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Abstract: The increasing popularity of intercity commuting is affecting regional development and
people’s lifestyles. A key approach to addressing the challenges brought about by intercity commuting
is analyzing its determinants. Although spatial nonstationarity seems inevitable, or at least worth
examining in spatial analysis and modeling, the global perspective was commonly employed to
explore the determinants of intercity commuting flows in previous studies, which might result
in inaccurate estimation. This paper aims to interpret intercity commuting flows from Suzhou to
Shanghai in the Yangtze River Delta region. For this purpose, mobile signaling data was used
to capture human movement trajectories, and multi-source big data was used to evaluate social-
economic determinants. Negative binomial (NB) regression and spatially weighted interaction models
(SWIM) were applied to select significant determinants and identify their spatial nonstationarity.
The results show that the following determinants are significant: (1) commuting time, (2) scale of
producer services in workplace, (3) scale of non-producer services in residence, (4) housing supply
in residence, (5) year of construction in residence, and (6) housing price in residence. In addition,
all six significant determinants exhibit evident spatial nonstationarity in terms of significance scope
and coefficient level. Compared with the geographically weighted regression (GWR), SWIM reveals
that the determinants of intercity commuting flows may manifest spatial nonstationarity in both
residence and workplace areas, which might deepen our understanding of the spatial nonstationarity
of OD flows.

Keywords: intercity commuting; determinants; spatial nonstationarity; spatially weighted interaction
models; OD flows; mobile signaling data

1. Introduction

In recent years, high-speed transport infrastructures have reformed the concept of
accessibility and mobility. The spread and development of transport technologies, such as
high-speed rail (HSR) and freeways, have dramatically transformed the regional functional
linkage [1–3]. Additionally, especially with the advent of HSR, which has an excellent
performance in reducing travel time, it also significantly stimulates the demand for long-
distance trips, provides individuals with more flexible job opportunities, and weakens
the locational ties between workplaces and residences [4,5]. High-speed transport infras-
tructures make commuting flows beyond administrative boundaries and reshapes the
megaregional structure [6–8]. These important changes contribute to a trend that the com-
muting zone of a city has extended beyond the traditional metropolitan area to other cities
or regions, and an increasing number of people are commuting across cities. Nowadays,
intercity commuting has become more and more common worldwide. In 2020, more than
6% of the labor force in the EU commuted across different NUTS 2 (Nomenclature of
Territorial Units for Statistics) subdivisions. The percentage even reached 21% in Belgium,
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the highest in the EU, followed by the Netherlands, Germany, Austria, and Denmark (all
over 10%) [9]. There have been extensive attempts to study the determinants of intercity
commuting [10,11] and its impact on regional development [12].

Intercity commuting has exerted a profound influence in many fields. For example,
medium and small-sized cities, which used to be geographically isolated from metropolitan
centers or other distant metropolises, nowadays can be considered as special subcenters
of metropolitan areas due to high-frequency shuttles [13], which results in dramatic local
residential development [14]. Increasing labor mobility also contributes to metropolitan
integration [15], promotes the growth of regional economic development [16], and reduces
regional wage disparities [17]. However, it also has negative effects on energy, ecology, and
intercity commuters’ physical and mental health [18–20].

China is undergoing a similar process [21]. In the Yangtze River Delta region, one of
the most developed regions in China in terms of transport infrastructure and economic
development, intercity commuting has become a reality. In Shanghai, the advent of high-
speed transport infrastructures such as the 350 km/h Shanghai–Nanjing Intercity Railway,
Beijing–Shanghai High-speed Railway, Shanghai’s metro line 11 extending to Suzhou, and
the highly-developed freeway network have made intercity commuting become a common
phenomenon in Shanghai. The number of intercity commuters is rising, and the residential
housing development has boomed along some HSR routes or transport corridors. From the
perspective of spatial structure, a functional continuous area has gradually taken shape and
exceeded the administrative boundary between Suzhou and Shanghai [22]. According to
previous studies, long-distance commuting is empirically defined as commuting that takes
more than 40 min [23] or covers a distance of over 30 km [24]. In a questionnaire survey
conducted in 2018, the interviewed commuters travel from Suzhou to Shanghai by HSR
with an average commuting time of 89.56 min and an average distance of over 80 km and,
therefore, are typical long-distance commuters [25].

Previous studies tend to posit that uneven regional distributions of social-economic
factors, such as economic development, population size, job supply, housing price, etc., are
the main significant causes of intercity commuting flows [10,11,26]. However, the aforemen-
tioned studies were conducted only from a global perspective. As Fotheringham, et al. [27]
noted, it is more appropriate to assume that the relationships might vary over space and co-
efficient estimates might exhibit significant spatial variations. The global regression model
that ignores spatial nonstationarity can only produce “average” or “global” parameter
estimates. It is worth noting that compared with the global regression model, the local
regression model, able to show spatial variations of parameter estimates, has a better effect
on fitting the model and, therefore, provides more accurate information for policy-making.

Moreover, previous studies usually used official statistics as the primary data sources
to discuss determinants of intercity commuting flows. However, official statistics are hardly
effective in revealing the spatial characteristics of commuting at the inner-city scale due
to their low spatial resolution. Moreover, there are no official statistics yet about intercity
commuting in China. Mobile signaling data representing the space–time trajectory of
commuters can reflect the characteristics of people’s activities in a more timely, accurate,
and comprehensive manner, which is more suitable for studying the spatial nonstationarity
of determinants of intercity commuting flows in China.

Therefore, this study focuses on intercity commuting flows from Suzhou to Shanghai
using mobile singling data. The significant determinants of intercity commuting are
identified through the global regression model, and the spatial nonstationarity of such
determinants is explored through the local regression model.

2. Literature Review
2.1. The Conceptual Model and Determinants of Intercity Commuting Flows

With the development of expanding urbanization, commuting is becoming an increas-
ingly important part of our life, and it has been extensively studied from the perspectives
of multiple disciplines. Early studies of its determinants focused on residence or workplace
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location choices separately, but later on, it became widely accepted that individuals con-
sider these choices dependently and multi-dimensional determinants should be evaluated
in a joint model [28]. Spatial interaction is a classical concept in geography that refers to
the dynamic flows of elements (e.g., migration, transport, international trade, tourism, etc.)
from origins to destinations. According to the spatial interaction model, dynamic flows
of elements are co-determined by origin factors, destination factors, and the separation
between origins and destinations [29]. Intercity commuting flows can be regarded as a
typical spatial interaction because many studies have found that intercity commuting flows
are under the combined influence of commuting cost, determinants of residence, and those
of workplace [10,30,31].

First of all, the most notable determinant of intercity commuting has significantly
reduced commuting costs due to improved transport infrastructure. With the geographical
distance staying unchanged, different commuting modes will result in varying commuting
costs. For example, compared with freeways, HSR helps to greatly extend the commuting
distance while keeping the commuting cost constant, integrating previously remote and
isolated areas into the metropolitan region [15]. Therefore, commuting time is a more
accurate indicator of intercity commuting cost than geographical distance.

Moreover, the regional difference is another important cause. The previous study
found, through economic models, that a significant difference between determinants of
the workplace and the place of residence is an essential prerequisite for intercity com-
muting [32]. Firstly, workplaces with more jobs are more attractive to commuters; thus,
intercity commuting may be related to the amount of job supply. Some believe that with the
rapid development of communications technologies and transport infrastructure, people
can change jobs more flexibly with longer commuting distances for the benefit of their
career development. As a result, long-distance commuting has become a substitute for
migration [33]. Higher salaries can compensate for higher commuting costs; hence, regional
wage disparities can also be a driver. The regional wage level is correlated with industry
structure, and the advanced service sector is more competitive [34,35]. It has been proven
that industry type is a good indicator of the regional wage level [36].

Housing prices are one of the most notable determinants related to the place of
residence [10,11]. Additionally, places with a larger housing supply are more attractive to
commuters; therefore, the number of intercity commuters may also be related to housing
supply. Previous studies show that people married with children are prone to choose
long-distance commuting: it may not be a rational choice in the individual interests of
commuters, but it can guarantee better educational resources for their children [37,38].
The year of construction is also a major spatial determinant explored in studies of long-
distance commuting. The newer a residential community is, the better its conditions are.
Intercity commuters may choose to purchase residential properties in another city for better
living conditions. More importantly, it is widely believed that the residents living in older
residential communities tend not to choose long-distance commuting because they have a
well-established local social network and a stable life, and long-distance commuting can
take a toll on family and social networks [39,40].

Therefore, commuting time, job supply, industry type, housing supply, housing price,
educational resources, and year of construction are the potential determinants of intercity
commuting flows.

2.2. Local Spatial Model Applied in Commuting

Commuting has attracted considerable interest from various disciplines such as eco-
nomics, geography, and urban planning, which leads to multiple approaches to explain the
causes of commuting. Some studies analyze the influence of individual characteristics on
commuting [40,41], while others adopt a spatial perspective to analyze the determinants
of commuting by economic models or regressions. The advantage of economic models
is that they can provide systematic theoretical explanations [42,43] and assess the effects
of planning policies combined with empirical data [44]. However, the economic models
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usually assume that the economic entities such as individuals and firms are homogeneous,
making it difficult to reveal the local and heterogeneous spatial patterns. Regression is an-
other approach to analyzing the problem from a spatial perspective, which can be divided
into global regression and local regression depending on whether or not spatial variations
are considered. The global regression model assumes that samples are independent of
each other and the process remains stationary over space, which means that the parameter
estimates do not change along with geographical locations. In many real-life situations,
spatial data contains locational information and attribute information, therefore, the as-
sumptions of global stationarity may result in inaccurate estimates [45]. To deal with this
problem, the local regression considering spatial nonstationarity is a more appropriate way.
Spatial nonstationarity, a form of spatial heterogeneity, refers to the common phenomenon
that the relationship between variables may vary across the study region. For example,
residents in places with underdeveloped transport infrastructure may be more sensitive
to distance when making commuting decisions than those in places with good transport
infrastructure. Similarly, residents in the downtown area may be less willing to choose
long-distance commuting than those in suburban areas.

There are several models that account for spatial nonstationarity, such as moving
window regression and spatially adaptive filtering. Geographically weighted regression
(GWR) is the most commonly used. The standard GWR conducts local regression based on
linear regression while considering the distance decay effect [46]. According to Tobler’s
First Law of Geography, “everything is related to everything else, but near things are more
related to each other”. The calibration of GWR is a little complicated but essentially based
on the assumption that the data points more closely located to the regression point have
greater effects on the model estimation of this regression point. At every regression point,
all the weights of samples are recalculated and, hence, a set of local parameter estimates is
obtained. As a result, a local parameter surface is constructed to visually show the spatial
variation of the relationship described by the coefficient. The main steps of GWR include
selecting a spatial weighting function, determining the optimal bandwidth by minimizing
the corrected Akaike Information Criterion (AICc) of the model, and then estimating
local coefficients [47]. By GWR, spatial nonstationarity has been widely observed in
commuting-related studies, such as commuting modes [48], commuting time [49], extreme
commuting [50], and sustainable commuting [51].

The aforementioned studies are all based on point or polygon features. However,
flow space has become a new perspective in analyzing geographical space. Commuting,
in nature, is a functional flow between the workplace and residence; therefore, the flow
feature is undoubtedly the best feature type to represent the commuting functional linkages.
Currently, the related studies only use the global regression model to explore determinants
of intercity commuting flows. One of the reasons for this dilemma is that there were no
other appropriate research tools available. There was an early attempt, which needed
further improvement, in which Nakaya [52] tried to combine the GWR and spatial in-
teraction model into the origin-specific model to illustrate the spatial nonstationarity of
flows. Fortunately, Kordi and Fotheringham [53] subsequently came up with the spatially
weighted interaction models (SWIM), an extension of GWR that can better illustrate the
spatial nonstationarity of flows. SWIM has been used in some empirical research, such
as traffic flows [54] and online travel searches [55]. Compared with the global spatial
interaction model, SWIM, based on the more realistic assumption, can be more explanatory
of the formation of flows.

3. Study Area and Data Sources
3.1. Study Area

In this study, the workplace is the downtown area of Shanghai and the place of
residence is the Suzhou administrative area (Figure 1). As the core city of the Yangtze River
Delta region, Shanghai is a regional hub connecting flows of business, capital, population,
and information [56]. With higher productivity, Shanghai is a more attractive workplace



ISPRS Int. J. Geo-Inf. 2022, 11, 335 5 of 21

for commuters from surrounding cities. Its downtown area boasts the highest density
of businesses and high-end jobs citywide. Intercity commuters who choose to work in
downtown Shanghai, instead of in suburban Shanghai, are more likely for financial benefits
and career development. Suzhou is the major city of residence for intercity commuters to
Shanghai. Being adjacent to Shanghai, it is an important city in the Yangtze River Delta
region. According to the official statistics for 2020, Shanghai’s GDP reached RMB 3870
billion yuan and its population 24.9 million, while Suzhou’s GDP was RMB 2017 billion
yuan and its population 12.75 million. Although the GDP and per capita GDP between
Suzhou and Shanghai does not appear very different, Shanghai is the unique center of
advanced industrial agglomeration in the Yangtze River Delta region [57]. According to
the 2020 Official Statistical Yearbook, the above-scale business revenue of Shanghai and
Suzhou by industry type demonstrates a significant gap in industrial development between
Shanghai and Suzhou (Figure 2). The development of producer services in Shanghai
is much better than in Suzhou. In this paper, spatial units are defined based on the
administrative boundaries of the township units in the two cities. The downtown area of
Suzhou or Shanghai is the set of township-level units that intersect with the downtown
area defined by the official master planning.
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The distance between the downtown areas of Suzhou and Shanghai is over 100 km,
which would take more than one hour and a half by train before the advent of HSR. Since
the Shanghai–Nanjing Intercity Railway and Beijing–Shanghai High-speed Railway were
completed in 2010, the traveling time has been reduced to 30 min and railway has become
the primary commuting mode for intercity commuters between the two cities. In 2020,
the Southern Riverside Intercity Railway went into operation. Although it plays only a
limited role in intercity commuting currently, it may manifest more potential in the future.
Commuters from Suzhou can get aboard at multiple railway stations in Suzhou and get
off at Hongqiao Railway Station or Shanghai Railway Station in downtown Shanghai.
Moreover, Shanghai’s metro line 11 links Suzhou and Shanghai, meaning residents in the
areas neighboring Shanghai can easily reach downtown Shanghai by subway. Intercity
commuting from Suzhou to downtown Shanghai boasts ideal transit conditions.

3.2. Data Sources

Previous studies mostly use official statistics at the city level to represent intercity
commuting flows. However, currently, there are no official statistics as such in China.
Fortunately, mobile singling data have become a widely used data source for studying
commuting patterns and spatial structure [58–60]. This paper uses mobile signaling data
from China Unicom as the data source. As one of three major telecommunications operators
in China, China Unicom renders service to 19% of mobile phone users in the Chinese market.
The data from the entire Yangtze River Delta region from 1–30 June 2021 have were collected.
Mobile singling data was passively collected each time mobile phone activity occurred
(e.g., voice call, SMS, network traffic, automatic contact with a base station). Every record
collected consisted of five essential attributes: anonymous user ID, record time, base station,
longitude, and latitude (see Table 1 for the data structure).
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Table 1. Mobile signal data structure.

Anonymous User ID Record Time Base Station Longitude Latitude

8415dfadgf6454213d5fdf548 2021/6/5 21:31:35 BS9145370 121.252434 31.458201
8415dfadgf6454213d5fdf548 2021/6/5 22:04:27 BS4800692 121.190352 31.403564
8415dfadgf6454213d5fdf548 2021/6/5 01:29:42 BS2656484 121.174301 31.364021

. . . . . . . . . . . . . . .
1489fe546d45212d5648de84 2021/6/5 10:12:01 BS2445601 120.676156 31.308156
1489fe546d45212d5648de84 2021/6/5 11:25:34 BS8006925 120.807564 31.235461

Other multi-source big data were used to profile the social and economic attributes
of spatial units. Corporate data were collected from the National Enterprise Credit Infor-
mation Publicity System of China, including the number of employees, industry type, and
other attributes of all the enterprises in our study area. Residential housing data were
collected from “Beike”, a well-known real estate trading platform in China, including the
number of apartments, housing price, year of building construction, and other attributes of
all the residential quarters in our study area. Data about primary and secondary schools,
including their total number and locations, were collected from AutoNavi POI.

4. Research Methods
4.1. Constructing Commuting OD Flows with Mobile Signaling Data

To measure the spatial–temporal trajectory of commuters and construct commuting
OD flows with mobile signaling data, the most commonly used approach is to identify
stop points along a spatial–temporal trajectory and analyze the duration of each stop point
throughout the daytime and nighttime. The commuting OD flow construction approach
adopted in this study was improved based on Li and Niu [22]. First, the time–space
trajectory of every user in a given day was constructed according to time geography, and it
can be represented as:

T = [r1, r2, r3, · · · , ri, · · · , rn], ri = (idi, ti, longi, lati) (1)

where ri stands for record point i; idi, ti, longi, lati stand for the base station, record time,
longitude, and latitude of record point i, respectively; n the total number of record points of
the user in that given day. All record points are in chronological order. Figure 3 shows the
typical daily spatial–temporal trajectory of a commuter. If two or more contiguous record
points share the same base station, they are counted as one stop point. For example, r3, r4, r5
in Figure 3 can be counted as one stop point. In Figure 3, the trajectory of a stop point is
indicated as a blue line and the trajectory between two adjunct stop points as an orange line.
For each mobile phone user, the overall duration of each stop point from 20:00 at night to
6:00 the next morning is calculated, and the stop point where the user stays for the longest
time (and at least more than 1 h) is considered as the user’s place of residence on that
given day. If no such stop point is found, the user will be identified as one with no place
of residence on that day. Most people follow rather steady daily commuting patterns but
may occasionally deviate from their usual routes. Therefore, the most frequently identified
place of residence (identified as such for more than 50% of days in a month) is regarded as
the user’s actual permanent place of residence.

Similarly, the overall duration of each stop point between 9:00 and 16:00 is calculated,
and the stop point where the user stays for the longest time (and at least more than 1 h) is
considered as the user’s workplace on that given day. If no such stop point is found, the
user will be identified as one with no workplace on that day. The most frequently identified
workplace (identified as such for more than 50% of workdays in a month) is regarded as
the user’s actual permanent workplace.
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In accordance with the above methods, all mobile phone users are classified into
four categories: (1) users with the identified place of residence and workplace; (2) users
with only identified place of residence; (3) users with only identified workplace; (4) users
without either identified place of residence or workplace. The first group of users are
believed to be the effective samples of commuters.

In previous studies, estimates of commuting time are usually based on Internet map
API [61] or HSR running time [10]. However, intercity commuters from Suzhou to Shanghai
have a variety of commuting modes. They can reach the railway station from their residence
or workplace on foot, by bike, bus, subway, or car [25]; therefore, the above methods of
estimating commuting time may result in much inaccuracy. In this study, mobile signaling
data are used to calculate their commuting time, and the principle is that the commuting
time of a user is the duration between the earliest record point identified at the permanent
workplace and the latest one before that record point at the permanent place of residence
(t3 − t1 in Figure 3).

It is worth noting that the data privacy restrictions prevent us from obtaining original
high-resolution datasets of personal trajectories at the longitude and latitude level. It is
compulsory to aggregate the latitude and longitude coordinates of workplace and residence
into the 1-km grid to obscure the phone users’ individual information. Therefore, this study
is based on the OD flow data at the 1-km grid level.

The intercity commuters are selected from all effective samples of commuters. Based
on estimates made from the mobile singling data in this study, Suzhou–Shanghai intercity
commuters account for over 90% of all intercity commuters to Shanghai. In the dataset,
4275 intercity commuters from Suzhou to Shanghai can be identified. The Suzhou–Shanghai
intercity commuters identified through mobile signaling data mostly live in the border
areas of the two cities, in downtown Suzhou, or along the HSR route and work in the
mid-western area of downtown Shanghai (Figure 1).

The modifiable areal unit problem (MAUP) is an inevitable issue in spatial analysis.
Township units are used for two reasons. First, the township unit is the lowest unit level
in China’s socio-economic statistics, and it is also the lowest administrative unit level of
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local government. The benefit of using the township unit is that the model estimates can be
compared with official statistics, causing the conclusions to have more policy implications.
Second, larger unit divisions can make the difference within the dependent variable more
noticeable. Of course, overly large spatial units tend to make spatial nonstationarity
unobserved. Given the above three reasons, it is believed that the township unit is the
most suitable choice. Therefore, the intercity commuters from Suzhou to Shanghai are
aggregated to construct the intercity commuting flows at the township level. Figure 4 shows
flows larger than 2 for clarity, accounting for over 83% of intercity commuters. Table 2
shows the descriptive statistics of intercity commuting flows at the township level.
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Figure 4. Intercity commuting flows at township level.

Table 2. Descriptive statistics of the intercity commuting flows at township level.

Parameter Value

Count 835
Sum 4275

Average 5.12
Variance 182.09

Max 155
Min 1

Quantile (25%) 1
Quantile (50%) 1
Quantile (75%) 3

Number of intercity commuters from downtown Suzhou 373
Number of intercity commuters from other areas in Suzhou 3902

4.2. Exploring the Determinants of Intercity Commuting Flows

Building a set of potential determinants is the first step to selecting significant deter-
minants. The descriptive index of job supply is the sum of employees of all enterprises
in a spatial unit. Different industry types vary in wage level and their appeal to workers.



ISPRS Int. J. Geo-Inf. 2022, 11, 335 10 of 21

As producer services are more attractive, jobs in producer and non-producer services are
analyzed separately. The descriptive index of housing supply is the sum of all houses in
a spatial unit. The descriptive index of housing price is the average housing price of all
house estates in a spatial unit. The descriptive index of the year of construction is the
average year of construction for all residential quarters in a spatial unit minus the baseline
year (1950). In Suzhou and Shanghai, the major urbanization campaign began in the 1980s
and their oldest residential areas were built in the 1950s. The baseline year is substituted
into the formula to better reveal the difference in the average year of construction between
spatial units. The higher the number is, the newer the residential community is, and the
more likely it is for its residents to choose intercity commuting. The descriptive index of
educational resources is the ratio of the total number of primary and secondary schools
in a spatial unit to the total area of this unit. To fully illustrate the combined influence of
workplace and residence on intercity commuting flows, the above determinants both in
workplace and residence are tested simultaneously in the global regression model. For
descriptive statistics of all independent variables, see Table 3.

Table 3. Descriptive statistics of the independent variables of the intercity commuting flows from
Suzhou to Shanghai.

Variable Average Variance Max Min

Commuting time (minutes) 105.562 457.877 149.78 25.02

Workplace

Scale of producer services (ten thousand jobs) 2.992 8.334 15.024 0.023
Scale of non-producer services (ten thousand jobs) 2.806 3.99 9.617 0.057

Housing supply (ten thousand houses) 5.048 9.442 14.66 0.316
Housing price (ten thousand yuan) 7.794 4.061 13.149 3.213

Year of construction (year) 43.78 114.478 59.815 4
Density of primary and secondary schools (number of schools per km2) 2.192 3.844 9.205 0

Residence

Scale of producer services (ten thousand jobs) 5.451 48.741 31.894 0.063
Scale of non-producer services (ten thousand jobs) 14.386 133.523 40.951 0.591

Housing supply (ten thousand houses) 15.732 201.696 47.512 0.088
Housing price (ten thousand yuan) 1.937 0.568 3.699 0.568

Year of construction (year) 59.838 11.686 69 49.876
Density of primary and secondary schools (number of schools per km2) 0.287 0.099 1.398 0.029

The global regression model is the most common method for significance tests of de-
terminants. The most frequently used global regression model is the ordinary least squares
(OLS) regression on the assumption that dependent variables are normally distributed.
However, Suzhou–Shanghai intercity commuting flows are a non-negative discrete count-
ing variable with features of overdispersion (which means that the variance is much
higher than average), consistent with the assumption of negative binomial (NB) distribu-
tion. Therefore, NB regression is the appropriate tool for studying the determinants of
Suzhou–Shanghai intercity commuting flows. The formula is as follows:

Mij ∼ NB[t ∗ exp

(
n

∑
k=1

βk log
(

xijk

))
, α] (2)

wherein Mij is the number of intercity commuters from spatial unit i to j; n is the number of
determinants; t is the offset parameter; xijk is the value of determinant k from i to j; βk is the
coefficient of determinant k; α is the dispersion parameter. Adjusted pseudo R2 and AICc
are used to compare the fitting performance of the global model and the local one. Adjusted
pseudo R2 ranges from 0 to 1. Unlike adjusted R2, it evaluates the relative importance of
the model in comparison to the constant-only model from the perspective of log likelihood.
The absolute value of AICc is meaningless, while the difference between the AICc values of
the two models is a more telling number. As a rule of thumb, if the difference between the
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AICc values of the two models is higher than 3, it is reasonable to believe that one is better
than the other.

4.3. Exploring the Spatial Nonstationarity of Determinants

The significant determinants selected through the global regression model may be
spatially nonstationary. As the global regression model cannot reveal this spatial feature, the
local regression model is used to study it. This study adopts SWIM as the local regression
model. Although Kordi and Fotheringham [53] only introduced Gaussian model and
Poisson model, the subsequent study has helped improve the NB model and demonstrated
that it is better than the Gaussian model when the dependent variable follows the NB
distribution [54]. The formula is as follows:

Mij ∼ NB[tij ∗ exp

(
n

∑
k=1

βijk log
(

xijk

))
, α] (3)

wherein Mij is the number of intercity commuters from spatial unit i to j; n is the number
of determinants; tij is the offset parameter; xijk is the value determinant k from i to j; βijk is
the coefficient of determinant k from i to j; ∝ is the dispersion parameter.

In SWIM, the coordinate of flow ij is
(
xi, yi, xj, yj

)
; that of flow i’j’ is

(
xi′ , yi′ , xj′ , y j′

)
;

the distance between ij and i’j’ is calculated by:

d(ij)(i′ j′) =

√
(xi − xi′)

2 + (yi − yi′)
2 +

(
xj − xj′

)2
+
(

yj − yj′
)2

(4)

In GWR, there are two popular methods to calculate the spatial weights matrix:
fixed bandwidth and adaptive bandwidth. Fixed bandwidth aims to look for an optimal
bandwidth and calculate the spatial weight between flow ij and i’j’ by following a Gaussian
function. The formula is as follows:

w(ij)(i′ j′) = exp

[
−1

2

(d(ij)(i′ j′)
b

)2]
(5)

wherein w(ij)(i′ j′) is the spatial weight between flow ij and i′j′; b is the bandwidth; d(ij)(i′ j′)
is the distance between ij and i′j′.

Iteratively reweighted least squares is used for the fitting of the coefficients. The
bandwidth is chosen through a golden selection process until the AICc value of the model
reaches its minimum. For more detailed information on bandwidth identification and
coefficient fitting, see Da Silva and Rodrigues [62].

5. Results
5.1. Global Regression Model

Table 4 shows the estimation results from NB regression, revealing the “average”
performance of determinants of the entire study area. The adjusted pseudo R2 of the
model is 0.143 and the AICc is 3898.5. Commuting time, scale of producer services in
workplace, scale of non-producer services in residence, housing supply in residence, year
of construction in residence and housing price in residence are significantly correlated with
the scale of intercity commuting flows, while other determinants fail to pass the significance
test. When it comes to the plus and minus of the six significant determinants, the model
estimates are in line with the previous studies [10,39,40].
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Table 4. Estimated coefficients from NB regression.

Determinant Coefficient Standard
Deviation Significance

(Intercept) −18.037 3.8598 0.000
Commuting time −1.840 *** 0.2345 0.000

Workplace

Scale of producer services 0.273 *** 0.0751 0.000
Scale of non−producer services 0.049 0.0834 0.557

Housing supply 0.065 0.0715 0.365
Year of construction 0.077 0.1854 0.677

Housing price 0.397 0.2246 0.077
Density of primary and secondary schools −0.142 0.1187 0.230

Residence

Scale of producer services −0.133 0.0996 0.181
Scale of non−producer services 0.713 *** 0.1333 0.000

Housing supply 0.497 *** 0.1262 0.000
Year of construction 3.906 *** 0.5226 0.000

Housing price −0.538 ** 0.1811 0.003
Density of primary and secondary schools 0.273 0.6045 0.652

Note: *** means a significance level of 0.001, and ** that of 0.01.

To be more specific, the coefficient of the scale of producer services in workplace is
0.273 and that of the non-producer services in residence is 0.713, which means that the
presence of higher-level sectors in workplace and the presence of lower-level sectors in
residence are positively correlated with the scale of intercity commuting flows. Scale of
non-producer services in workplace does not pass the significance test, which means that
intercity commuters prefer jobs in producer services and are not willing to choose jobs
in non-producer services. The coefficient of housing supply in residence is 0.497, which
means that a place with a larger housing supply is more likely to be chosen by intercity
commuters as the place of residence. The year of construction in residence has a coefficient
of 3.906, which means that the presence of newly built residential communities is positively
correlated with intercity commuting as the social network is less developed in such places.
The coefficient of housing price in residence is −0.538, which means that higher housing
price is negatively correlated with intercity commuting flows. The coefficient of commuting
time is −1.840, which means that higher commuting time is negatively correlated with
intercity commuting flows.

5.2. Local Regression Model

The local regression model can demonstrate the spatial nonstationarity of determinants.
The six determinants that pass the significance test in the global regression model are
substituted into SWIM. Through a golden selection process, it is revealed that AICc can
reach its minimum when 12.06 km is chosen as the bandwidth. In SWIM, the adjusted
pseudo R2 is 0.871, and the AICc is 3559.5. By comparing them with their counterparts in
NB regression, it can be seen that SWIM shows a much better fitting performance and can
better explain the determinants of intercity commuting flows.

See Table 5 for the descriptive statistics of the SWIM coefficient estimation results. The
averages from the local regression model and global regression model are similar, both
showing that the commuting time and housing price in residence are negatively correlated
with intercity commuting flows and that the other four determinants are positively corre-
lated. However, the six significant determinants vary greatly in the number of significant
flows. A large number of flows pass the significance test for the year of construction in
residence and the scale of producer services in workplace, which means that most com-
muting flows are under the influence of the two determinants. The scale of non-producer
services in residence has the least wide influence as the number of significant flows is only
107. Although housing price has attracted wide discussion in previous studies of intercity
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commuting, it is significant only in 17.13% of all intercity commuting flows, which means
that it does not have much influence on Suzhou–Shanghai intercity commuting flows.

Table 5. Descriptive statistics of the SWIM coefficient estimation results.

Determinant Average Variance Max
Value

Min
Value

The Number of
Significant Flows Significant Ratio

Intercept −35.122 30.751 −21.018 −44.449 466 55.81%
Commuting time −1.584 0.035 −1.089 −2.059 342 40.96%

Scale of producer services in workplace 0.459 0.005 0.566 0.282 554 66.35%
Scale of non-producer services in residence 0.974 0.001 1.044 0.878 107 12.81%

Housing supply in residence 1.094 0.066 1.581 0.816 223 26.71%
Year of construction in residence 8.734 8.001 10.894 1.458 618 74.01%

Housing price in residence −2.248 0.643 −1.033 −2.997 143 17.13%

5.3. Spatial Nonstationarity

In regression models, there are usually two fundamental descriptive indexes for the
parameter estimates: the p-value that tests the statistical significance of the relationship
between the dependent and the independent variable, and the coefficient value that refers
to the response of the dependent variable to a one-unit change in one independent variable
while all other independent variables keep constant. Spatial nonstationarity can also be
interpreted from those two perspectives. The spatial variation of whether the OD flows pass
the significance test can be considered as the spatial nonstationarity in terms of significance
scope; the spatial variation of coefficient values that pass the significance test can be
considered as the spatial nonstationarity in terms of coefficient level. As the spatial location
of a flow is jointly determined by its origin and destination, the standard to determine
whether spatial nonstationarity exists in terms of significance scope and coefficient level is
whether we can observe spatial variation at the origin or destination.

5.3.1. Spatial Nonstationarity of Industry Determinants

Industry determinants include the scale of producer services in workplace (Figure 5a)
and scale of non-producer services in residence (Figure 5b). For most OD flows, the scale of
producer services in workplace passed the significance test, and its influence is spatially
extensive. We can see that the residence units of those OD flows are mostly near the
boundary between Suzhou and Shanghai. The greater the distance between a residence
unit and the boundary, the fewer OD flows pass the significance test in this unit. However,
along the HSR line, even in the residence units far from the boundary, there is a considerable
amount of OD flows whose scale of producer services in workplace passed the significance
test. This means that HSR can make advanced jobs available and attractive even if the
places of residence are very far from the workplace. In most spatial units in downtown
Shanghai, there are OD flows whose scale of producer services in workplace passed the
significance test, which means in terms of significance scope, the spatial nonstationarity
of this determinant can hardly be observed in the workplace area. Although the scale of
non-producer services in residence passed the significance test in the global regression
model, its influence was rather limited: only a few OD flows starting from the residence
units near the boundary to the west and central areas of downtown Shanghai passed the
significance test.
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OD flows with the residence units farther from the boundary of the two cities tend
to have lower coefficients for the scale of producer services in workplace, and the OD
flows starting from the same residence unit tend to have highly similar coefficients. OD
flows whose scale of producer services in workplace has higher significant influence with
coefficients from 0.529~0.566 all start from the specific residence unit that is next to the
boundary and closest to downtown Shanghai, while workplace units are mostly located in
the eastern part of downtown Shanghai. Moreover, these OD flows have longer distance
than generally necessary for intercity commuters in this residence unit, which also implies
that attractive jobs can compensate for long commuting distance. The OD flows arriving
at the east end of downtown Shanghai generally have a higher coefficient for the scale of
producer services in workplace. Different from the performance of the scale of producer
services in workplace, OD flows from the same residence unit to different workplace units
have various coefficients of the scale of non-producer services in residence. However, OD
flows from different residence units to the same workplace unit have similar coefficients,
which means that this determinant is more sensitive to the location change of workplace
and less so to that of residence. It is evident that OD flows arriving at the southwest end of
downtown Shanghai tend to have high coefficients for the scale of non-producer services
in residence, whereas those arriving at the northeast end of downtown Shanghai tend to
have low coefficients.

In summary, both in terms of significance scope and coefficient level, the scale of
producer services in workplace and scale of non-producer services in residence are spa-
tially nonstationary.

5.3.2. Spatial Nonstationarity of Residence Determinants

Residence determinants include housing supply in residence (Figure 5c), housing price
in residence (Figure 5d), and year of construction in residence (Figure 5e). OD flows whose
housing supply in residence and housing price in residence passed the significance test
mostly start from the residence units near the boundary of Suzhou and Shanghai and arrive
at the central and western areas of downtown Shanghai. For most OD flows, the year of
construction in residence passed the significance test, and its influence is spatially extensive.
We can see that the residence units of those OD flows are mostly near the boundary between
Suzhou and Shanghai. The greater the distance between a residence unit and the boundary,
the fewer OD flows pass the significance test in this unit. However, along the HSR line,
even in the residence units far from the boundary, there is a considerable amount of OD
flows whose year of construction in residence passed the significance test. This means that
HSR can significantly reduce the travel time and make the loss of social network acceptable
even if the places of residence are very far from the workplace. In most spatial units in
downtown Shanghai, there are OD flows whose year of construction in residence passed
the significance test, which means in terms of significance scope, the spatial nonstationarity
of this determinant can hardly be observed in the workplace area.

OD flows that have higher coefficients of housing supply in residence are all from
the specific residence unit near the boundary of Suzhou and Shanghai to the central area
of downtown Shanghai, and OD flows that have higher coefficients of housing price in
residence have similar patterns. For the two determinants, OD flows starting from the
same residence unit tend to have similar coefficients while those arriving at the same
workplace unit have greatly varying coefficients. This means that the two determinants
are more sensitive to the location change of residence and less so to that of workplace. For
OD flows whose year of construction in residence has higher significant influence with
coefficients from 10.617~10.894, their residence units are mostly located near the boundary
of Suzhou and Shanghai, and their workplace units are mostly located in the southwest
end of downtown Shanghai. For OD flows starting from the residence units farther from
the boundary of the two cities, the coefficient of year of construction in residence is lower.
This determinant performs in a highly similar manner in OD flows starting from the same
residence unit while no such similarity is observed in the workplace area. This means that
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this determinant is more sensitive to the location change of residence and less so to that
of workplace.

In summary, housing supply in residence, housing price in residence, and year of
construction in residence are spatially nonstationary both in terms of significance scope
and coefficient level.

5.3.3. Spatial Nonstationarity of Commuting Time

OD flows whose commuting time passed the significance test mostly start from the
residence units near the boundary of Suzhou and Shanghai and arrive at the central and
western area of downtown Shanghai (Figure 5f). Interestingly, although HSR, for its role in
reducing commuting time, is one of the most important causes for why intercity commuting
has boomed, OD flows starting from the residence units along the HSR line are the least
affected by commuting time and HSR does not extend the spatial influence of commuting
time in residence areas. On the contrary, OD flows starting from residence units far from
HSR are more affected by commuting time. OD flows that are more subject to the influence
of commuting time with coefficients from −2.059~−1.851 mostly start from the residence
units near the boundary of Suzhou and Shanghai and arrive at the workplace units near
the transport hub (Hongqiao Railway Station) in downtown Shanghai. As the northeast
end of downtown Shanghai is far from the transport hub, OD flows arriving there are less
subject to the influence of commuting time. Commuting time is sensitive to spatial change
in both residence and workplace, and spatially nonstationary both in terms of significance
scope and coefficient level.

6. Conclusions

Determinants of intercity commuting flows are usually studied from a global perspec-
tive, which can easily result in inaccurate estimation. In many real-life situations, spatial
nonstationarity is a more reasonable assumption. NB regression can select the significant
determinants of intercity commuting flows from Suzhou to Shanghai, and SWIM can study
their spatial nonstationarity. The conclusions are as follows:

1. Intercity commuting flows are positively correlated with the scale of producer services
in workplace, scale of non-producer services in residence, housing supply in residence,
and year of construction in residence; while they are negatively correlated with
housing price in residence and commuting time. On the other hand, the scale of
non-producer services in workplace, scale of producer services in residence, housing
supply in workplace, year of construction in workplace, housing price in workplace,
and density of primary and secondary schools both in workplace and residence are
not significant determinants. It is evident that intercity commuting flows are a joint
result of multiple determinants regarding both workplace and residence;

2. The six determinants that pass the significance test exhibit evident spatial nonstation-
arity in terms of significance scope and coefficient level. In comparison to the global
regression model, the local regression model is more fitting for intercity commuting
flows. In terms of significance scope, the scale of non-producer services in residence,
housing supply in residence, housing price in residence, and commuting time are
spatially nonstationary in both residence and workplace areas while the other two
determinants are spatially nonstationary mainly in the residence area. In terms of
coefficient level, the scale of producer services in workplace and commuting time
are spatially nonstationary in both residence and workplace areas; the scale of non-
producer services in residence is spatially nonstationary mainly in the workplace
area; and the other determinants are spatially nonstationary mainly in the residence
area. It is worth noting that for the scale of producer services in workplace and year
of construction in residence, some residence units farther from the boundary still
have significant OD flows because HSR can greatly reduce commuting time to turn
commuting restrictions into non-restrictions. However, HSR does not play a similar
role in other significant determinants;
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3. The determinants of intercity commuting flows may manifest spatial nonstationarity
in both residence and workplace areas. The spatial nonstationarity of flows is more
complicated than that of points or polygons. Spatial nonstationarity usually means
that the farther two spatial features are from each other, the more probable that the
coefficients of determinants may vary. The coordinates of a flow are co-determined
by its origin and destination; hence, the spatial nonstationarity of its coefficients
is not restricted to only workplace or residence. For example, commuting time is
spatially nonstationary in both workplace and residence areas. Compared with GWR
models, SWIM demonstrates the spatial nonstationarity of intercity commuting flows
in a more comprehensive way: the determinants of residence and workplace are all
included in the joint model, and more importantly, it also allows us to study their
spatial nonstationarity in residence and workplace areas simultaneously.

7. Discussion
7.1. The Understanding of Spatial Nonstationarity

Fotheringham, et al. [63] believe that spatial variation in people’s attitudes and prefer-
ences is one of the major causes of spatial nonstationarity; it has been proven in previous
empirical studies [50,64]. The spatial nonstationarity of the Suzhou–Shanghai intercity
commuting flows can also be tentatively explained from this perspective.

Generally speaking, within the administrative area of Suzhou, the downtown area is
better-developed socially and economically than the rest (e.g., the areas bordering Shang-
hai). Compared with the intercity commuters living in downtown Suzhou, those living
in the border areas of Suzhou and Shanghai pay less rent and live in less ideal conditions.
When making commuting decisions, they attach more importance to high salaries, but
at the same time, they also value cost-effectiveness of residence. Therefore, the six deter-
minants all exert significant influence on the intercity commuters in the border areas of
Suzhou and Shanghai. Within such areas, spatial nonstationarity is also very obvious. For
example, OD flows whose scale of producer services in workplace has higher significant
influences with coefficients from 0.529~0.566 all start from the specific residence unit next
to the boundary and closest to downtown Shanghai. The reason might be that the intercity
commuters living there are more eager for jobs with high salaries.

Although HSR is the major commuting mode of intercity commuters living in down-
town Suzhou, they care neither about commuting time nor living costs. The only significant
determinants influencing their decisions are the scale of producer services in workplace
and year of construction in residence. This may mean that they choose intercity commuting
because those high-end jobs are only available in downtown Shanghai. The biggest positive
effect of HSR on them is not that it has reduced their commuting cost, but that it has made
intercity commuting a reality.

Spatial nonstationarity is not a new topic concerning studies of commuting determi-
nants. However, as required by the research questions or due to the lack of research tools,
previous studies have to choose the spatial interaction model or gravity model to evaluate
the joint influences of the determinants of origins and destinations. Meanwhile, previous
studies have made great efforts to optimize the gravity model, such as considering more
independent variables [65] and exploring the influence of choosing inappropriate distance–
decay function forms [66] or coefficients [67]. However, there has been no consensus so far.
SWIM may deal with the above problems because it has a more flexible model structure to
allow more variables. Moreover, GWR can reduce the estimation bias caused by incorrect
function forms, which is also one of the reasons for spatial nonstationarity [63].

Another way to compromise is to adopt the GWR models based on the polygon or
point feature to reveal spatial nonstationarity, though flow feature is the most fundamental
descriptive feature type for commuting. The common method is converting commuting
flows into a certain spatial unit ratio and studying the spatial nonstationarity of the rela-
tionship between this ratio and the various independent variables. However, this can only
reveal the spatial nonstationarity in residence or workplace areas. For example, a study of
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extreme commuting discussed the spatial nonstationarity of socio-economic and land-use
variables in residence areas [50]. There is no doubt that compared with the GWR model,
SWIM is less developed and flawed in many aspects. The spatial nonstationarity of flows is
more complicated and sometimes even difficult to interpret in an intuitive way. There is not
yet a more feasible visualization technique for the cases with too many flows. Nevertheless,
it is worth noting that, despite its flaws, SWIM can better reveal the spatial nonstationarity
of OD flows and enhance our understanding of commuting.

7.2. The Representativeness of the Case and the Planning Strategies

Intercity commuting usually occurs between megacities and surrounding small- to
medium-sized cities because the downtown megacities can provide high-level occupations,
and small- to medium-sized cities have cost-effective living conditions [13,14,68]. It is
worth noting that both Shanghai and Suzhou are megacities with populations of more
than 10 million people. Suzhou can offer relatively high-level occupations, and the living
cost of downtown is not low. However, compared with Suzhou, Shanghai is the unique
economic center of advanced industrial agglomeration in the Yangtze River Delta region,
which is attractive enough for intercity commuters from downtown Suzhou despite the
long-distance commuting. The intercity commuters living near the boundary of Suzhou
and Shanghai are more in line with the job and residential preferences of those commuters
from surrounding cities to megacities mentioned in previous studies. The unique spatial
distribution of socio-economic factors in workplace and residence makes the spatial nonsta-
tionarity evidently manifested. The case study of Suzhou–Shanghai can echo the typical
pattern of intercity commuting and reveal a novel pattern of intercity commuting.

Local models considering spatial nonstationarity can more accurately analyze the real
world, allowing for more targeted policy-making. For intercity commuters living near the
boundary of Suzhou and Shanghai, they are forced to choose intercity commuting because
of the inability to pay for high living costs in downtown Shanghai or even in the suburbs
of Shanghai. Therefore, increasing housing supply and reducing housing prices in the
suburbs of Shanghai, or enhancing the polycentric structure of employment in Shanghai,
are effective measures to shorten the commuting distance for these intercity commuters.
However, intercity commuters living in downtown Suzhou are not sensitive to the living
cost but more eager for career development and personal pursuits. Perhaps optimizing
transfer service efficiency and reducing travel time are effective measures to improve their
commuting satisfaction.

7.3. Data Limitations and Future Prospects

Revealing the comprehensive commuting patterns is the essential precondition for
analyzing spatial nonstationarity, which is why mobile singling data was chosen in this
study. However, there are still some questions for future research that stem mainly from
data limitations. First, the lack of census data at the township level makes it difficult
to accurately control residents’ average preferences. Fortunately, the census data at the
county level imply that the socio-economic attributes of Suzhou residents do not vary
over space significantly. Meanwhile, intercity commuters make up a low percentage
of residents, which implies that the average preferences of residents may not affect the
model estimates. Second, this study is based on the OD flow data at the 1-km grid level
rather than the original trajectories of intercity commuters due to the privacy restrictions,
which makes it hard to speculate on commuting mode and substitute it into the model.
Commuting cost generally includes monetary cost and time cost. Since commuting cost is
the indicator of the separation between workplace and residence in the spatial interaction
model, ignoring monetary cost may bias the model estimates, especially for commuting
time. However, a questionnaire survey conducted in 2020 demonstrated that nearly half of
the intercity commuters from Suzhou to Shanghai have a monthly income of more than
RMB 20,000 yuan [20]. The monetary cost of commuting per month is between RMB 800
and 2000 yuan, which seems to be less than 10% of monthly income for most intercity
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commuters. The previous study shows that commuters prefer reducing commuting time
despite the higher monetary costs when incomes rise [69]. Therefore, the negative influence
of missing monetary cost is probably insignificant.

In the research of intercity or long-distance commuting, official surveys and censuses
may be more appropriate data sources. They usually contain data collected through
stratified random sampling or national census. Not only can they reveal the overall
commuting features in the study area holistically, but they can also show individual
features and attributes that can help us directly and accurately evaluate the commuting
preferences of its residents. However, such data sources usually cost too much and are
hardly accessible. More importantly, they are not updated in a timely enough manner.
Another common data source that can reveal individual features and attributes is self-
launched questionnaire surveys, but they are not accurate enough in revealing the regional
comprehensive commuting characteristics. Mobile signaling data are low-cost, easily
accessible, updated, and of a high resolution and high sampling rate, which makes it an
increasingly common data source in commuting studies. The combination of surveys and
big data may become a paradigm in commuting studies in the future. Big data can be used
to show spatial features, study spatial determinants, and build spatial models, and surveys
can be used to interpret and test the findings from the perspective of individual features.
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