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Abstract: The purpose of this paper was to produce the geological hazard-susceptibility map for the
Changbai Mountain area affected by volcanic activity. First, 159 landslides and 72 debris flows were
mapped in the Helong city are based on the geological disaster investigation and regionalization
(1:50,000) project of Helong City. Then, twelve landslide conditioning factors and eleven debris
flow conditioning factors were selected as the modeling variables. Among them, the transcendental
probability of Changbai Mountain volcanic earthquake greater than VI degrees was used to indicate
the relationship between the geological hazard-susceptibility and Changbai Mountain volcanic
earthquake occurrence. Furthermore, two machine learning models (SVM and ANN) were introduced
to geological hazard-susceptibility modeling. Receiver operating characteristic curve, statistical
analysis method, and five-fold cross-validation were used to compare the two models. Based on
the modeling results, the SVM model is the better model for both the landslide and debris flow
susceptibility mapping. The results show that the areas with low, moderate, high, and very high
landslide susceptibility are 31.58%, 33.15%, 17.07%, and 18.19%, respectively; and the areas with low,
moderate, high, and very high debris flow susceptibility are 25.63%, 38.19%, 23.47%, and 12.71%,
respectively. The high and very high landslide and debris flow susceptibility classes make up 85.54%
and 80.55% of the known landslides and debris flow, respectively. Moreover, the very high and high
landslide and debris flow susceptibility are mainly distributed in the lower elevation area, and mainly
distributed around the cities and towns in Helong City. Consequently, this paper will be a useful
guide for the deployment of disaster prevention and mitigation in Helong city, and can also provide
some reference for evaluation of landslide susceptibility in other volcanically active areas.

Keywords: geological hazard-susceptibility mapping; Changbai Mountain; volcanic earthquake;
transcendental probability

1. Introduction

Changbai Mountain, located in the southeast of Jilin Province, is an important tourist
attraction in northeast China. Once the Tianchi Volcano of Changbai Mountain becomes
active again and erupts, the seismic force caused by the associated earthquake will lead
to geological disasters in the Changbai Mountain area, resulting in the loss of life and
property and affecting the development of the region [1]. According to the monitoring
results of Tianchi Volcano in Changbai Mountain, from 2002 to 2005, the magnitude of
earthquakes associated with Tianchi Volcano, topographic changes, earthquake frequency,
and greenhouse gas emissions showed a clear increasing trend, and the frequency of
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earthquakes even reached a peak of more than 1200 times in the year 2003. In addition, in
May 2010, the height change of the northern slope of the Tianchi volcano cone reversed,
with a sudden drop of 12.72 mm, breaking the rule of an annual increase of 4 mm [2]. The
above monitoring results indicate that Tianchi volcano is likely to enter an active period.
Therefore, it is necessary to carry out susceptibility mapping of geological hazards caused
by Tianchi volcanic activity.

Susceptibility to geological disasters refers to the spatial probability and intensity
of geological disasters occurring in a specific area within a certain period [3–5]. It is a
reflection of the natural attributes of geological disasters under the action of internal and
external factors and can be described by the susceptibility index (0–1) [6]. This index is
used to evaluate the problem of “where and what combination of geological environment
conditions are most prone to geological disasters” [7–9]. It mainly focuses on the basic
geological conditions of existing or potential geological disasters, such as landform, rock
and soil type, meteorology and hydrology, human activities, etc., and predicts the probabil-
ity of geological disasters, that is, the tendency for the occurrence of geological disasters.
From a review of the relevant literature, the susceptibility mapping process of geological
disaster can be roughly divided into the following four parts: [10–12]: (a) Acquisition of
geological disaster inventory data: This is the basis of geological disaster-susceptibility
mapping [13–15]. Nowadays, the method of geological disaster interpretation with the
integration of “space–sky–ground” has become an important part of geological disaster
inventory data acquisition [16–20]. (b) Mapping unit selection: The mapping unit is the
(minimum indivisible) basic unit of geological disaster-susceptibility mapping, and has
the characteristics of homogeneity within units and heterogeneity between units [8,21].
Nowadays, grid units, slope units, watershed units, and so on, have become the commonly
used mapping units. (c) Establishment of evaluation index system: The evaluation index
system is another key issue for geological disaster-susceptibility mapping. At present,
most studies are based on expert experience, cause analysis and detailed field survey, and
the indexes with high correlation with the geological disaster occurrence are selected as
the evaluation index [22]. (d) Selection of susceptibility model: With the development of
computer technology and mathematical models, the number of models applied to geo-
logical disaster risk regionalization is gradually increasing. These models can be roughly
divided into two types, those using a qualitative evaluation method and those using a
quantitative evaluation method through classification and summary [23]. The qualitative
evaluation method uses the expert experience of geologists to realize the geological hazard-
susceptibility mapping by assigning weights and scoring [24–26], such as the analytic
hierarchy process [27]. Nowadays, there are more and more applications of quantitative
analysis, such as the most common binary statistics method [28–34], the evidence-weight
method and so on [35,36]. Machine learning algorithms and data mining algorithms are
also increasingly introduced into geological hazard-susceptibility mapping [37], such as
support vector machine models [38].

In this study, geological hazard-susceptibility mapping, including landslide and debris
flow, was carried out in Helong city, which is located northeast of the Changbai Volcano.
First, the geological hazards were mapped in the Helong city. Then, the slope unit and
watershed unit were selected as the mapping unit. The transcendental probability of
Changbai Mountain volcanic earthquake greater than VI degrees was used to indicate
the relationship between the geological hazard-susceptibility and Changbai Mountain
volcanic earthquake. Eleven other landslide conditioning factors and ten other debris
flow conditioning factors were also selected as the evaluation factors. Two models, an
SVM model and an ANN model, were then compared and evaluated by using the receiver
operating characteristic curve, statistical analysis method, and five-fold cross-validation.

2. Study Area

Helong city is a county-level city under the jurisdiction of Yanbian State, located in
the southwest of Yanbian State and the north bank of the upper reaches of Tumen River
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at the eastern foot of Changbai Mountain (Figure 1a,b). The city ranges from 128◦22′42′ ′

to 129◦24′17′ ′ E longitude and 41◦59′44′ ′ to 42◦57′15′ ′ N latitude. It is about 100 km long
from north to south and 70 km wide from east to west, with a total area of 5068.62 km2.
Helong city is located in the northeast of the Changbai Mountains, and its ground gradually
decreases from southwest to northeast. The southwest is high and steep, the middle is hilly,
and the northeast is relatively flat. The climate type of Helong city is the middle temperate
monsoon sub-humid climate zone. It is characterized by four distinct seasons, with fickle
cold and warm springs, short and not very hot summers, mild and cool autumns with
many sunny days, and long cold winters. Based on the geological map, with a scale of
1:250,000, there are six strata exposed in Helong city, namely Quaternary (Q), Neogene (N),
Cretaceous (K), Jurassic (J), Mesoproterozoic (Pt), and Archaean (Ar) (Figure 1c).
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Figure 1. Location of the study area (a,b) and geological hazard inventory map and geological
map (c).

According to the volcano monitoring of Changbai Mountain (Tianchi Volcano mon-
itoring station of Changbai Mountain), since 2002, the seismic activity associated with
volcanic activity of Changbai Mountain began to rise significantly reaching a peak in 2003,
and the number of earthquakes caused by volcanic activity of Changbai Mountain might
have been as high as 1293 [1]. Moreover, from 2002 to 2005, the elevation of the Cone of
Tianchi volcano acquired an additional 86.13 mm, more than 3 times the previous increase,
and returned to normal after 2005. Since 2010, the vertical elevation of the volcanic cone
on the northern slope of Tianchi Mountain has been abnormal again, with a sudden drop
of 12.72 mm [2]. Although the above events do not indicate that the volcanic activity
of Changbai Mountain has entered an active period, the frequent volcanic activity will
certainly affect the stability of the surrounding slope and geological body.
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3. Methods and Data
3.1. Geological Hazard Inventory Data

First, the detailed geological hazard inventory data should be obtained. The accuracy
of mapping results is greatly affected by the degree of detail in the geological hazard
inventory data. [8]. The geological disaster inventory data in this paper are from the
geological disaster investigation and regionalization (1:50,000) project of Helong City, Jilin
Province implemented by the Jilin Branch of China Building Materials Industrial Geological
Exploration Center. Using remote sensing interpretation, ground survey, geophysical
exploration, drilling, and other means, the project identified 236 geological disaster points
in Helong City, including debris flow, landslide, collapse, unstable slope, ground fissures,
and ground collapse. The number and proportion of various geological disasters are
enumerated in Table 1, and the distribution characteristics of various geological disasters
are shown in Figure 1c. Table 1 shows that the ground fissures and ground collapse only
account for 2.12% of the total geological disasters in Helong city, and these two kinds of
geological disasters are caused by mining activities. Thus, the typical geological disasters
in Helong city are landslide (6.78%), collapse (33.90%), unstable slope (26.69%), and debris
flow (30.51%). According to the similarity principle of genetic mechanism and mapping unit
suitability, collapse, landslide, and unstable slope are collectively referred to as landslide
geological hazards in this study. Due to the difference in the influencing factors, this
paper will study the susceptibility mapping of landslide (including collapse, landslide, and
unstable slope) and debris flow, respectively.

Table 1. List of geological hazards in the study area.

Type Collapse Debris Flow Unstable Slope Landslide Ground Collapse Ground Fissures Total

Number 80 72 63 16 3 2 236

Ratio (%) 33.90 30.51 26.69 6.78 1.27 0.85 100

3.2. Mapping Unit

Appropriate selection of mapping units is the key factor for reasonable mapping
results. Nowadays, there are five commonly used mapping units [8,9], namely: (a) Grid
units, for which the data structure is very simple and the calculation is fast, but it lacks the
connection with the basic terrain features. (b) Watershed unit, classification by regional
watershed line being suitable for susceptibility mapping of debris flow, which itself is
greatly affected by flow threshold. (c) Slope unit, or classification by watershed line and
catchment line, which is a further subdivision of watershed unit, and is suitable for landslide
susceptibility mapping. (d) Regional units, or classification by administrative boundaries,
which are suitable for disaster prevention and mitigation based on administrative divisions.
(e) Uniform conditional unit, which is classification by specific layer, is layer independent,
and is easy to calculate. The typical geological disasters in Helong city are debris flow,
landslide, collapse, and unstable slope. Considering the applicability of different mapping
units, the susceptibility of debris flow and landslide (including landslide, collapse, and
unstable slope) is mapped by selecting watershed units and slope units respectively. The
classification of watershed units is based on the realization of the hydrological analysis
function of GIS software. By setting different flow thresholds, the optimal classification
results are optimized. Because the curvature watershed method is more concentrated in the
area of slope units and has better uniformity within the units, this paper selects this method
for the classification of slope units. The optimization of slope unit results is realized by
setting different DEM (Digital Elevation Model) resolutions. The division process of the
mapping unit is shown in Figure 2.

In this paper, a DEM with a resolution of 8.30 m, downloaded from 91 Weitu software
(Version number: V18.8.8, Creator: Beijing Qianfan Shijing Technology Co., LTD, Location:
Beijing, China), is used to classify the mapping units. In order to obtain reasonable mapping
unit division results, the resolution of DEM is converted to 30 m, 50 m, 70 m, 100 m, 130 m,
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150 m, 180 m, 200 m, 230 m, 250 m, respectively, for slope unit division; and the flow
threshold is set to 3000, 5000, 8000, 10,000, 12,000 and 15,000 for watershed unit division,
respectively. By comparing the above mapping unit division results with Google image, it is
found that the mapping unit division results are most reasonable when the DEM resolution
is 200 m and the flow threshold is 10,000. A total of 9574 slope units were classified, with
the largest and smallest units covering 3.15 km2 and 0.11 km2, respectively. As for the
watershed unit, a total of 2133 units were classified, and the largest watershed unit is
17.78 km2, and the smallest is 0.21 km2. The mapping unit classification results are shown
in Figure 3.
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3.3. Conditioning Factors
3.3.1. Establishment of the Conditioning Factors System

The selection of evaluation indexes is one of the key issues in the study of geological
hazard-susceptibility mapping. At present, the selection of conditioning factors mostly
relies on the field investigation, formation mechanism analysis, expert experience, and
related research on geological disasters; and the factors with the highest correlation with
the occurrence of geological disasters are selected [22]. In 2017, Pourghasemi and Rossi [22]
carried out statistical analysis on the application times of conditioning factors selected from
220 related pieces of research in the literature published from 2005 to 2012. According to
the statistical results, the factors that were most frequently used were slope angle, lithology,
slope aspect, land use, distance from the river, elevation, distance from the faults, plan
curvature, profile curvature, and distance from road (top ten). Moreover, the special
geological environment in the study area, notably volcanic earthquakes, should also be
taken into special consideration. Thus, twelve conditioning factors (Figure 4) are selected
for the landslide susceptibility mapping, namely geology (L1), slope angle (L2), slope aspect
(L3), topographic relief (L4), curvature (L5), distance to fault (L6), land use (L7), average
annual rainfall (L8), distance to the river (L9), distance to the road (L10), basic earthquake
intensity (L11), and volcanic earthquake (L12).
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The occurrence of debris flow is a complex process, and the factors affecting its
occurrence are different in different regions. Based on the statistics by Niu et al. [39] of
the application frequency of conditioning factors for susceptibility mapping of debris flow,
the slope angle, area, slope aspect, lithology, land use, rainfall, and elevation difference
are the most frequently used factors. Taking the geological environment characteristics of
the study area into consideration, eleven conditioning factors are selected for debris flow
susceptibility mapping (Figure 5), namely: geology (DB1), slope angle (DB2), slope aspect
(DB3), area (DB4), basin elevation difference (DB5), roundness (DB6), distance to fault (DB7),
land use (DB8), average annual rainfall (DB9), geomorphic information entropy (DB10), and
volcanic earthquake (DB11).

The data sources and the mutator methods of each conditioning factor to the mapping
unit are shown in Table 2. This paper only introduces the extraction of volcanic seismic
factors in detail.

The magma chamber of Changbai Mountain is less than 10 km deep, and the volcanic
earthquakes caused by the volcanic activities of Changbai Mountain are usually shallow
earthquakes, which have a great influence on the stability of the slope. According to the
current monitoring data of Changbai Mountain, since 2003, the frequency and magnitude
of volcanic earthquakes have been increasing, and the temperature of spring water in
Tianchi lake has also increased significantly. Expertgeologists believe that the Changbai
mountain volcano sthe potential for an eruption. The study area is only 70 km away from
Changbai Mountain. The active and frequent seismic activities may affect the stability of
geological disasters. Liu (2016) [1] used the transcendental probability of volcanic earth-
quake intensity greater than VI degrees to represent the influence of Changbai Mountain
volcanic earthquake on regional rock and soil stability. This study also extracted volcanic
earthquake factors according to the calculation principle of Liu (2016) [1]. The transcenden-
tal probability of Changbai Mountain volcanic earthquake intensity greater than VI degree
is calculated as follows:
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(1) Estimation of the magnitude of earthquakes associated with volcanic activity in
Changbai Mountain. The Gutenberg-Richter theory is widely used in seismology for seismic
activity prediction and seismic zoning, which can be expressed in the following form:

log10N(M) = −aM + b, (1)

where M is the magnitude of the earthquake; N(M) is the cumulative frequency of the
earthquake; and a and b are constants. This theory reflects the relationship between the
cumulative frequency and magnitude of earthquakes. The occurrence frequency of volcanic
activity and its associated seismic activity have similar characteristics tothat of seismic
activity of earthquakes alone. Therefore, using the volcanic eruption index (VEI) to replace
the M, and the volcanic activity frequency N(VEI) to replace the N(M), the relationship
between volcanic activity frequency and volcanic eruption index can be established. Based
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on Liu’s (2016) [1] prediction of the eruption scale of Changbai Mountain in the past
5000 years, the eruption index and volcanic activity frequency of Changbai Mountain can
be estimated. It is thus considered that in the past 5000 years, there has been one activity
with a VEI of 7, two activities with a VEI of 6, and five activities with a VEI of 5. Based on
Equation (1), the relationship between N(VEI) and VEI can be obtained as follows:

log10N(VEI) = −0.2286VEI + 1.6286, (2)

According to Liu (2016) [1], the maximum magnitude of volcanic earthquakes is
roughly equal to the VEI, so the relationship between the magnitude of the earthquakes
associated with volcanic activity in Changbai Mountain and the N(VEI) can be expressed
as follows:

log10N(VEI) = −0.2286H + 1.6286, (3)

where H is the magnitude of earthquakes associated with volcanic activity on Changbai Mountain.
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Figure 5. The conditioning factors for debris flow susceptibility mapping: (a) geology, (b) slope angle,
(c) slope aspect, (d) area, (e) basin elevation difference, (f) roundness, (g) distance to fault, (h) land
use, (i) average annual rainfall, (j) geomorphic information entropy, and (k) volcanic earthquake.
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Table 2. Data sources and the mutator methods of each conditioning factor.

Factor Data Source Mutator Methods Factor Data Source Mutator Methods

L1
Geological Survey

(1:200,000) Major DB1
Geological Survey

(1:200,000)
Major
Actual

L2 DEM Mean DB2 DEM Mean
L3 DEM Mean DB3 DEM Mean
L4 DEM Actual DB4 DEM Actual
L5 DEM Mean DB5 DEM Actual

L6
Geological Survey

(1:200,000) Minimum DB6 DEM Actual

L7 91 Weitu software Major DB7
Geological Survey

(1:200,000) Minimum

L8 Statistical data (1960–2012) Mean DB8 91 Weitu software Major

L9
Geological Survey

(1:200,000) Minimum DB9
Statistical data

(1960–2012) Mean

L10
Geological Survey

(1:200,000) Minimum DB10 Sun et al. (2000) [8] Actual

L11

Chinese Ground Motion
Parameter Zoning Map

(GB18306–2015)
Major DB11 Liu (2016) [1] Minimum

L12 Liu (2016) [1] Minimum - - -

(2) Calculation of exceedance probability of earthquake intensity. There is an obvious
correlation between the occurrence of geological disasters and earthquake intensity. Ac-
cording to statistical analysis of earthquake-induced geological disasters in various regions
of China by Ding (1999) [40], it is considered that earthquake intensity VI is the minimum
seismic intensity triggering geological disasters. Attenuation of earthquake intensity in
eastern China can be calculated:

L = 1.454T − 1.792 ln(G + 16) + 4.493, (4)

where L is the earthquake intensity when the epicentral distance is G; T is the magnitude;
and G is the epicentral distance. Using Equation (4) can thus estimate the minimum
earthquake magnitude when seismic intensity VI is reached in any place. Equation (3) can
be re-arranged to obtain the annual eruption probability of Changbai Mountain volcano
over 5000 years by using Equation (5):

P = 1/5000× 10−0.2286H+1.6286 (5)

Combining Equations (4) and (5), the probability (PVI) when seismic intensity caused
by volcanic activity of Changbai Mountain exceeds VI can be calculated:

PVI =

∫ 9
K 1/5000× 10−0.2286H+1.6286∫ 9
0 1/5000× 10−0.2286H+1.6286

, (6)

where K is the minimum magnitude required for the intensity to reach VI degrees. In this
way, PVI can be used to reflect the influence of volcanic earthquakes, which is a random
event, on geological disasters in the study area.

3.3.2. Multicollinearity Analysis

The prediction accuracy of many geological hazard-susceptibility models, such as the
Logistic regression model, is greatly affected by the multicollinearity of the conditioning
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factors [41]. Variance inflation factor (VIF) is often used to analyze the multicollinearity of
multiple conditioning factors. The calculation equation of VIF is as follows [41]:

VIF =
1

1− R2
i

, (7)

where Ri is the complex correlation coefficient between conditioning factor Xi and other
conditioning factors. If the VIF value of any conditioning factor is greater than 10 [42], it
will be excluded from the models.

3.4. Geological Disaster-Susceptibility Model
3.4.1. Support Vector Machine

The Support vector machine (SVM) method is one of the most commonly used ma-
chine learning methods for susceptibility mapping of geological hazards due to it being
able to solve nonlinear and high-dimensional pattern recognition problems with fewer
samples than required by other methods [8]. It takes statistical learning theory as its basis.
Based on various basis functions, this model converts linearly indivisible data into higher
dimensional space, and finds a hyperplane in higher dimensional space to achieve linear
divisibility. By this method, nonlinear problems in low-dimensional space can be analyzed
and evaluated.

3.4.2. Artificial Neural Network

Artificial neural network (ANN) is the most commonly used machine learning method,
which has been widely used in geological disaster-susceptibility mapping. There are sev-
eral advantages of an ANN model: (a) good nonlinear mapping ability; (b) high degree
of independent learning and strong adaptability; (c) strong fault tolerance; and (d) strong
generalization ability [43]. The ANN model describes the nonlinear and extremely com-
plex interaction between conditioning factors and geological disaster-susceptibility by the
interaction relationship between neurons, and there is no need for complex mathemati-
cal formulas to represent the correlation between conditioning factors. The ANN model
has good classification effect, especially suitable for classification of complex geological
phenomena affected by various factors, and has advantages in simulating geological hazard-
susceptibility mapping with complex relationships and interaction between variables.

3.5. Validation Methods
3.5.1. Receiver Operating Characteristic Curve

The receiver operating characteristic curve (ROC) is an accuracy assessment method,
which is a quantitative evaluation method for the binary classification model [8]. It takes
the sensitivity (false positive rate) as X-axis and 1-specificity (true positive rate) as Y-axis.
The AUC value is the area under the ROC curve. For any prediction experiment, the
AUC value is always in the range of 0.5 to 1. The closer the AUC value is to 1, the higher
is the prediction accuracy of the model. The ROC evaluation process is simple and the
evaluation results are very intuitive so that the prediction effect can be preliminarily judged
only by the naked eye. Therefore, it has been widely used in the evaluation of geological
hazard-susceptibility models.

3.5.2. Statistical Parameters

The validation method based on statistical parameters can verify the effectiveness of
the geological hazard-susceptibility models. The statistical parameters used in this paper
are shown as follows [8]:

Accuracy(AC) =
True positive + True negative

True positive + True negative + False positive + False negative
, (8)
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Sensitivity(SE) =
True positive

True positive + False negative
, (9)

Specificity(SP) =
True negative

True negative + False positive
, (10)

Positive predictive value(PPA) =
True positive

True positive + False positive
, (11)

Negative predictive value(NPV) =
True negative

True negative + False negative
, (12)

where true positive indicates the number of geological hazard units correctly identified;
true negative represents the number of non-geological hazard units correctly identified;
false positive indicates the number of geological hazard units incorrectly identified; and
false negative indicates the number of non-geological hazard units incorrectly identified.

3.5.3. Cross Validation

Cross-validation can overcome the problem of insufficient data and effectively avoids
the problem of over-fitting the model [9]. In this paper, the five-fold cross-validation method
is adopted to verify the geological hazard-susceptibility model. It randomly divides the
whole data set into five subsets, four of which are selected as the training data and the
remaining one as the test data, until all five subsets are used as training data and test data,
respectively. In this way, the model was trained five times and tested for five times. Then,
the prediction accuracy of the model was evaluated by combining the prediction accuracy
of five model runs.

3.6. The Importance of Conditioning Factors
3.6.1. Variance-Based Method

This paper uses sensitivity analysis to calculate the reduction in target variance at-
tributable to each conditioning factor, thus determining the order of importance of each
conditioning factor. The sensitivity analysis is as follows [8,44]:

Gi =
Ki

K(H)
=

K(E(H|Yi))

K(H)
, (13)

where Gi is the sensitivity; Yi is the conditioning factor, and i = 1, 2, . . . , k; k is the number
of the conditioning factor; H indicates whether there is landslide or not, with H = f (Y1,
Y2, . . . , Yk) refers to modeling for H using Y1 to Yk; and K(H) is the unconditional output
variance. Hence, the importance of each conditioning factor can be calculated by using the
normalized sensitivity:

Ii =
Gi

∑k
i=1 Gi

, (14)

where Ii is the importance of each conditioning factor.

3.6.2. Frequency Ratio Method

The variance-based method can reflect the overall importance of the conditioning
factors, while the frequency ratio (FR) can reflect the correlation between each subclass
of the conditioning factors and the occurrence of geological disasters. The FR value of a
subclass of a conditioning factor can be calculated as follows [45,46]:

FR =
n/N
m/M

, (15)

where n represents the number of geological hazards at a particular subclass of the condi-
tioning factor; N is the total number of the geological hazards; m represents the area of the
particular subclass of the conditioning factor; and M is the total area of the study area. It
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can be seen from Equation (15) that the frequency ratio reflects the possibility of occurrence
and non-occurrence of geological disasters with a given attribute [7]. In the relationship
analysis, an FR value of 1 means that the geological disaster density of this subclass is
proportional to the size of this subclass in the conditioning factor map. Therefore, 1 is
an average; an FR value greater than 1 indicates a high correlation; and a value less than
1 indicates a low correlation.

4. Results and Discussion
4.1. Multicollinearity Analysis Results

Before the multicollinearity analysis of the conditioning factors, the normalization of
the conditioning factors is carried out to eliminate the influence of different dimensions.
The normalization equation is as follows [41]:

A =
A− Amin

Amax − Amin
, (16)

where A is the normalized value; A is the original value of the conditioning factors; and Amax
and Amin are the maximum and minimum value of the conditioning factors, respectively.
Hence, based on the principle of VIF values, the VIF values of each conditioning factors
are calculated and listed in Table 3. It can be seen from Table 3 that VIF values of each
conditioning factors are all less than 10, so no conditioning factors need to be moved out of
the model.

Table 3. VIF value of the conditioning factors.

Factor L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

VIF 1.474 3.301 1.009 2.436 1.032 1.150 1.406 1.986 1.245 1.291 1.719 1.458
p-value 0.000 0.000 0.014 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Factor DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 -

VIF 1.462 3.317 1.006 1.339 2.651 1.178 1.097 1.380 1.494 1.232 1.154 -
p-value 0.044 0.000 0.037 0.011 0.008 0.000 0.000 0.028 0.000 0.021 0.000 -

4.2. Modeling Results and Comparison
4.2.1. Modeling Results

According to the geological disaster inventory map and mapping unit division results,
a total of 159 slope units have experienced landslide geological disasters, and 72 watershed
units have experienced debris flow. An equal number of non-geological disaster units
(72) are randomly selected to meet the requirements of modeling, which was a distance
of at least 800 m from geological disaster units. Thus, based on the principle of five-fold
cross-validation, the modeling data were randomly divided into five equal parts. The SVM
model and ANN model are all built in the IBM SPSS software. The kernel function which
is chosen has a great influence on the prediction accuracy of the SVM model. In the SVM
model, the kernel function determines the radial basis function, and is affected by the C
(regularization parameter) and g (kernel parameter). In this study, C is set to 0.8, and g is
set to 0.5. An ANN model, which consists of an input, a hidden layer, and an output layer,
was also built. The activation function determines the logistic sigmoid. The momentum,
learning rate, and training time are set as 0.3, 0.3, and 500, respectively. The modeling
results are listed in Table 4.

4.2.2. Landslide-Susceptibility Model Comparison

The susceptibility of typical geological hazards in the study area was modeled by the
above methods. The ANN model and SVM model are compared based on the modeling
results (Table 4). Table 4 shows, in the training stage, that the mean accuracy of the SVM
model and the ANN model are not very different, being 0.850 and 0.831, respectively.
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However, in the testing stage, the mean accuracy of the SVM (0.824) is much higher than
that of the ANN (0.728) model. From the standard deviation of mean accuracy, it can be
seen that in both training and testing stages, the stability of the SVM model is better than
the ANN model: Training stage: 0.005 for SVM model and 0.034 for ANN model; Testing
stage: 0.044 for SVM model and 0.053 for ANN model. Thus, on the basis specifically of
mean accuracy, SVM model is significantly better than ANN model. Based on the other
four statistical parameters, the standard deviation of the SVM model is generally smaller
than that of the ANN model, which shows that the SVM model is superior to the ANN
model in terms of stability. In the training stage, based on the mean value of the four
parameters, the SVM model is not much different to the ANN model; however, in the
testing stage, the mean values of the four parameters of the SVM model are generally
greater than those of the ANN model. The mean value and stability of the five statistical
parameters of the two models both decreased during the testing stage, and the ANN model
decreased greatly. In addition, based on the AUC value, the SVM (0.895) model is not much
different than that of the ANN (0.910) model in the training stage; the SVM (0.873) model is
higher than that of the ANN (0.832) model in the testing stage. In conclusion, on the basis
of statistical parameters and the AUC value, the SVM model is superior to the ANN model.

Table 4. The modeling results of the SVM model and ANN models.

Method Index
Training Validating

K = 1 K = 2 K = 3 K = 4 K = 5 Mean Standard
Deviation K = 1 K = 2 K = 3 K = 4 K = 5 Mean Standard

Deviation

Landslide susceptibility model

SVM

AC 0.849 0.846 0.848 0.850 0.858 0.850 0.005 0.875 0.859 0.806 0.813 0.766 0.824 0.044
SE 0.858 0.849 0.845 0.856 0.870 0.856 0.010 0.875 0.848 0.880 0.889 0.774 0.853 0.047
SP 0.821 0.844 0.850 0.845 0.847 0.841 0.012 0.875 0.871 0.757 0.857 0.758 0.823 0.061

PPV 0.811 0.843 0.852 0.843 0.843 0.838 0.016 0.875 0.875 0.710 0.875 0.750 0.817 0.081
NPV 0.866 0.850 0.844 0.858 0.874 0.859 0.012 0.875 0.844 0.903 0.750 0.781 0.831 0.064
AUC 0.902 0.898 0.914 0.906 0.853 0.895 0.024 0.926 0.897 0.829 0.891 0.828 0.874 0.044

ANN

AC 0.811 0.839 0.840 0.787 0.878 0.831 0.034 0.719 0.844 0.774 0.734 0.719 0.758 0.053
SE 0.811 0.877 0.848 0.817 0.881 0.847 0.033 0.719 0.844 0.815 0.703 0.733 0.763 0.063
SP 0.811 0.807 0.832 0.763 0.875 0.818 0.041 0.719 0.844 0.743 0.778 0.706 0.758 0.055

PPV 0.811 0.787 0.828 0.740 0.874 0.808 0.049 0.719 0.844 0.710 0.813 0.688 0.754 0.069
NPV 0.811 0.890 0.852 0.835 0.882 0.854 0.033 0.719 0.844 0.839 0.656 0.750 0.761 0.080
AUC 0.881 0.914 0.930 0.880 0.943 0.910 0.028 0.811 0.883 0.842 0.848 0.775 0.832 0.041

Debris flow susceptibility model

SVM

AC 0.810 0.810 0.793 0.798 0.798 0.802 0.008 0.679 0.643 0.786 0.767 0.767 0.728 0.063
SE 0.833 0.833 0.815 0.815 0.815 0.822 0.010 0.667 0.667 0.900 0.722 0.786 0.748 0.098
SP 0.790 0.790 0.774 0.783 0.783 0.784 0.007 0.692 0.625 0.722 0.833 0.750 0.725 0.077

PPV 0.776 0.776 0.759 0.772 0.772 0.771 0.007 0.714 0.571 0.643 0.867 0.733 0.706 0.110
NPV 0.845 0.845 0.828 0.825 0.825 0.833 0.011 0.643 0.714 0.929 0.667 0.800 0.750 0.116
AUC 0.883 0.868 0.880 0.861 0.870 0.872 0.009 0.770 0.786 0.806 0.929 0.853 0.829 0.064

ANN

AC 0.784 0.767 0.793 0.798 0.728 0.774 0.028 0.643 0.679 0.786 0.667 0.733 0.701 0.058
SE 0.789 0.731 0.854 0.774 0.710 0.772 0.056 0.625 0.692 0.900 0.619 0.769 0.721 0.117
SP 0.780 0.816 0.750 0.827 0.750 0.785 0.036 0.667 0.667 0.722 0.778 0.706 0.708 0.046

PPV 0.776 0.845 0.707 0.842 0.772 0.788 0.057 0.714 0.643 0.643 0.867 0.667 0.707 0.094
NPV 0.793 0.690 0.879 0.754 0.684 0.760 0.081 0.571 0.714 0.929 0.467 0.800 0.696 0.183
AUC 0.917 0.850 0.926 0.881 0.849 0.885 0.036 0.786 0.847 0.765 0.893 0.747 0.808 0.061

4.2.3. Debris Flow Susceptibility Model Comparison

From Table 4, it can be seen that, in the training stage, the mean accuracy of the SVM
(0.802) model is higher than that of the ANN (0.774) model; the SVM (0.728) model is also
higher than that of the ANN (0.701) model in the testing stage. For the standard deviation
of mean accuracy, the standard deviation of the SVM (0.008) model was smaller in the
training stage, while the standard deviation of the ANN (0.028) model was larger; in the
testing stage, the accuracy standard deviation of the SVM (0.063) model and the ANN
(0.058) model both increased, while the SVM model increased more significantly. The
two models were evaluated based on accuracy only. The mean accuracy and standard
deviation of the two models decreased in the testing stage compared with the training
stage, but the decrease was not significant, and the standard deviation of accuracy was
below 0.07. Therefore, the SVM model was considered the optimal model. For the other
four statistical parameters, their standard deviations were all small for the SVM model in
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the training stage, while for the ANN model they were all large, indicating that the stability
of the two models had decreased. The standard deviations of the four statistical parameters
increased significantly in the testing stage compared with the training stage. This shows
that the stability of these two models is worse in the testing stage than in the training stage.
The mean values of the four statistical parameters for the SVM model are significantly
higher than for the ANN model in both training and testing stages. Moreover, the AUC
value for the SVM (0.872) model is not much different to that of the ANN (0.885) model in
the training stage; and in the testing stage, it is higher for the SVM (0.829) model than for
the ANN (0.808) model. In conclusion, from the perspective of statistical parameters and
the AUC value, the SVM model is superior to the ANN model.

4.2.4. Comparison with Other Models

Some similar research studies are being carried out in Helong city. Based on the ICM
method (information content method) and the AHP method (analytic hierarchy process),
Yu and Chen (2020) [23] analyzed the landslide susceptibility of Helong city by using the
slope unit and grid unit. According to the frequency ratio (FR), Yu (2021) [47] assessed
the debris flow susceptibility of Helong city by using the watershed unit. From Table 5,
it can be seen that the landslide susceptibility model established using the slope unit is
superior to that established using the grid unit, since the slope unit is more consistent with
the real terrain. Moreover, the prediction accuracy of the landslide susceptibility model and
debris flow susceptibility model established in this study is higher than that of Yu and Chen
(2020) [23] and Yu (2021) [47], which indicates that the geological hazard-susceptibility
model in this present study is suitable for predicting the susceptibility of geological hazards
in the study area.

Table 5. Model fitting results of the study area.

Source Type Mapping Units Method AUC (Mean)

This study

Landslide
Susceptibility

mapping

Slope units
SVM 89.5% (Training)/87.4% (Testing)

ANN 91.0% (Training)/83.2% (Testing)

Yu and Chen (2020) [23]

Grid units
ICM 83.4%

AHP 70.9%

Slope units
ICM 87.1%

AHP 80.5%

This study Debris flow
susceptibility

mapping
Watershed units

ANN 87.2% (Training)/82.9% (Testing)

SVM 88.5% (Training)/80.8% (Testing)

Yu (2021) [47] FR 85.3%

Note: SVM = support vector machine; ANN = artificial neural network; ICM = information content method;
AHP = analytic hierarchy process; FR= frequency ratio.

4.3. Analysis of Importance of Conditioning Factors
4.3.1. Analysis of Importance of Landslide Conditioning Factors

According to the variance-based method, the importance of each landslide condition-
ing factors under the five-fold cross-validation of the SVM model and ANN model was
determined. The mean importance index is used to reflect the influence degree of each
conditioning factor on the occurrence and spatial distribution of landslide (Figure 6). It
can be seen that the L9 (distance to river) is the most important conditioning factor for
landslide susceptibility modeling (0.396 for SVM model, and 0.096 for ANN model). From
the relationship between FR value and L9 (Table 6), the FR value of each subclass presents
a downward trend with the increase in river distance. This is because the slope foot has
suffered from the river erosion for a long time. The material at the foot of the slope will
gradually loosen, and then be carried and transported away by the river, leading to the
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slope angle gradually becoming steeper. In adapting to the erosion of the river, the slope
angle often decreases rapidly by way of landslide. Moreover, from the FR value (2.11 for
slope angle class 18–24◦, and 29.06 for slope angle class 24–30◦), it can also be seen that the
steeper the slope angle (L2), the more prone it is to landslide. Secondly, the strength at the
foot of slopes suffering from river immersion will gradually reduce, forming a geological
environment conducive to the occurrence of landslide disasters. In general, the closer a
river is, the more intense is the river erosion.
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The L10 (distance to road) is another important conditioning factor (0.306 for SVM
model, and 0.154 for ANN model). Based on the field survey, more than 80% of landslide
disasters in the study area are caused by human engineering activities, among which the
excavation of highways is the most frequent factor. This destroys the originally stable
natural slope angle, forms a free face or steep cliff, and exposes the rock mass to stronger
external dynamic action, thus contributing to the topographic and geomorphic conditions
of landslides. From the perspective of FR value, the most favorable road distance for
landslide occurrence is 0–1500 m.

The L8 (average annual rainfall) is also an important factor inducing landslide in the
study area (0.096 for SVM model, and 0.100 for ANN model). However, it can be seen
from the FR value that with the increase of rainfall, the FR value decreases, which differs
from the common understanding that the higher the rainfall intensity, the more likely
landslides occur. According to statistics, the landslides that have occurred in Helong city
are mostly induced by heavy rainfall. Comparing precipitation of less than 470 mm and
greater than 470 mm, respectively, the number of landslides nearly doubled, especially
under continuous heavy rainfall, and the flood season of every year is the season with
high occurrence of landslides. However, most regions with precipitation greater than
520 mm are densely forested mountains (L6) and human activities are rare, so there is a
poor correlation between annual rainfall and landslide geological disasters.

Moreover, according to Table 6 and the field investigation results, it can be determined
that the most favorable combination of geological conditions for landslide occurrence in
the study area is as follows: Q, K and J for L1; 18–30◦ for L2; SE, and S for L3; 103–180 m,
252–339 m, 339–595 m for L4; convex for L5; distance to L6 within 3000 m; hemerophyte,
bare land, leaf wood for L7; L8 greater than 470 mm; distance to L9 within 1000 m; distance
to L10 within 1500 m; and the larger L11 and L12.

4.3.2. Analysis of Importance of Debris Flow Conditioning Factors

From Figure 7, it can be seen that the DB2 (slope angle) is the most important condition-
ing factor for debris flow susceptibility model (0.298 for SVM model, and 0.138 for ANN
model). According to the field investigation results, there are many gully debris flows along
the roads of Helong City, while hill and mountain areas most commonly present hillside
debris flows. Gully debris flow is distributed in valleys with large slope and rich debris
material, while hillside debris flow is generally distributed in gullies with large longitudinal
slope and a large proportion of recharge section. From the relationship between FR value
and DB2 (Table 7), the development degree of debris flow can be seen to decrease with the
increase in slope angle. This is because 60 debris flows in Helong city are of gully type,
with large catchment area and gentle terrain slope compared with hillside type, so there
are more debris flows with smaller slope. The DB11 (volcanic earthquake) is the second
most important conditioning factor (0.204 for SVM model, and 0.168 for ANN model).
Geological disasters such as landslide induced by volcanic earthquake can provide rich
material sources for the occurrence of debris flow. The DB8 (land use) is also an important
conditioning factor for debris flow occurrence (0.168 for SVM model, and 0.084 for ANN
model). In terms of FR value, the land use with high correlation for debris flow occurrence
is bare land (1.89) and hemerophyte (3.76). The results show that debris flow is more likely
to occur in hemerophyte and bare land due to the low vegetation coverage and the loss of
vegetation protection.

Debris flow is prone to occur in areas with large topographic fluctuations, and steep
terrain endows the provenance in the basin with a large potential energy. Once stimulated
by rainfall with sufficient intensity, debris flow is likely to form in the basin. As a parameter
reflecting the degree of topographic relief and the development stage of watershed, geo-
morphic information entropy (DB10) can reflect the complexity of the terrain in the valley.
According to the FR value, the subclass 0.349–1.357 of DB10 is most conducive to the occur-
rence of debris flow. Based on the geomorphic development stage reflected by the DB10
value, debris flow gullies in the study area are in the prime- to old-age stage, indicating
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that these gullies are in the stage of intense erosion, have the provenance conditions of
debris flow, and are very likely to present debris flow.
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Table 7. Statistics of FR values of each subclass of the debris flow conditioning factors.

Factors Class FR Factors Class FR Factors Class FR

DB1

Q 1.79

DB4

2.55–4.78 1.17

DB8

Hemerophyte 3.76
N 0.00 4.78–7.77 1.15 Bare land 1.89
K 4.63 7.77–12.50 0.90 Leaf wood 0.63
J 1.37 12.50–17.78 0.00 Coniferous forest 0.39

Pt 0.16

DB5

0–206 3.38 Mixed forest 0.00

Ar 0.60 206–322 0.67

DB9

500–520 0.45

DB2

0–7 3.48 322–424 0.73 520–540 0.90
7–11 1.50 424–551 0.70 540–560 2.61

11–14 0.26 551–907 0.56 560–580 0.41

14–17 0.71

DB6

0.14–0.41 1.75 580–600 0.00

17–27 0.42 0.41–0.52 1.50

DB10

0.018–0.213 0.34

DB3

N 0.00 0.52–0.61 0.95 0.213–0.349 0.83
NE 0.00 0.61–0.71 0.77 0.349–0.511 1.53
E 1.81 0.71–0.91 0.34 0.511–0.716 2.32

SE 0.59

DB7

0–600 0.87 0.716–1.357 3.25

S 1.17 600–1200 1.42

DB11

0.008–0.011 2.38
SW 1.11 1200–1800 1.62 0.011–0.013 0.85
W 0.89 1800–2400 1.07 0.013–0.017 0.00

NW 0.00 2400–3000 0.00 0.017–0.021 0.00

DB4 0–2.55 0.86 >3000 0.92 0.021–0.026 0.00

In summary, according to Table 7 and the field investigation results, it can be de-
termined that the most favorable combination of geological conditions for debris flow
occurrence in the study area is as follows: Q, K and J for DB1; 6–11◦ for DB2; E, S, and SE
for DB3; 1.55–7.77 km2 for DB4; 0–206 m for DB5; 0.14–0.52 for L6; distance to DB7 within
2400 m; hemerophyte, bare land for DB8; DB9 greater than 470 mm; 0.349–1.357 for DB10;
the larger DB11.
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4.4. Geological Hazard-Susceptibility Map Analysis

Based on the susceptibility model results of landslide and debris flow, and the com-
parison of the two models, it is determined that the best model for susceptibility mapping
of both geological disasters is the SVM model. Therefore, this paper finally adopts the
SVM model for mapping of landslide and debris flow susceptibility in the study area.
The susceptibility map was produced by using the model with highest accuracy in the
modeling process. The susceptibility of geological disasters is classified into four grades:
low, moderate, high, and very high, by using the natural breaks method. The final landslide
and debris flow susceptibility mapping maps are shown in Figure 8.
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Based on the geological hazard-susceptibility map’s statistical data (Table 8), the
areas with low, moderate, high, and very high landslide susceptibility are 1299.28, 1935.73,
1189.63, and 643.98 km2, accounting for 31.58%, 33.15%, 17.07%, and 18.19% of the total
study area, respectively. The landslide numbers included in the four landslide susceptibility
areas are 3, 20, 14, and 122, respectively, accounting for 1.89%, 12.58%, 8.81%, and 76.73% of
the total landslides, respectively. The areas with low, moderate, high, and very high debris
flow susceptibility are 1600.98, 1680.37, 865.12, and 922.15 km2, respectively, accounting for
25.63%, 38.19%, 23.47%, and 12.71% of the total study area, respectively. The debris flow
number included in the four landslide susceptibility areas are 1, 13, 7, and 51, respectively,
accounting for 1.39%, 18.06%, 9.72%, and 70.83% of the total debris flows, respectively.
According to the statistical data, the areas with very high and high landslide susceptibility
and debris flow susceptibility account for 35.26% and 36.18%, respectively. However, these
actually account for 85.54% of the known landslides and 80.55% of the known debris flows,
respectively, which shows that the geological hazard-susceptibility maps in this study
are reasonable.
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Table 8. Statistical results of the geological hazard-susceptibility maps.

Type Susceptibility Geological Hazard Occurred Total Study Area
Number Ratio Area(km2) Ratio

Landslide
susceptibility map

Low 3 1.89% 1299.28 31.58%
Moderate 20 12.58% 1935.73 33.15%

High 14 8.81% 1189.63 17.07%
Very High 122 76.73% 643.98 18.19%

Debris flow
susceptibility map

Low 1 1.39% 1600.98 25.63%
Moderate 13 18.06% 1680.37 38.19%

High 7 9.72% 865.12 23.47%
Very High 51 70.83% 922.15 12.71%

From Figure 8a, it is seen that the areas with low and moderate susceptibility are
distributed in the area with high elevation, accounting for 64.73% of the study area. In this
area, the vegetation is mainly coniferous forest, broadleaved forest, and mixed coniferous–
broadleaved forest, and the vegetation coverage rate is high. Moreover, this area is far from
the main rivers and faults in the study area, and the erosion of rivers and tectonic activities
of faults have little influence. Due to the influence of elevation, human engineering
activities in this area are also very small, so the risk of landslide geological disaster in
this area is relatively low. Where the landslide susceptibility grade is from high to very
high, this is mainly in the lower elevation area, accounting for 35.26% of the area. Here,
human engineering activities are extremely intense, such as road excavation and urban
expansion, which have a great impact on the stability of the slope body. Furthermore, from
the perspective of geological environment, this region is mainly bare land and artificial
vegetation, with a low vegetation coverage rate and relatively close distance from rivers,
roads, and faults. It is strongly affected by human engineering activities, river action, and
geological tectonic activities. Therefore, the risk of landslide geological disaster in this
region is relatively high. It can also be seen (Figure 8a) that the susceptibility of landslide
geological disaster is low to moderate in areas far from the main areas of human production
and living activities, thus causing relatively little harm when landslide geological disaster
occurs. The areas with high to very high landslide susceptibility are mainly distributed
around the towns where human life and production activities are concentrated. In these
regions, population density, building density, cultivated land density is high, and the level
of industrialization is relatively developed: therefore, once landslide occurs, serious loss of
life and property will be caused. Therefore, it is suggested to strengthen disaster monitoring
in these areas, realize real-time monitoring and early warning of landslide disasters, and
pay attention to the deployment of disaster prevention and mitigation.

From Figure 8b, it can be seen that the area with low to moderate susceptibility of
debris flow in Helong city accounts for 63.82%, which indicates that the risk of debris flow in
Helong City is generally low. This area is also distributed in the relatively high elevation of
the study area, with high vegetation coverage and little influence from human engineering
activities, fluvial action, and tectonism. The areas of high to very highsusceptibility of
debris flow in Helong city, accounting for 36.18% of the study area, are mainly distributed
in the lower elevation area, and mainly distributed in the northeast of Longcheng Town,
Bajiazi Town, the middle of Toudao Town, and the north part of Dongcheng Town. These
have a high population density and are greatly affected by human engineering activities.
The vegetation coverage rate here is extremely low, and bare land and artificial vegetation
are the most common land-use types. Once the geological disaster of debris flow breaks
out in any of these areas, it will cause great economic and property losses to the towns
mentioned above. Therefore, it is suggested to strengthen the monitoring and early warning
research of debris flow disasters in these areas, and realize the early warning of debris flow
geological disaster through monitoring rainfall and so on, to reduce the degree of danger
of debris flow disaster.
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5. Conclusions

In this study, geological hazard-susceptibility mapping, including landslide and debris
flow susceptibility mapping, was carried out in Helong city. This study selected the slope
unit and watershed unit as the mapping units. The transcendental probability of Changbai
Mountain volcanic earthquake greater than VI degrees was used to indicate the relationship
between the geological hazard-susceptibility and Changbai Mountain volcanic earthquake.
Eleven other landslide conditioning factors were also selected as the evaluation factors,
namely the (a) geology, (b) slope angle, (c) slope aspect, (d) topographic relief, (e) curvature,
(f) distance to fault, (g) land use, (h) average annual rainfall, (i) distance to river, (j) road
distance, (k) basic earthquake intensity, and (l) volcanic earthquake; along with ten other
debris flow conditioning factors, namely (a) geology, (b) slope angle, (c) slope aspect,
(d) area, (e) basin elevation difference, (f) roundness, (g) distance to fault, (h) land use,
(i) average annual rainfall, and (j) geomorphic information entropy. Two models, an SVM
model and an ANN model, were then compared and evaluated. The following inferences
were obtained:

(1) According to the modeling results, the SVM model is better than the ANN model for
both the landslide susceptibility mapping and debris flow susceptibility mapping.
The landslide susceptibility map modeled by the SVM model shows that the areas
with low, moderate, high, and very high landslide susceptibility are 31.58%, 33.15%,
17.07%, and 18.19% of the total study area, respectively. Moreover, the high and
very high landslide susceptibility classes make up 85.54% of the known landslides.
The areas with low, moderate, high, and very high debris flow susceptibility are
25.63%, 38.19%, 23.47%, and 12.71% of the total study area, respectively, with high
and very high debris flow susceptibility classes accounting for 80.55% of the known
debris flows.

(2) Distance to river, distance to road, and average annual rainfall were the three most
significant factors for landslide susceptibility mapping; and slope angle, volcanic
earthquake, land use, and geomorphic information entropy were the four most signif-
icant factors for debris flow susceptibility mapping.

(3) From the landslide susceptibility and debris flows susceptibility map results, it can be
seen that the very high and high landslide and debris flow susceptibility are mainly
distributed in areas of lower elevation, and mainly distributed around the cities and
towns in Helong City. Thus, it is suggested to strengthen disaster monitoring in these
areas, realize real-time monitoring and early warning of geological disasters, and pay
attention to the deployment of disaster prevention and mitigation.
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