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Abstract: Accessibility plays an important role in alleviating rural poverty. Previous studies have
explored the relationship between accessibility and rural poverty, but they offer limited evidence of
the collective influence of multiscale transport accessibility (town-level, county-level, and prefecture-
level accessibility) and its nonlinear effects on rural poverty. This study adopted the gradient-boosting
decision tree model to explore the nonlinear association and threshold effects of multiscale transport
accessibility on the rural poverty incidence (RPI). We selected Huining, a poverty-stricken county
in China, as a case study. The results show that multiscale transport accessibility collectively has
larger predictive power than other variables. Specifically, town-level accessibility (12.97%) plays a
dominant role in predicting the RPI, followed by county-level accessibility (9.50%) and prefecture-
level accessibility (7.38%). We further identified the nonlinear association and effective ranges of
multiscale transport accessibility to guide poverty-alleviation policy. Our results help inform policy
and planning on sustainable poverty reduction and rural vitalization.

Keywords: poverty; multiscale transport accessibility; threshold effects; China; decision trees

1. Introduction

Poverty is the most acute social problem in the contemporary world [1,2]. Extreme
poverty (at the US$1.90 per day poverty line) affected approximately 9.4% of the world’s
population in 2020, meaning that an estimated 88 million people will be pushed into poverty,
especially in rural areas [3]. Poverty is caused by a variety of factors, and these factors are
both time- and location-specific [4]. Among them, transport accessibility, as the potential for
opportunities for interaction, plays a central role for people to access essential services [5].
Transport accessibility is widely recognized as one of the main reasons for poverty and the
key precondition for poverty reduction [6]. However, the relationship between transport
accessibility and poverty is still poorly understood, and it often varies with spatial scale of
location, ranging from the town- to prefectural-level in different regions [7]. This paper
aims to identify the effects of multiscale accessibility on rural poverty in China.

Many studies have explored the correlates of rural poverty and suggest that ru-
ral poverty is associated with the physical environment surrounding poor rural areas,
geographical location, and accessibility. First, the distribution of rural poverty largely
follows physical environmental conditions. Previous studies show that rural poverty is
affected by slope, elevation, soil erosion, land-use type, ecological degradation, and natural
disasters [8–13]. Most poor rural populations in China are distributed in ecologically fragile
areas, rocky desertification areas, soil erosion areas, and land desertification areas [14–16].
Second, geographical location plays an important role in the occurrence of rural poverty. Ge-
ographic remoteness is usually considered as the main explanatory factor of a high level of
rural poverty [17,18]. Spatial poverty traps, which are defined as the spatial agglomeration
of poverty areas or impoverished populations, result from location characteristics [19,20].
Geographic location affects poverty via the natural environment, infrastructure, public
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service conditions, and job opportunities [21]. As a result, accessibility is often used as a
major explanatory factor of rural poverty, as high accessibility provides rural dwellers with
easy access to basic services and market opportunities [6,22–24]. Many empirical studies
have stated that many poor communities living in rural areas are excluded from economic
and social opportunities due to isolation, poor road conditions and low-level accessibility.
For instance, the findings from Sewell and Shepherd suggested that poor connectivity
and accessibility have a high correlation with high levels of unemployment and poverty.
Accessibility is still a constraint for the development of many rural areas in developing
countries. Pozzi et al. [7] stated that accessibility and rural poverty have not been clear,
and the main reason is the different geographical scales of analysis. Some studies have also
shown that poverty is more strongly correlated with travel time to medium-size towns,
rather than to local markets or to large capitals.

These studies are useful for understanding the association between rural poverty
and the geographical environment and offer critical implications for promoting poverty
alleviation. However, some questions remain to be resolved. First, the literature pays
little attention to assessing how large a role accessibility plays in rural poverty [22,25].
This assessment is central to implementing targeted poverty-alleviation policies through
road infrastructure and accessibility improvement. Second, previous studies often assume
that accessibility is linearly related to rural poverty. In fact, changes to transport and
spatial attribute variables may have a weak impact on rural poverty after accessibility
reaches a certain threshold [4,26]. As a result, the effective ranges in which accessibility
influences rural poverty remain unknown. Moreover, the assessment of accessibility
inherently includes a spatial analysis exercise that requires the selection of destinations.
Specifically, accessibility of destinations with different administrative ranks (settlements),
referred to as multiscale transport accessibility in this study, has different effects on rural
poverty. This is especially true in China, as the politico-bureaucratic hierarchies of cities
(e.g., prefectural-level cities, county-level cities, and townships) determine, to a large extent,
their political and economic power. The implications of multiscale transport accessibility
have not been comprehensively investigated in the literature focused on the relationship
between accessibility and rural poverty.

Our research aims to fill in these three gaps. The objective of this paper is to explore the
nonlinear influences of prefecture-level accessibility, county-level accessibility, and town-
level accessibility on rural poverty, controlling for other geographic environment variables.
To this end, we applied the gradient-boosting decision tree (GBDT) model proposed by
Friedman [27]; it has been widely applied in transport travel analysis [28,29]. To the best
of our knowledge, this is the first time that GBDT has been applied to a rural poverty
analysis. We selected Huining in Gansu province, a poverty-stricken county in China, for a
case study. Specifically, we attempted to answer two research questions: (1) Which types
of accessibility play important roles in predicting rural poverty? (2) Do the three types
of accessibilities have nonlinear or threshold effects on rural poverty? Addressing these
questions is very important, as assessing the collective contribution of accessibility and
quantifying the relative importance of individual multiscale transport accessibility can
guide governments in prioritizing these factors when resources are limited.

This paper is organized as follows. The next section introduces the study area, data
and the GBDT method. Section 3 describes the spatial patterns of the RPI and elaborates
the effects of multiscale transport accessibility on the RPI. Subsequently, in Section 4, we
discuss the results and associated policy implications. Finally, in the conclusion, we present
an overview of our key findings.

2. Study Area, Data, and Method
2.1. Study Area

Huining, a poverty-stricken county of Gansu province, is located at the junction
of the Northwestern Loess Plateau and Qinghai-Tibet Plateau in the central part of the
Liupan Mountain area. Huining is divided into 28 towns, 284 administrative villages,
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and 16 communities, with a total area of 6439 km2. Huining is also one of the fourteen
contiguous poverty-stricken areas with special difficulties in China (CPASDs) (Figure 1)
(As an important means of poverty reduction, the Chinese State Council Group Office of
Poverty Alleviation and Development (CPAD) determined 14 contiguous low-income areas
with special difficulties and set these areas as the main battlefield for targeted poverty
alleviation policy.). In 2018, the county had a total population of 580.3 thousand people,
of which 492.2 thousand lived in rural areas, accounting for 84.8% of the total population.
In 2019, the county’s total GDP was 7168.09 million RMB, and the per capita GDP was
13.2 thousand RMB. The per capita disposable income of urban residents was 19.9 thousand
RMB, while that of rural residents was 8.2 thousand RMB [30]. Of all the counties in Gansu
province, 50%, including Huining, are classed as poverty-stricken counties by the Chinese
State Council Group of Poverty Alleviation and Development. Additionally, Huining is
adjacent to the Xi–Hai–Gu (including Xiji, Haiyuan, and Guyuan) region of Ningxia Hui
Autonomous Region, which was identified as one of the most inhospitable areas for human
activity by the United Nations World Food Programme (WFP) in 1972. Therefore, Huining
was selected as a typical example of a spatial poverty trap areas and a typical county in
Northwestern China. According to the statistics of the registered poverty (Jiandang Lika)
rate of the county government in 2014, the county had 130 poor villages, 39 thousand poor
households, and 172.3 thousand poor people, accounting for 32.10% of the total population
and 42.54% of the total rural population.
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2.2. Data and Variables

To explore the correlates of rural poverty, five categories of explanatory variables
were included on the basis of previous studies [31–33] and field surveys: topography,
land-use resources, water resources, socioeconomic resources, and multiscale transport
accessibility. Table 1 summarizes these variables and presents their descriptive statistics.
Figure 2 presents the spatial distribution of these variables. The land-use and digital-
elevation-model (DEM) data were obtained from the 1:4 M fundamental element version of
the National Fundamental Geographic Information System. Socioeconomic data, including
the population and GDP of Baiyin municipality, Huining county, and the towns included
in the study, were derived from the Gansu Development Yearbook (2015), Huining Statistics
Yearbook (2015), and China’s County-Scale Statistics Yearbook—Villages and Towns volume
(2015), respectively. The POI data were obtained from the Baidu API (a Chinese equivalent
of Google Maps). The rural poverty incidence (RPI) data for each village in 2014 were
obtained from a statistics sheet of the registered poverty (Jiandang Lika) rate. The RPI
refers to the proportion of the impoverished population in a given village.

Table 1. Definition and descriptive statistics of variables.

Variable Name Variable Description Mean Standard Deviation

Dependent Variable
Rural poverty

incidence (RPI)
Proportion of the impoverished

population in a given village (%) 36.93 0.31

Topography
Elevation Average village elevation (m) 1919.29 120.95

Slope Average village slope (◦) 15.64 2.75
Land use resources

Crop land Percentage of crop-land area of
each village (%) 46.36 11.58

Forest land Percentage of forest-land area of
each village (%) 2.36 5.64

Grassland Percentage of grassland area of
each village (%) 49.65 12.80

Water resources
Distance to river Distance to nearest river (km) 5.43 4.20
Socioeconomic

resources

Population density Populations per km2 of each
village (people/km2)

110.10 60.96

Point of interest (POI)
Number of retails, service, and

industrial facilities point of
interest of each town (count)

19.91 36.09

Multiscale transport
accessibility
Town-level
accessibility

Accessibility to nearest town
(min) 23.77 17.80

County-level
accessibility

Accessibility to Huining county
town (min) 83.49 43.27

Prefecture-level
accessibility Accessibility to Baiyin city (min) 212.46 39.36
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2.3. Method
2.3.1. Multiscale Transport Accessibility

Accessibility is traditionally defined as the potential opportunity for interaction and
can be considered a proxy to measure welfare and economic development [34,35]. In
this study, the weighted average travel time (WATT) index was used as a measure of the
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average travel time between one node and all other nodes weighted by the mass of the
destinations [36]. Multiscale transport accessibility in this paper includes prefecture-level
accessibility, county-level accessibility, and town-level accessibility. The classic mathemati-
cal equation of WATT is as follows:

WATTi =

n
∑

j=1
Tij × Mj

n
∑

j=1
Mj

(1)

where Tij is the shortest travel time between village i and destination j, and it is obtained
from the Baidu online map. In contrast to network analysis, travel-time data acquired from
big data sources can reflect real-time speed, congestion, and other traffic conditions. Mj
is the mass of destination j, and it is measured as the square root of the product of the
population and GDP for prefecture-level destinations and county-level destinations [36]
and as the number of POIs for town-level destinations. The 28 towns in Huining are
considered destinations for measuring town-level accessibility. Huining county and Baiyin
municipality are considered the destinations for measuring county-level and prefecture-
level accessibility, respectively. In this study, town-level accessibility is defined as the
accessibility of the nearest town based on central place theory [37].

2.3.2. GBDT Model

We applied the GBDT algorithm, combining decision tree and gradient boosting, to
analyze the dynamics of rural poverty. Recently, there has been an emergence of a rich
body of the literature regarding exploring the nonlinear effects of built environment on
transport travel using GBDT [28,29]. Compared with the traditional statistical regression
framework, the key advantages of applying the GBDT model to examine the dynamics
of rural poverty are as follows. (1) The model does not make any predefined linear
assumptions about the relationship between rural poverty and its influencing factors: a
nonlinear relationship between two variables can be fit by creating partial dependence
plots showing the association between rural poverty and accessibility, controlling for other
explanatory variables. (2) The model is capable of evaluating the relative influences of
multiscale transport accessibility on rural poverty, contributing to the efficacy of targeted
poverty reduction policy. (3) The model is not sensitive to multicollinearity and is less
vulnerable to outliers.

We used the “gbm” package in the R programming language, designed by Greg [38],
to execute the GBDT algorithm. Fivefold cross-validation was applied to develop the GBDT
model, as in previous studies. The dataset was split into five distinct subsets of 20% of the
data. Each subset was sequentially used as the test data, while the remaining subsets were
used to train the model. GBDT uses the boosting technique to create an ensemble learner.
Boost in GBDT is an iteration of sample targets, not an iteration of re-sampling. The sample
set of each step of boost in GBDT is unchanged. GBDT iterates with all samples each time,
including 282 administrative villages. Following previous studies [29], the final model has
a maximum of 10,000 trees, a learning rate of 0.001, and ten-way interactions. The model
converged after 2005 iterations. The pseudo-R2, “the fraction of variation explained by the
model” [39], is 0.510.

3. Results
3.1. Distribution and Spatial Patterns of RPI

Figure 3a illustrates the distribution of the RPI and population density as a violin
graph. The median (center red and blue dotted line) RPI and population density are
17.8% and 99.16 people/km2, respectively. The distributions of the RPI and population
density show opposite trends. Specifically, the RPI values are sparse near the median and
are concentrated near the 25th quantile (8.6%) and 75th quantile (69.7%), with a typical
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dumbbell distribution. That is, the number of villages with high and low RPIs is greater
than the number of villages with moderate RPIs. In contrast, the population density near the
median is the highest, with an almost normal distribution. Overall, villages with a higher
population density and higher RPI have high population pressure and an uncoordinated
human–land relationship.
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The RPI in Huining exhibits a significant geographic dimension (Figure 3b) that is
highly coupled with the topographical pattern of Huining (Figure 1). The RPI tends to be
considerably higher in the mountainous areas of the southern, eastern, and northeastern
areas along the border of the Xi–Hai–Gu (Xihaigu) region of Ningxia Hui Autonomous
Region. Villages with lower RPIs spread from north to south in the form of belts and are
concentrated in low–lying valley plateau areas, such as the Zuli River and Guanchuan
River in the northwestern region, the Zu River in the county town of Huishi, and the Li
River in the southern region. These villages include Guochengyi, Hepan, Baicaoyuan,
Gangouyi, Chaijiamen, and Huishi.

3.2. Relative Importance of Independent Variables

Table 2 shows the relative importance of multiscale transport accessibility and other
independent variables. The total relative influence of all independent variables adds up
to 100%. The number of POIs is the most important variable in predicting the RPI, with a
relative influence of 19.60%. This result is reasonable, as a high number of POIs entails a
good supply of basic services, including education, healthcare, job opportunities, and mar-
kets for rural dwellers, thus promoting a reduction in rural poverty. The average elevation
is the second most important variable in predicting the RPI, with a relative influence of
15.64%. Elevation, a dominant factor of topography, directly influences rural development
by impacting other development conditions, such as agricultural productivity and location
isolation. Town-level accessibility is the third most important variable in predicting the RPI,
and its contribution is 12.97%. This is plausible because the driving effects of towns is higher
than those of counties and urban areas in mountainous areas, meaning that easy access to
basic services and market opportunities of towns is important for the production and daily
life of farmers. This effect was also observed in the process of field work and is consistent
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with previous studies [4,23,40], primarily due to the poor accessibility between villages
and Huining county and Baiyin. Notably, town-level accessibility is strongly influenced
by the number of POIs, which we used to represent the mass of towns when calculating
town-level accessibility. The POI factor therefore has indirect effects via accessibility, in
addition to its direct effect. Unsurprisingly, water resources rank fifth and have a nontrivial
effect in predicting the RPI, with a contribution of 8.82%. This finding is reasonable because
water resources in arid and semiarid areas are essential for supporting human activity and
agricultural production. This finding is also consistent with previous studies [10].

Table 2. Relative importance of independent variables in predicting RPI.

Variables Overall Ranking Relative Importance
(%) Total (%)

Topography
Elevation (m) 2 15.64

21.25Slope (◦) 8 5.61
Land-use resources

Crop land (%) 10 4.71
12.99Forest land (%) 9 4.85

Grassland (%) 11 3.43
Water resources

Distance to river (km) 5 8.82 8.82
Socioeconomic

resources
Population density

(people/sq.km) 6 7.49
27.09

POI (count) 1 19.60
Multiscale transport

accessibility
prefecture-level

accessibility (min) 7 7.38
29.85county-level

accessibility (min) 4 9.50

town-level
accessibility (min) 3 12.97

Among all categories of independent variables, multiscale transport accessibility ac-
counts for 29.85% of the predictive power, followed by socioeconomic resources (27.09%),
topography (21.25%), land-use resources (12.99%), and water resources (8.82%). Therefore,
multiscale transport accessibility is the dominant variable for predicting the RPI. In terms of
the individual accessibility variables, town-level accessibility, which ranks third, contributes
12.97% of the ability to predict the RPI, followed by county-level accessibility (9.50%) and
prefecture-level accessibility (7.38%), which rank fourth and seventh, respectively. This
suggests that town units are a key element in the process of rural development and farmers’
daily lives, owing to the greater isolation from urban areas and county towns in mountain-
ous regions. Meanwhile, these results also demonstrate the efficiency of promoting rural
poverty reduction by optimizing the layouts of villages and towns, cultivating special small
towns, and improving the service function of towns. Notably, county-level accessibility,
which ranks fourth, has a nontrivial effect in predicting the RPI. Socioeconomic resources
are the second most important variable and collectively account for 27.09% of the predictive
ability. This finding is reasonable, as socioeconomic conditions are a critical correlate of
farmer and rural development. The population density also plays a substantial role in
predicting the RPI and ranks sixth, with a 7.49% contribution. The collective influence of
topography variables is 21.25%, and the average elevation (15.64%) has a stronger role
compared than the average slope (5.61%). Finally, the individual contributions of the
land-use variables have a relatively limited influence: their contributions do not exceed 5%.
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3.3. The Relationship between Independent Variables and RPI

We used the partial dependence plot to demonstrate the marginal effect of a variable
on the RPI after controlling for all other variables in the model, as previous studies did.
Regarding multiscale transport accessibility, all three accessibility variables have a nonlinear
and positive relationship with the RPI (Figure 4). With respect to town-level accessibility,
the marginal effect could reach nearly 10%, within the range of 10–20 min. When town-level
accessibility is less than 8 min, it appears to have a limited impact on the RPI. Within this
range, accessibility to public services and market opportunities of towns are relatively high;
hence, the RPI is low. The RPI increases substantially as town-level accessibility moves
into the range of 10–20 min. Further increases beyond 20 min do not substantially affect
the RPI. However, when it exceeds 35 min, the RPI decreases slightly and then becomes
stable. The effective ranges of county-level and prefecture-level accessibility is 25–55 min
and 160–220 min, respectively, and their contributions to the RPI are approximately 6%.
Below 25 min of county-level accessibility and 160 min of prefecture-level accessibility, the
RPI does not change substantially and remains low. The different effective ranges of the
three accessibility factors are congruent with central place theory.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 10 of 16 
 

 

reasonable, as socioeconomic conditions are a critical correlate of farmer and rural 
development. The population density also plays a substantial role in predicting the RPI 
and ranks sixth, with a 7.49% contribution. The collective influence of topography 
variables is 21.25%, and the average elevation (15.64%) has a stronger role compared than 
the average slope (5.61%). Finally, the individual contributions of the land-use variables 
have a relatively limited influence: their contributions do not exceed 5%. 

3.3. The Relationship between Independent Variables and RPI 
We used the partial dependence plot to demonstrate the marginal effect of a variable 

on the RPI after controlling for all other variables in the model, as previous studies did. 
Regarding multiscale transport accessibility, all three accessibility variables have a 
nonlinear and positive relationship with the RPI (Figure 4). With respect to town-level 
accessibility, the marginal effect could reach nearly 10%, within the range of 10–20 min. 
When town-level accessibility is less than 8 min, it appears to have a limited impact on the 
RPI. Within this range, accessibility to public services and market opportunities of towns 
are relatively high; hence, the RPI is low. The RPI increases substantially as town-level 
accessibility moves into the range of 10–20 min. Further increases beyond 20 min do not 
substantially affect the RPI. However, when it exceeds 35 min, the RPI decreases slightly 
and then becomes stable. The effective ranges of county-level and prefecture-level 
accessibility is 25–55 min and 160–220 min, respectively, and their contributions to the RPI 
are approximately 6%. Below 25 min of county-level accessibility and 160 min of 
prefecture-level accessibility, the RPI does not change substantially and remains low. The 
different effective ranges of the three accessibility factors are congruent with central place 
theory. 

 
Figure 4. The relationships between multiscale transport accessibility and RPI. 

Socioeconomic variables include the number of POIs and population density (Figure 
5). The number of POIs has a negative association with the RPI. However, the association 
varies across the range of the variable, with a linear decrease below approximately 250 
establishments and a flat line showing no effect on the RPI when the number of POIs 
exceeds 250. This finding is reasonable, as a greater number of POIs means that villagers 
enjoy more public services, education, jobs, and other opportunities, which can further 
increase villagers’ income and development opportunities. Overall, the population 
density is negatively associated with the RPI. As the population density grows from 50 to 
120 people/km2, the RPI drops substantially. When the population density exceeds 150 
peoples/km2, the RPI increases substantially, and it further increases beyond 200 
peoples/km2, resulting in a stable RPI. This finding is consistent with the distribution of 
the RPI and population density illustrated by the violin graph (Figure 3a). This suggests 
that villages with high population density and high poverty incidence have high 
population pressure and an uncoordinated human–land relationship in Huining [14,41]. 

Figure 4. The relationships between multiscale transport accessibility and RPI.

Socioeconomic variables include the number of POIs and population density (Figure 5).
The number of POIs has a negative association with the RPI. However, the association
varies across the range of the variable, with a linear decrease below approximately 250 es-
tablishments and a flat line showing no effect on the RPI when the number of POIs exceeds
250. This finding is reasonable, as a greater number of POIs means that villagers enjoy
more public services, education, jobs, and other opportunities, which can further increase
villagers’ income and development opportunities. Overall, the population density is nega-
tively associated with the RPI. As the population density grows from 50 to 120 people/km2,
the RPI drops substantially. When the population density exceeds 150 peoples/km2, the
RPI increases substantially, and it further increases beyond 200 peoples/km2, resulting in a
stable RPI. This finding is consistent with the distribution of the RPI and population density
illustrated by the violin graph (Figure 3a). This suggests that villages with high population
density and high poverty incidence have high population pressure and an uncoordinated
human–land relationship in Huining [14,41].
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Figure 6 shows the relationship between water resources and the RPI. As expected,
the distance to the nearest river has a positive association with the RPI, as water resources
are the key resource of socioeconomic development in the Loess Plateau [41]. The influence
of distance to the nearest river varies in two ranges. Specifically, when the distance to a
river is less than 6 km, the RPI increases by approximately 5%. Then the RPI increases by
approximately 6% when the distance to a river increases from 5 to 14 km, and the effect of a
further increase beyond 14 km is negligible. This finding provides important implications
for the spatial distribution of water sources.
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Land-use-resource variables include the percentage of crop-land area, percentage
of forest-land area, and percentage of grassland area (Figure 7). Although the overall
association between the percentage of crop-land area and RPI is negative, in line with
previous studies [4,23], the plot of the percentage of crop-land area is somewhat surprising.
Below 30%, the RPI does not change much and remains high. When the percentage of
crop-land area exceeds 48%, the crop-land area has a positive association with the RPI.
Specifically, the RPI increases linearly as the proportion of crop land increases from 48%
to 60%. The trend becomes stable when the crop-land area increases further beyond 58%.
In Huining, villages where the proportion of crop-land area is less than 30% and greater
than 48% are areas with a relatively low grain-production capacity and crop-land quality
(Figure 2). Hence, because agriculture is still the main industry in Huining, this effect
makes sense. In the range between 30% and 48%, the percentage of crop-land area has a
negative association with the RPI. The percentage of forest-land area also has a negative
relationship with the RPI, consistent with previous studies, as some projects, including
“Grain for Green” and “Natural Forest Protection”, have had an important impact on rural
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production and lives [41–43]. In contrast, the percentage of grassland area has a positive
association with the RPI.
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Topography variables consist of the average elevation and average slope, which are
both positively associated with the RPI (Figure 8). This result is consistent with previous
studies [11,13]. When the average elevation is less than 1750 m, elevation has a limited
impact on the RPI, which increases substantially when the elevation increases from 1750 m
to approximately 2100 m. The RPI then remains stable with further increases in elevation.
The most effective range of elevation is between 1750 and 2000 m. Meanwhile, slopes
greater than 14 have the greatest effect in increasing the RPI.
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4. Discussion and Policy Implications

As a measure of potential opportunities for interaction, accessibility has long been
recognized as an important precondition for rural development and rural-poverty reduc-
tion [24,44]. However, mobility and accessibility remain major limitations for rural areas
in developing countries [45]. In this study, we found that multiscale transport accessibil-
ity collectively has larger predictive power than other variables, and we identified the
nonlinear association and effective ranges of multiscale transport accessibility to guide
poverty-alleviation policy.

Most empirical studies have shown that many poor villages and communities are
isolated due to poor accessibility and inadequate transport connectivity [9,21]. Similarly, in
terms of rural poverty in mountainous regions, our study produced similar findings and
further clarified the nonlinear and threshold effects of multiscale transport accessibility.
Town-level accessibility, ranking third, contributes 12.97% to predicting the RPI, followed
by county-level accessibility and prefecture-level accessibility. The effective ranges of
multiscale transport accessibility on the RPI provide several important implications for
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resettlement planning in Huining. To maximize the influence on the RPI, special attention
should be paid to 10–35 min for town-level accessibility, 30–55 min for county-level accessi-
bility, and 160–220 min for prefecture-level accessibility, respectively. However, high-level
transport accessibility is difficult to achieve for many towns located in peripheral mountain-
ous regions, where accessibility is often lower, owing to topography (Figure 9). Hence, rural
service-facility revitalization is of particular importance for promoting effective connections
between targeted poverty alleviation and rural revitalization after achieving the goal of
absolute poverty reduction.
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Socioeconomic resources can directly impact rural poverty reduction by providing
basic services, including education, healthcare, job opportunities, and markets [33]. In
this study, the effective level of the number of POIs is less than 250 establishments. In
this interval, the RPI drops by approximately 20%. The threshold effects of the number of
POIs can provide guidance for governments and planners to determine the appropriate
number of POIs within towns to reduce rural poverty. Moreover, human–land relation
incompatibility is usually considered an external manifestation of regional poverty in
specific areas. High-population pressure remains the main problem in some areas of
the Loess Plateau, owing to the limited carrying capacity of resources and environments.
When the population density exceeds 150 people/km2 in the villages of Huining, the RPI
increases substantially. The threshold effects of population density on the RPI imply that
the appropriate village population density is approximately 50–150 peoples/km2.

Land use is the material basis for production and life [46,47]. Crop land in Huining
covers 285.8 thousand hm2, including 120.5 thousand hm2, with a slope greater than
15◦. Crop land with a slope greater than 15◦ directly affects agricultural productivity, as
steep slopes lead to water loss and soil erosion, reduce land accessibility, and increase
the cost of farming [4]. Meanwhile, poor crop land quality greatly restricts agricultural
productivity. Villages where the proportion of crop land area is less than 30% or higher than
48% are areas with relatively low crop land quality and low agricultural capacity. Land
consolidation projects are an important means of reducing rural poverty and improving
rural development [48,49]. Most research has shown that land consolidation plays an active
role in increasing crop land area, promoting the scale of agricultural production, improving
rural production and living conditions, alleviating ecological risk, and supporting rural
development [26,50]. The percentage of forest land area also has a negative relationship
with the RPI. Since the end of the last century, many ecological conservation projects, such
as the “Grain for Green” and “Natural Forest Protection” projects, have been implemented
in this area [41]. These projects have had an important impact on rural productivity
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and lives through measures such as stimulating the transformation of rural livelihoods,
subsidies compensating for the opportunity cost of income foregone from retired cropland,
improving the efficiency of the intensive farming of crop land, and affecting household
labor allocation.

The average elevation is the most important variable for predicting the RPI, and the
effective range is above 1750 m. Therefore, decreasing settlement isolation in areas above
approximately 1800 m is an effective way to reduce poverty in Huining. The necessity of
resettlement for poverty reduction in remote mountainous areas and arid and semiarid
areas was studied previously [51]. However, various problems, such as financial pressure
and influence on the sustainable livelihood of households after resettlement, must be
avoided in the process of implementing resettlement policy. Some scholars have proposed
selecting suitable resettlement plans according to local conditions, household realities,
and poverty-stricken households’ ability to maximize the efficiency of poverty-alleviation
resettlement planning [52].

This study has several limitations that deserve further research. One limitation relates
to the causality between the variables and the RPI. This study uses cross-sectional data and
can only identify associations between variables and not causality. The second concern
is that the threshold effects may be location-specific. The generalizability of the findings
merits further investigation.

5. Conclusions

Targeted understanding of the rural poverty problem is of particular importance for
targeted poverty-alleviation policies. This study adopted the GBDT model to explore the
nonlinear association and threshold effects of multiscale transport accessibility, including
town-level, county-level, and prefecture-level accessibility, on the RPI after controlling for
topography, land use, water resources, and socioeconomic factors. Our results provide a
basis for effectively targeting poverty alleviation.

We investigated the relative importance of multiscale transport accessibility, topog-
raphy, land-use resources, water resources, and socioeconomic factors in predicting the
RPI. Multiscale transport accessibility collectively accounts for 29.85% of the predictive
power for the RPI, confirming the important role of accessibility in determining the RPI.
Specifically, town-level accessibility, ranking third, contributes 12.97% to predicting the RPI,
followed by county-level accessibility (9.50%) and prefecture-level accessibility (7.38%).
Among all other independent variables, socioeconomic resources collectively account for
27.09% of the predictive power for the RPI, followed by topography (21.25%), land-use
resources (12.99%), and water resources (8.82%).

We further identified the nonlinear association and effective ranges of multiscale
transport accessibility variables and other controlling variables. The three accessibility
levels have the largest effects on the RPI when the town-level accessibility is 10–35 min,
county-level accessibility is 30–55 min, and prefecture-level accessibility is 160–220 min.
High population pressure remains a major main problem in some areas of the Loess Plateau,
owing to the limit of the carrying capacity of resources and environments. The threshold
effects of population density (approximately 50–150 people/km2) on the RPI suggest an
appropriate population density for villages.
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