsat 8 image (top) and aerial RGB image (bottom) 
over the West Lafayette area. From left to right: RGB composite, classification result, and corre-
sponding break points on the histograms. 

Table 4. Fisher’s linear discriminant analysis, including the within-class scatter metric (𝑆 ), be-
tween-class scatter metric (𝑆 ), 𝑆 /𝑆 , and information entropy of the classification results of GIC 
for the RGB composites of the Landsat 8 and aerial images. 

 Landsat 8 Aerial Image 𝑆  1.392 × 10  4.392 × 10  𝑆  2.032 × 10  1.052 × 10  𝑆 /𝑆  1.460 × 10  23.960 
Entropy 2.839 3.053 
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the West Lafayette area. From left to right: RGB composite, classification result, and corresponding
break points on the histograms.



ISPRS Int. J. Geo-Inf. 2022, 11, 430 13 of 19

Table 4. Fisher’s linear discriminant analysis, including the within-class scatter metric (SW ), between-
class scatter metric (SB), SB/SW , and information entropy of the classification results of GIC for the
RGB composites of the Landsat 8 and aerial images.

Landsat 8 Aerial Image

SW 1.392 × 104 4.392 × 104

SB 2.032 × 105 1.052 × 106

SB/SW 1.460 × 101 23.960
Entropy 2.839 3.053

As expected, the high-resolution (aerial image) classification result reveals more details
of the objects. Comparing the within- and between-class scatters, as shown in Table 4,
the within- and between-class scatters (SW and SB) of the high-resolution classification
results are higher than those of the medium resolution results (the Landsat 8 image).
The ratio between SW and SB is also higher for the high-resolution results, indicating
a higher separability between different objects. The high-resolution classification result
also demonstrates higher information entropy than from the medium resolution image,
a fact that means a more balanced number of samples for each class. Comparing the
histograms and break points, the distribution of gray values in the Landsat 8 image is highly
right skewed with high kurtosis, while that of the aerial image is more symmetric with
smaller kurtosis.

5.4. Comparison and Discussion

The classification results of comparison methods, including the equal interval, quantile,
and natural breaks methods, are provided in Figure 12. The Fisher’s linear discriminant
analysis [31] was performed to measure the separability of different classes, and the within-
class scatter matrix (SW), between-class scatter matrix (SB) and SB/SW are shown in Table 5.
For the classification results of each study dataset, the two highest SB/SW ratios are bolded.
GIC has a better performance for the population of Indiana, the blue and thermal bands
of Landsat 8 image, while the natural breaks method performs best for the population
of Chicago and Georgia, as well as the cirrus band. These results verify that the GIC is
more appropriate for non-normally distributed data with high skewness and kurtosis. In
fact, GIC can be regarded as a compromise of the natural breaks method and quantile.
It resolves the problem of the quantile method by taking the distribution characteristics
of data into consideration. Additionally, GIC avoids the potential of natural breaks for
obtaining class breaks on extreme values with low frequency. The equal interval method
achieves better results on the population data of Chicago and Georgia. It often highlights
extreme values and de-emphasizes the samples with high frequent values [31,32]. Hence, it
is more suitable for data with small skewness, such as the population data of Chicago and
Georgia. The classification results of the quantile method are inferior to others for most
datasets, except for the cirrus band. These misleading results are because that quantile only
considers the number of samples and ignores the distribution of the data.
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Figure 12. Comparison results using the equal interval (a), quantile (b), natural breaks (c), and
GIC (d) methods for the population data of Indiana, Chicago, and simulated population data of
Georgia, and the blue, cirrus, and thermal bands of the Landsat image.

Table 5. Fisher’s linear discriminants, including the within-class metric (SW ), between-class metric
(SB) and the ratio SB/SW for different classification methods.

Population
Indiana

Population
Chicago

Population
Georgia Blue Band Cirrus Band Thermal

Band

equal
interval

SW 3.469 × 101 1.299 × 102 4.915 × 101 6.344 × 101 1.840 × 102 1.926 × 102

SB 1.658 × 102 4.902 × 103 4.885 × 103 1.329 × 102 1.732 × 103 3.331 × 103

SB/SW 4.778 3.773 × 101 9.939 × 102 2.095 9.413 1.729 × 101

quantile
SW 3.881 × 101 1.313 × 102 1.689 × 102 4.566 × 101 8.382 × 101 5.143 × 102

SB 1.617 × 102 4.901 × 103 4.765 × 103 1.507 × 102 1.832 × 103 3.009 × 103

SB/SW 4.165 3.731 × 101 2.821 × 101 3.300 2.185 × 101 5.851

natural
breaks

SW 7.712 1.239 × 102 3.721 × 101 1.241 × 101 5.022 × 101 8.614 × 101

SB 1.928 × 102 4.908 × 103 4.897 × 103 1.839 × 102 1.865 × 103 3.437 ×103

SB/SW 2.499 × 101 3.960 × 101 1.316 × 102 1.482 × 101 3.715 × 101 3.990 × 101

GIC
SW 1.132 × 101 1.341 × 102 4.169 × 101 1.268 × 101 1.242 × 102 1.912 × 102

SB 1.891 × 102 4.898 × 103 4.892 × 103 1.836 × 102 1.791 × 103 3.332 × 103

SB/SW 1.670 × 101 3.651 × 101 1.174 × 102 1.448 ×101 1.442 × 101 1.743 × 101

Furthermore, the information entropy was also calculated for the classification results
obtained by GIC and three other comparison methods, as shown in Table 6. The theory
of maximum entropy is that a uniform distribution has the largest entropy [33,34]. In the
classification problem, the information entropy is maximal when the data are classified
into several classes with equal probability and the size of each class is the same. Given a
probability distribution, the information entropy is defined as Hp = −p(x)lgp(x), where
p(x) represents the probability of occurrence of x [35]. The classification results of GIC and
quantile have the highest information entropy, which illustrates that the number of samples
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in each class is balanced. In contrast to the quantile method, GIC takes into account the
distribution of the data in addition to the size of classes. The inverse of the geometric
coefficient highlights the variation in both the middle values and the extreme values and
can reduce the intra-class difference in extreme values. This also indicates that GIC can be
viewed as a compromise between the quantile and natural breaks methods.

Table 6. Information entropy of the classification results from GIC and comparison methods.

Population Landsat Band

Indiana Chicago Georgia Blue Cirrus Thermal

equal interval 0.953 1.439 2.186 1.019 1.940 2.179
quantile 2.557 1.530 2.257 3.322 3.316 3.322

natural breaks 2.017 1.449 2.319 2.189 2.939 2.891
GIC 2.223 1.530 2.355 2.387 2.239 2.997

Finally, we examined the semantic difference between the classification results for
the thermal infrared band of the Landsat 8 image. In the thermal infrared band, the
gray values can be converted to the top of atmospheric (TOA) spectral radiance and then
the brightness temperature of the ground. There is a positive correlation between them,
with larger values corresponding to higher temperatures [36,37]. Class 1–10 correspond
to the gray values from low to high, respectively, and the semantic information of the
classification maps is the distribution of the brightness temperature. As shown in Figure 9c,
the histogram of the thermal band image has a peak near 2.61× 104, with very few objects
having low and high brightness temperatures (pixel values less than 2.45× 104 and greater
than 2.70× 104). The equal interval method classifies most of the data samples into the
average and above average class (class 6,7,8), which fails to show the detailed differences
in brightness temperatures and made the overall temperatures in the study area appear
high. The intervals of the classes with average temperatures obtained by natural breaks are
smaller than those of the classes with extreme values, but still many high frequent pixels are
classified into one class (class 6 or 7). To equalize the size of each class, the quantile method
increases the break corresponding to class 1 (lowest temperature), resulting in many objects
with below average temperatures being assigned to class 1. Meanwhile, the class breaks
obtained by quantile are concentrated around the peak of the histogram, as shown in
Figure 12c. Since GIC takes into account the data distribution while balancing the number
of samples for each class, the breaks obtained by GIC are different from the quantified
ones. As shown in Figure 12e, the interval between two adjacent breaks gradually increases
from the peak of the histogram to both sides, thus increasing the number of pixels assigned
to class 2, 3, 9. Compared to the classification maps of quantile and GIC (Figure 12b,d),
more pixels are classified into class 6, 7, 8 with higher brightness temperatures when
using the equal interval and natural breaks methods (Figure 12a,c). Additionally, the
pixels with higher temperatures are always assigned larger class labels than those with
lower temperatures.

In the images shown in the last row of Figure 12, water bodies have the lowest
brightness temperature and are classified into class 1, as marked by the white cycles. The
bare soil in the area marked by blue cycles is assigned to class 10 or 9, indicating that bare
soil has a higher brightness temperature than the surrounding vegetation. The area marked
by the black circle is a typical example of the difference between the four methods. This
area is mainly composed of vegetation and a little bare soil. The classification map of equal
interval shows the highest brightness temperature (mostly class 5–8), followed by the one
of natural breaks (mostly class 3 and 6). The quantile method classifies many pixels in this
area into the class with the lowest temperature (class 1), and GIC assigns these pixels into
class 2 and 3 of higher brightness temperature.
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6. Conclusions

This study theoretically formulated the geometric interval classification (GIC) method
proposed by Esri and extended it to handle multi-peak, multi-dimensional data. The essence
is that GIC is described as a constrained optimization problem that can be solved iteratively.
In our formulation, the objective function is to minimize the squared sum of the number
of data samples in each class, while the introduced constraint on geometric coefficient
considers the non-uniform distribution of the data. Under this theoretical formulation, the
class intervals determined by GIC is larger for extremes and smaller for frequent values in
the data. In this way, the solution of this optimization problem, which is the results of GIC,
can be a compromise of the quantile and natural breaks methods. As such, the separability
between different classes is improved while maintaining a balanced number of samples
in each class. Both the variations of high frequent values and low frequent extremes are
emphasized, making the classification method suitable for data not only with common
normal distribution, but with skewed long tails, which is rather common for geospatial big
data. In fact, we demonstrated that GIC is more performant for non-normal data with a
distribution that is asymmetric and different from the Gaussian distribution.

To further extend such formulated GIC to handle data with complex distributions,
such as multi-peaks in multi-dimensions, we modified the settings of the geometric co-
efficient. For multi-peak data, the number of times of the inversion for the geometric
coefficient is automatically determined. Experiments on the population data and remote
sensing images show that the adaptive GIC can better classify multi-peak data, as it allows
for a more detailed consideration of the data distribution characteristics. Moreover, the
number of inversions of the geometric coefficient is approximately equal to the number
of peaks in the data. This demonstrates the capability of adaptive GIC to modify class
intervals according to the distribution of the data. The sizes of class are balanced, and
the separability of different classes is improved, leading to a more appealing classification
map for multi-peak data. To handle multi-dimensional data, we transformed the input
data into a feature space based on the Euclidean norm, which can maintain the variation
of high dimensional data. The classification results on the RGB composites demonstrate
the feasibility and effectiveness of this strategy and the adaptability of GIC to classifying
multi-dimensional data.

Three other classification methods were applied for comparison, i.e., the equal interval,
quantile, and natural breaks methods. The highest separability of classes is achieved by
natural breaks and GIC, while at the same time, GIC can also obtain classification maps
with the highest entropy. GIC avoids the limitations of the comparison methods and
achieves a compromise. Comparing to the natural breaks method, GIC is able to create
more class breaks in the high frequent data ranges, and fewer classes at extremes. It can
highlight both the variations of high frequent data and low frequent extremes to achieve
more realistic results.

It should be reiterated that classification is a high data-dependent process. The clas-
sification of geospatial data further adds several other dimensions to the equation. Such
dimensions, among others, may include the size and shape of the geographic units based on
which the data to be classified are aggregated, as documented by [38] as the modifiable areal
unit problem. Similarly, when working with geographic data with social and economic
attributes (e.g., the population data in this study), their classification and interpretation
are associated with certain semantic and nominal or categorical definitions, which can be
subjective. As such, the interpretation of the GIC classifier may not be as straightforward
as several other methods, which can be regarded as a limitation.

We expect the developed adaptive GIC framework can be adopted for thematic map-
ping and other geospatial data classification and visualization practices. Theoretically,
some of the properties of the GIC method are worthwhile of further in-depth investigation
from an analytic point view, which may include the convergent geometric coefficient under
varying number of classes, and how such convergence is coherent with the physical nature
of the data to be classified. Moreover, our study demonstrated the feasibility of using GIC
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for remote sensing image classification only through a simple n-dimension to 1-dimension
mapping or transform. This work is preliminary, which needs to be more comprehensively
evaluated with reference to other popular image classification methods. Furthermore, the
feature being classified is 1D. Efforts are still needed to establish an inherently multiple
dimensional geometric interval classifier or what adopts and extends the intrinsic idea of
this work.
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