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Abstract: Interpretability has attracted increasing attention in earth observation problems. We apply
interactive visualization and representation analysis to guide the interpretation of glacier segmen-
tation models. We visualize the activations from a U-Net to understand and evaluate the model
performance. We built an online interface using the Shiny R package to provide comprehensive
error analysis of the predictions. Users can interact with the panels and discover model failure
modes. We illustrate an example of how our interface could help guide decisions for improving
model performance. Further, we discuss how visualization can provide sanity checks during data
preprocessing and model training. By closely examining the problem of glacier segmentation, we are
able to discuss how visualization strategies can support the modeling process and the interpretation
of prediction results from geospatial deep learning.

Keywords: interactive visualization; representation analysis; glacier segmentation; Shiny app

1. Introduction

Advances in machine learning for remote sensing have enabled the automatic track-
ing of changes of glacier cover. Researchers have proposed to implement deep-learning
models on satellite images to identify the positions and boundaries of glaciers. These
approaches have demonstrated improved performance relative to non-deep-learning base-
lines. However, the literature on the interpretability of these black-box models is limited.
This gap is problematic because interpretability can help researchers find systematic failures
of modeling.

Motivated by this, the goal of this work is to provide visual interpretation techniques
to facilitate understanding across the geospatial deep-learning workflow from data prepara-
tion to error analysis. We conduct representation analysis to visually interpret the modeling
process of a U-Net architecture deep-learning model. We use interactive visualization to
provide a comprehensive error analysis of the predictions. We build an online interactive in-
terface using the R Shiny package where users can examine prediction results in context [2].
We show that, with the help of visual interpretations, it is possible to detect underlying
errors in the raw data, which are difficult to detect otherwise.

The rest of the paper is organized as follows. In Section 2, we introduce several
concepts used throughout. In Section 3, we discuss data preprocessing. Then, we introduce
the details of our model and model training process. Both steps are guided and explained
with data visualization. In Section 4, we present the interpretation and analysis of the
trained model using representation analysis. In Section 5, we introduce a Shiny app for
error analysis and discuss the findings with the help of our app. In Section 6, we conclude
our work and discuss how to reproduce our work for further research.

2. Background

We first review the background on interactive visualization and representation analysis
of deep-learning models.
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2.1. Interactive Visualization

The large scale of remote sensing data—both in the scope of area covered and number
of sensor features—creates challenges for data exploration. An increasing number of
interactive visualization techniques have been proposed to support geospatial and remote
sensing research. Focusing and linking are two techniques for high-dimensional data
visualization [3]. Focusing supports visualization of only a part of the data in a single view.

Focusing visualization techniques include subset selection and dimension reduction.
They are commonly applied by zooming, panning, slicing, projecting and data reduction.
Focusing limits the amount of presented information. In contrast, to have a more com-
prehensive understanding of data, linking can be used to display multiple views of data
together. Different views are synchronized to give a more extensive description of the data.
Linked visualizations are often implemented by brushing, clicking and dragging.

For example, Anselin et al. [4] dynamically linked a cartographic representation of
data on a map with summary statistical graphics, such as histograms, box plots and
scatterplots. Their interface implements linking and brushing between maps and statistical
graphics. Anselin [5] presented an interactive dynamic framework in which brushing across
a variogram cloud plot highlights pairs of observations on the map, suggesting potential
spatial outliers. Hibbard and Santek [6] implemented rotation, zooming and panning in
three dimensions. This also allows users to select combinations of scalar variables, and
users can interactively control the time animation of the data.

A data reduction method proposed by Tasnim and Mondal [7] reduces the data
size by 75% while preserving the visual elements of images. Keim et al. [8,9] discussed
the use of visualization techniques to explore large-scale geospatial datasets using more
classical data mining methods. Janik et al. [10] combined interactive visualization with
representation learning to characterize latent representations on a building segmentation
dataset. Humer et al. [11] developed explanations of segmentation networks, allowing users
to select predicted segmentations and visualize saliency maps summarizing pixel-level
importance measures.

2.2. U-Net Model

The U-Net deep learning architecture has been widely used in image segmentation
problems. It and its variants have been widely applied to medical image segmentation
problems [12-14] and geospatial satellite image segmentation problems [15-18]. In the
glacier segmentation problems, previous works have used U-Net to identify positions and
shapes of glaciers [19-21]. The U-Net model contains two parts: an encoder and a decoder.

The encoder contains down-sampling layers, and the decoder contains up-sampling
layers. Features are extracted by the down-sampling layers at the pixel level. The extracted
information is then up-sampled to the input resolution using the decoder. Skip connections
between down-sampling layers and the corresponding up-sampling layers provide an
alternative way of learning features. Through them, features can bypass downsampling
and be used directly for prediction. However, richer and semantic information is normally
learned by deeper layers.

Activations are formed at each layer and are used in representation analysis. They
are computed as nonlinear transformations of outputs from convolution layers. From the
activations, we can discover how the input is changed and gain information about which
features are learned in each U-Net layer.

2.3. Representation Analysis

Though they often achieve state-of-the-art performance on earth observation problems,
deep neural networks are, in a way, black boxes since their decision rules can not be
easily described. Understanding deep models can inspire improvements on data analysis
problems as well as methodology [22]. To describe what a trained deep neural network
model has learned, some researchers have studied the parameters of neurons at each
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layer [23,24]. For example, Luo et al. [25] visualized the weights of all units in a deep model
for digit classification.

The learned weights appear as strokes with clearer borders as the model goes deeper.
Others aimed to interpret the functions of neurons [26]. For example, one approach is to
investigate what certain units are looking for by generating artificial inputs that maximizes
an individual neuron’s activation [27]. Alternatively, it is possible to study the activations of
each neuron after passing certain data through the model, whose results can reflect on the
input data and allow for further unsupervised investigation [28,29]. More broadly, a rich
literature has emerged at the boundary between interactive visualization and interpretation
of deep-learning models—we refer the interested reader to the survey papers [30,31].

3. Data Preprocessing and Modeling

In this section, we introduce our data preprocessing and modeling procedures. Further,
we illustrate how visualizations can inform preprocessing and modeling choices. These
visualizations also provide a sanity check for the preprocessed data.

3.1. Data Preprocessing

Geographically, we study the glaciers in the Hindu Kush Himalayas region, which
contains one of the world’s largest concentrations of snow and glaciers. A geographical
map of this area is provided in Figure A1l. Recent studies have documented that glaciers in
this region are retreating due to rising temperatures [32]. The potential loss of the associated
ecosystem services is reason for concern. Therefore, automatic tracking and identification
of glacier position and size is needed.

Our raw imagery data contains 13 bands from Landsat 7 (LE7) and the Shuttle Radar
Topography Mission (SRTM). It contains the bands from Bl to B7, BQA of LE7, elevation
from SRTM, derived Normalized Difference Snow Index (NDSI), Normalized Difference
Vegetation Index (NDVI), Normalized Difference Water Index (NDWI) and slope. Bands
B1 to B3 are RGB color bands, B4 to B7 are infrared related bands, and BQA is a quality
assurance bitmask band. Figure 1 provides a histogram for each channel in the raw data.
We found that different features have significantly different scales—this could lead to
difficulty in model training and generalization.

Specifically, large weights will be needed for features with small scales; otherwise
they may be overlooked during training. Hence, we equalize each feature to the —1to 1
scale. It is noted that, in the distributions of original features, e.g., B1, B2 and B3, there is an
outlying bar in each distribution indicating the value is truncated at a certain threshold.
This is because the raw imagery released by [20] has been truncated. As a consequence,
even after equalization, there is a bar that is away from the majority of the values. We
also note that, after equalization, the color channel values are more condensed. Thus, the
visualization of the processed patches will differ from those in typical RGB views. We select
a subset of the original features to train the model more efficiently.

Working with a subset of channels allows the model to be trained with larger batch
sizes, stabilizing model optimization. Specifically, we drop the BQA, NDSI, NDVI and
NDWI bands and use the remaining features to train the model. Below, we show that the
resulting model has satisfactory performance. The scaled features” histograms are given
in Figure 1. We can see that all features have the same scales and almost have uniform
distributions. However, for Bl to B3, a bar in each histogram stands out. This reflects
the outlying bar in the raw data histogram. However, compared with the raw data, the
deviating value in the scaled histogram is much closer to the bulk of non-outlier values.
Though simple, these histograms of raw and transformed data give reassurance that the
original data are appropriately processed for model training.

The label data that we used to train the model and validate predictions came from
the International Center for Integrated Mountain Development (ICIMOD), an intergovern-
mental knowledge and learning center working on behalf of the people of the Hindu Kush
Himalayas [1]. To understand the structure of the labels, we drew glacier boundaries in a
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partial area in Figure 2. The left panel of Figure 2 suggests a potential label imbalance issue.
Compared to the non-glacier background, target glaciers make up only a small fraction of
the whole area.

To obtain more informative training data and train the model more efficiently, we
would prefer our target glaciers to make up a larger proportion in the training data. To
achieve this, we resample the raw imagery data and create training patches in a way that
ensures that more glaciers are present. Specifically, we randomly sample patch centers from
within glaciers boundaries so that all the training patches are centered at a glacier. The
resulting patches have higher coverage rates of glaciers. The right panel of Figure 2 presents
an example of sampling results—the red points are the centers of sampled patches. We show
an example of sampled patches in Figure 3. The preprocessed satellite image associated
with a patch is given in Figure 3 along with its ground truth mask. In the mask, we see that
two types of glaciers cover most areas in the patch, reflecting the sampling strategy.
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Figure 1. (a) Feature histogram before preprocessing. (b) Feature histogram after preprocessing. Each
feature before preprocessed has significantly different ranges. Each feature is equalized into the same
range from —1 to 1.
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Figure 2. (a) Raw glacier boundaries. (b) Glacier boundaries with sampled patches. In raw data,
target glaciers only make up a limited fraction of area in the whole data. We sample patches from
areas with glaciers, and the center of the sampled patches are marked as red points.
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Figure 3. (a) An example of the preprocessed patch. (b) Corresponding mask patch. In the prepro-
cessed patch, target glaciers now make up a large proportion. The pink areas are a consequence of
feature equalization. They tend to represent the clean ice glaciers. As noted in the main text, equaliza-
tion makes the color channel values more condensed, and these distortions lead to images that differ
from the typical RGB views. We further discuss the relationship between feature equalization and
image color in the appendix.

3.2. Modeling

We next introduce details about our model. We then discuss the modeling process and
the ways that visualization supports it.

We implemented a U-Net architecture for the glacier segmentation task, following
prior work [20,21]. We used a kernel size of 3 x 3 with 1 padding for the convolution layers
in the down-sampling blocks, middle block and up-sampling blocks. We used a kernel size
of 2 x 2 with stride of 2 for the up-sampling convolution layers in the up-sampling blocks.
For the pooling layer, we used maxpool with kernel size 2 x 2. The input data had nine
channels with size of 512 x 512 and three output channels with the same size.

The output channels correspond to clean-ice glaciers, debris-covered glaciers and
background classes. We doubled the number of channels after each layer in the encoder
and halved the number of channels after each layer in the decoder. The U-Net model
had depth 4 with four down-sampling layers, four up-sampling layers and one bottleneck.
During training, we used the Adam optimizer and set the learning rate to 0.0001. A dropout
probability of 0.2 and /;-regularization of A = 0.0005 were used to prevent overfitting. For
the loss function, we used a combination of BCE and Dice loss. Figure 4 is a diagram for
our model.

We draw the training and validation loss curves across epochs in Figure 5. In this
figure, we see that, from epoch 1 through 30, both losses rapidly decrease, and from epoch
11 through epoch 50, the training loss slowly decreases while the validation loss stabilizes.
This indicates that, after 30 epochs, the model’s performance does not increase on the
validation set, and thus we conclude that the model converged.

Figure 6 provides example model predictions. Comparing the predicted patch in the
right panel with the label mask in the middle panel suggests that the model successfully
recognizes most glacier pixels in this patch. However, the model fails to accurately recog-
nize glacier borders or to detect connections between major glacier masses. Additionally, it
seems that the debris-covered glaciers are not recognized well. These views provide clearer
directions for improvement than an average performance metric alone.



ISPRS Int. ]. Geo-Inf. 2022, 11, 415 60of 13

4am

1st down conv U

] U last pool

3rd down conv

_Ui L}

=) Conv 3 * 3, ReLU
==) Skip connection

U 3st up conv
: ‘ Max pool 2 * 2

= =

5th down conv U

t Up conv 2 * 2, stride 2
7th down conv U U 1st up conv Sampled layer for
representation analysis

U bottleneck conv

Figure 4. U-Net model diagram [12]. The arrows with different colors indicate different operations.
The input is a nine-band image, and the output is a three-band image with the probability of each
class for each pixel.
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Figure 5. The training loss curve. The blue line corresponds to the training loss. It decreases over
epochs indicating the model is learning features from data. The green line corresponds to the valida-
tion loss. It first decreases and then becomes relatively steady, meaning the model has converged.
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Figure 6. (a) Raw image patch. (b) Mask patch. (c) Predicted patch. The model can detect the position
of the bulk of target glaciers but fails to detect connections between glaciers.

4. Representation Analysis

To better understand the modeling process, we attempt to understand how the model
captures the original features and how they appear across different layers of the model. To
achieve these goals, we used representation analysis to visually interpret the U-Net model
layers. We investigated the functions of neurons on specific inputs by passing data through
the model and visualizing the activations of each neuron.

The U-Net model starts with down-sampling layers that condense information for
distinguishing labels, followed by up-sampling layers that recover spatial context for
each class. We sampled activations from the first, third, fifth and seventh downsampling
convolutional layers, the second middle convolutional layer, the first and third upsampling
convolutional layers and the last pooling layer. We also annotate those sampled activations
in Figure 4. We present the visualization of the sampled activations in Figure 7 where the
rows correspond to the sampled activations.

This figure shows that the model-learned borders between labels become clearer and
more accurate during the initial down-sampling, and these activations are recovered in
the last few up-sampling layers. However, the U-Net deeper layers and bottleneck fail to
learn any information since the corresponding rows are all black. This indicates that the
bottleneck is bypassed, with most activations flowing through skip connections. Guided by
this visualization, we may infer that removing these final encoding layers could result in
comparable performance with less computation. Consistent with this observation, recent
literature has suggested that U-Net does not seem to learn long-range spatial relationships.
For example, Malkin et al. [33] observed that a segmentation model trained on a landcover
segmentation misclassifies roads when they are interrupted by trees.
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Figure 7. (a) Original figure, true labels and the prediction. Blue, green and gray represent clean-ice
glaciers, debris-covered glaciers and background, respectively. (b) Visualization of the segmentation
layer. The three panels represent clean ice, debris and background, respectively. (c) Activations
of one satellite image across eight convolutional layers of the U-Net model. For each layer, we
randomly plot eight activations in grayscale. Each row corresponds to different convolutional layers,
and each column corresponds to different sampled activations. From the top to the bottom rows,
they correspond to the first, third, fifth and seventh downsampling convolutional layers, the second
middle convolutional layer (bottleneck), the first and third upsampling convolutional layers and
the last pooling layer. We also annotate these layers in the model architecture diagram in Figure 4.
We observe that the activations capture basic features at the first layer and become more blurred in
deeper downsampling. The model appears to skip the bottleneck layer on these example patches,
since the associated activations do not pass the ReLU threshold.

5. Error Analysis of Prediction Results

In this section, we introduce a visualization interface built using the R Shiny pack-
age [2]. It provides a visual error analysis of model prediction results. Below, we first
introduce the design and the functionality of this interface.
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Then, we use our prediction results as an example and explore how, with the help of
this interface, we are able to detect a problem in the raw data that is otherwise difficult
to detect. This visual interpretation approach could be generalized to other geospatial
deep-learning analysis and are helpful when interpreting model prediction results.

5.1. Interactive Interface Introduction

We build an online interactive interface with the Shiny package; it can be accessed at
https:/ /tinyurl.com/yc6bj59z accessed on 6 March 2022. It allows users to interact with
components representing different aspects of the data. It also links users’ interaction with
the corresponding prediction results. Figure 8 presents an annotated screenshot of the
interface. In the upper panels of the interface, we place a glacier map and an accuracy
curve of the training patches. These two parts are both dynamically linked to the associated
data patches in the lower panels of the interface.

These patches include a raw satellite image, a ground truth label mask and the predic-
tion results made by the model. The purpose of this design is to enable users to zoom in
and out of the glacier map so that they may select specific regions of interest. By clicking
different markers on the map, users will be brought to the corresponding images, shown in
the space below. The map’s markers cluster together when the user zooms out, preventing
labels from obfuscating one another.

Moreover, the interface allows users to click points on the accuracy curve calculated
by the pixel-wise classification accuracy. In this way, users may compare prediction results
with the label masks and raw images. This allows users to easily view training patches
with varying performance, facilitating a more comprehensive understanding of model
prediction properties. Via such a comparison, we may discover problems that cause low
accuracy. For example, from patches with low accuracy, users could identify areas where
the model fails and specific glacier patterns on which the model has poor performance.

Input Interactive Figures

User could zoom in/out

to find certain location User could click the

......... <:]~ points on accuracy
........... st curve to display

e corresponding images

°
@
i

Accuracy
°

User could click the
marker to display
corresponding
images. Marker are
clustered together in
a high angle of view

Output Images

Raw Image

The output images
will be dynamically
linked by operations
g | of users.

Figure 8. Screenshot of the Shiny app with annotations. Users could interact with the app through
the upper part of the app. Users could click the map and loss curve to switch the prediction results in
the lower part of the app.

5.2. Error Analysis Discussion

We illustrate the use of interactive visualization to support error analysis of glacier
segmentation results. Figure 9 presents an example of a test patch with relatively low
accuracy. Surprisingly, based on the images in the lower panel, the model predicts the
labels of the majority of the pixels in the raw satellite image correctly. The reason why it
has low accuracy is that the label mask is not fully labeled—Ilabels were only available in
Nepal, not China. Compared with the map, we find that the upper right part of this area is
within the Chinese border—it appears that the labeling campaign deliberately excluded
glaciers within the Chinese border. Since this patch includes substantial areas within this
excluded area, many predictions are mistakenly declared as false positives.
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Guided by this observation, the machine learning scientist may decide to supplement
the existing labels with more from within the Chinese border. Alternatively, the scientist
may choose to limit evaluation to only those image patches that lie fully within Nepal. This
structure is straightforward to discover with the help of this interactive panel, but it would
require a more deliberate effort without it. This visual approach could be generalized to
other real cases in geospatial machine-learning problems and gives researchers a hint about
how to improve their prediction results.

Input Interactive Figures
» -

Glaciers

Eisessste ot
g
Latitude: 27.97 Debris covered

0.6 " 22
Accuracy: 0.58

Leaflet | Tiles © Esri — Esr, DeLorme, NAVTEQ

Label Prediction

B
i
' I 0y
Figure 9. An example of prediction results with low accuracy. We notice that the prediction result
actually matches the real label of the raw image well; however, the problem is that the label mask is

incomplete, i.e., the upper right part is missing. Compared with the map, we find that the missing-
label area is within the Chinese border. The glaciers within the Chinese border are not labeled.

6. Conclusions

We used visualization to provide guidance for machine-learning supported glacier
segmentation. During preprocessing, we detected potential issues in the raw data, such
as label imbalance and divergent feature scales via strategic static and interactive visual-
izations. We also provided sanity checks of the preprocessed data to demonstrate their
appropriateness for modeling. In Section 3.2, based on the performance of training and
validation losses, it appears that the model learned from the data over epochs and was
trained properly after 30 epochs.

To better understand the internal training process, we visualized model activations.
Based on the activations, we found that the deepest layers were bypassed with most
activations flowing through skip connections. To support prediction error analysis, we
built an online interactive visualization to display and critique the prediction results. Users
can easily interact with the app to discover patterns across patch prediction results. We
shared an example where the app revealed an issue with the source labels.

We release our code at github repository (https://github.com/krisrs1128/geo_mlvis,
accessed on 6 March 2022). We provide the code for data preprocessing, model training
and inference, representation analysis and Shiny app definition. We hope this code can
be re-used by others seeking visualization or representation analysis of geospatial deep-
learning models.
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Appendix A

Legend

I Glaciers
l:| Basin boundary
D HKH boundary L, 2,000 2

kilometres

Figure A1l. A geographical map of Hindu Kush Himalayas region, reprinted from [34,35].

This appendix discusses the color distortions that appear after preprocessing. In
particular, we explore the reasons for the appearance of “pink” regions in the preprocessed
patches in Figures 3a, 7a, 8 and 9. To this end, we take a closer look at these values in each
color channel (red, green and blue), and we compare values before and after preprocessing
in Figure A2. We find that the limit of majority of the values (excluding outliers) of the red
channel is smaller than that of the blue and green channels. Therefore, when we equalize
each band into the same range, the red channels are stretched into a relatively larger range
(compared with blue and green). Consequently, the processed image looks redder as we
present in Figure 3.
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Figure A2. An example of comparison of “Unprocessed vs. Processed” values of each color channel.
We found that, in the unprocessed data, the red channel tends to have a smaller range for the majority
of values (excluding outliers), compared with the green and blue channels. Histogram equalization
brings the ranges for all channels closer to one another, resulting in the color distortion visible in the
visualization of the preprocessed data.

Appendix B

This appendix provides further examples and discussion of raw input images and
labels. Figure A3 displays the input patches and output masks from raw data. The nine
channels complement information with each other in the sense of distinguishable borders
between labels as well as variations in resolution across channels.

Figure A3. An example of input channels and output labels. We visualize the nine input channels
(first three panels) in groups of three and the output labels (last column). In the last panel, blue, green
and gray represent clean-ice glaciers, debris-covered glaciers and background, respectively.
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