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Abstract: The COVID-19 pandemic has posed an unprecedented challenge to public health across 

the world and has further exposed health disparities and the vulnerability of marginal groups. Since 

the pandemic has exhibited marked regional differences, it is necessary to better understand the 

levels of vulnerability to the disease at local levels and provide policymakers with additional tools 

that will allow them to develop finely targeted policies. In this study, we develop for the State of 

Alabama (USA) a composite vulnerability index at county level that can be used as a tool that will 

help in the management of the pandemic. Twenty-four indicators were assigned to the following 

three categories: exposure, sensitivity, and adaptive capacity. The resulting subindices were aggre-

gated into a composite index that depicts the vulnerability to COVID-19. A multivariate analysis 

was used to assign factor loadings and weights to indicators, and the results were mapped using 

Geographic Information Systems. The vulnerability index captured health disparities very well. 

Many of the most vulnerable counties were found in the Alabama Black Belt region. A deconstruc-

tion of the overall index and subindices allowed the development of individual county profiles and 

the detection of local strengths and weaknesses. We expect the model developed in this study to be 

an efficient planning tool for decision-makers. 

Keywords: COVID-19; Geographic Information Systems; vulnerability; exposure; sensitivity;  

adaptive capacity; Black Belt region 

 

1. Introduction 

In December 2019, a novel coronavirus, the severe acute respiratory syndrome coro-

navirus-2 (SARS-CoV-2), emerged in Wuhan, Hubei Providence (China) and started 

spreading rapidly across the world. The World Health Organization (WHO) activated its 

incident management system, and then declared the outbreak as a Public Health Emer-

gency of International Concern in January 2020, and finally declared COVID-19 a pan-

demic in March 2020. In the United States, the Centers for Disease Control and Prevention 

(CDC) acknowledged the first U.S. laboratory-confirmed case of COVID-19 on 20 January 

2020. In mid-March, the US declared a nationwide emergency and started to shut down 

in order to prevent the spread of the disease. By April 2020, COVID-19 had spread over 

most of the country and the US surpassed Italy as the global leader for reported deaths 

due to COVID-19, with over 23,000 deaths [1]. Since then, several waves of COVID-19 

have struck the US and as of early April 2022, there were more than 80,000,000 cases and 

980,000 deaths due to the disease [2]. 
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As more data were available and more was learned about the new disease, it became 

evident that (i) although anyone can get sick with the disease, people with underlying 

medical conditions and older people are more at higher risk of being infected and devel-

oping serious illness [3]; (ii) racial and ethnic minority groups are more likely to get sick 

and experience more severe illness and death from the virus [4,5]. In addition to laying 

bare health disparities, the pandemic triggered an unprecedented and multifaceted crisis 

worldwide. Markets and supply chains were disrupted by lockdowns, border closures, 

and resulting trade limitations, with devastating consequences on businesses and individ-

uals [6]. High morbidity and mortality rates from the pandemic and the measures taken 

to mitigate it decimated jobs worldwide, causing profound social disruptions, particularly 

among the most vulnerable populations [6–10]. 

In the US, the unemployment rate increased by 11.2% between April and November 

2020 [11]. People’s livelihoods were affected in many of the following ways: lack of access 

to health facilities overwhelmed by the pandemic, job losses, furloughs, wage reductions, 

exhaustion of emergency savings (if any), increased caretaking responsibilities (full-time 

childcare and caretaking of older people), decrease in work productivity, reduced income 

and access to food, to cite a few examples [6,11–16]. Although billions of dollars have been 

so far appropriated by federal and state governments to mitigate the impacts of the pan-

demic, many vulnerable households across the US are still facing serious financial prob-

lems [14–16]. 

Today, the pandemic is far from being under control, despite better knowledge of the 

virus’s modus operandi, the stimulus packages aimed at helping businesses and people 

face the disruptions caused by COVID-19, the progress made in medical treatments, and 

the vaccination of an increasing number of people. The highly contagious COVID-19 Delta 

and Omicron variants have quickly spread over the world, including in the US. Mitigation 

efforts to block the spread of the virus have been hampered by a number of factors, in-

cluding refusal from a portion of the population to get vaccinated, misinformation, disin-

formation, politicization, and denial of science [17]. 

The COVID-19 impacts are widespread: the pandemic has spread in various types of 

neighborhoods, regardless of the level of affluence. However, regarding the ability to deal 

with the pandemic, communities have been differently affected [4,18]. Health disparities 

are the differences in health outcomes and their structural determinants between seg-

ments of the population [19,20]. The social determinants include race, income, education, 

disability status, level of access to health services and insurance, language barrier, and 

geographic location [19,20]. Health inequities are not new, as attested by a large body of 

studies [19–25]. The magnitude of the COVID-19 pandemic and its association with vari-

ous comorbidities have further exposed such differences. As a result, a growing number 

of studies have focused on the association between social vulnerability and COVID-19 

[26–32]. Socially vulnerable groups are less able to cope with and recover from the impact 

of disasters [24]. Another set of studies deals with the role of environmental factors in the 

transmission of COVID-19; investigators have examined the influence of a variety of fac-

tors including temperature, humidity, pollution (particulate matter, CO2 emissions), and 

the impacts of hydrometeorological events [33–40]. It is worth noting that the lockdowns 

enforced worldwide resulted in a notable improvement of air quality, especially in urban 

areas [41–44] 

In addition to socioeconomic and environmental determinants, many other risk fac-

tors contribute to making the management of COVID-19 a complex task and, as the dis-

ease is better known, new factors come into consideration. This multi-faceted and dy-

namic nature of COVID-19 warrants a holistic approach for a better understanding of the 

interplay between different risk factors and the identification of the most vulnerable com-

munities. One approach widely used is to develop a composite vulnerability index, which 

is a single value obtained by aggregating multiple indicators using mathematical compu-

tation [45–48]. Composite indices can summarize complex, multidimensional phenomena 

and are often used as communication tools, but also to compare and rank performances 
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at various scales, and to provide support to policymakers [47,49–54]. The literature on the 

use of composite indices to assess the vulnerability to COVID-19 is already substantial 

[55–62]. Some of these studies have resulted in the development of dashboards aimed at 

providing real-time information on the pandemic. For example, Marvel et al. (2021) de-

veloped the interactive Pandemic Vulnerability Index (PVI) Dashboard, which aims at 

providing support to decision makers at county level [59]. The PVI Dashboard offers var-

ious monitoring, visualization, and forecast tools that help identify local vulnerabilities 

and predict potential future outcomes. Despite their growing number, the aforementioned 

studies are not redundant, since the pandemic has exhibited strong regional and local dif-

ferences, and therefore requires a focus on finer scales. As noted by the CDC [63], “moni-

toring jurisdiction-level numbers of COVID-19 cases, deaths, and changes in incidence is 

critical for understanding community risk and making decisions about community miti-

gation.” COVID-19′s health, economic, social, and fiscal impact varies considerably within 

each country and places local authorities and communities at the forefront of crisis man-

agement and recovery [64,65]. For example, the pandemic has caused a dramatic drop in 

municipal revenues across the United States [66,67]. Moreover, communities have more 

confidence in local governments than national or federal ones [65,68]. Therefore, the man-

agement of the pandemic requires a local approach to policy responses. 

The aim of this study is to develop a COVID-19 vulnerability index at county level 

for the State of Alabama by aggregating a set of indicators that are relevant to the levels 

of exposure, sensitivity, and resilience of populations. It is expected that the composite 

index will capture the diversity of local communities and provide policymakers with com-

prehensive information that will help them rank the state’s counties on multifaceted is-

sues, better identify the most vulnerable populations, and take mitigation and recovery 

actions adapted to local realities. The model used in this study can be replicated in other 

US states and as knowledge about the pandemic progresses, it can be refined and made 

appropriate to the prevailing situation. 

2. Materials and Methods 

2.1. Study Area 

The State of Alabama, located in the southern US (Figure 1a), is composed of sixty-

seven counties. The largest population densities are found in the following counties that 

harbor big cities: Jefferson, Madison, Montgomery, and Mobile Counties, which are home 

to Birmingham, Huntsville, Montgomery and Mobile, respectively. One prominent demo-

graphic characteristic of the state is that some of its counties are part of the southern Black 

Belt, which is currently defined as the region composed of counties where the black pop-

ulation is predominant (Figure 1b). Although household income has grown over the re-

cent years, there still exists a notable income gap across the state, which is also the case in 

many other US states [69]. As shown in Figure 1c, the spatial patterns of households below 

the poverty level reflects faithfully enough the distribution of minorities across the state. 

This is an important factor, given the racial and socioeconomic health disparities associ-

ated with COVID-19 [19–25]. 
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Figure 1. The study area: (a) location of the State of Alabama; (b) percentage of minority population 

in Alabama counties; (c) percentage of the number of households with income below poverty level 

for each county; (d) the number of COVID-19 cases (grey bars) and deaths (red line) between April 

2020 and April 2021. The thick black lines in the maps indicate the boundaries of Black Belt counties. 

As all other US States, the State of Alabama experienced a devastating spread of the 

virus. The first known COVID-19 case in Alabama was announced on 3 March 2020. The 

following month, the Governor issued a statewide stay-at-home order. Between 1 April 

2020 and 30 April 2021, there was a sharp increase in COVID-19 cases and deaths, but this 

increasing trend seemed to stabilize by the month of April 2021 (Figure 1d). During this 

period, Alabama ranked among the US states with fewer tested people. As of late Septem-

ber 2021, there were over 794,000 cases and 14,155 deaths related to the disease, and Ala-

bama ranked among the states with fewer vaccinated people [70]. 

To assess the vulnerability of the state’s population to the new disease at county level, 

data from various sources were used. 

2.2. Data Types and Sources 

The health data used in this study were obtained from the Alabama Department of 

Public Health [71]. Since the advent of COVID-19, ADPH has posted on its website various 

county-level information on the disease on a daily basis, and maintained the Alabama 

COVID-19 Dashboard Hub, which houses various dashboards. The data posted on the 

ADPH website can be downloaded as spreadsheets and consist of statistics and location 

information on vaccine providers, appointment-only clinics, drive-thru and walk-in clin-

ics, case data, test sites, and county vaccine data. Vaccine providers, appointment-only 

clinics, drive-thru and walk-in clinics, and test sites are presented as a list of addresses. 

The case data consist of the total number of cases, people tested and deaths per county. 

The county vaccine data provide statistics on population > 16, people who received at least 

one dose (total number and percentage), number of people completely vaccinated, and 

number of doses administered. 

Additional health data obtained from various other sources include statistics on the 

number of smokers, adult obesity, diabetes, and cancer rates obtained from the University 
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of Wisconsin Population Health Institute 2020 County Health Rankings [72], and the En-

vironmental Protection Agency Air Toxics Respiratory Hazard Index, which is the sum of 

hazard indices, where each hazard index is the ratio of exposure concentration in the air 

to the health-based reference concentration set by the Environmental Protection Agency 

[73]. These additional health data denote some of the comorbidities and other health risks 

that are likely to cause severe illness from COVID-19 [74]. Statistics on hospitalizations 

due to COVID-19 were obtained from the New York Times, which compiled data from 

Alabama State and local agencies [75]. Data on the number of staffed intensive care unit 

(ICU) beds available (7-day total: 24–30 April 2021) were obtained from HealthData.gov 

[76]. 

Most of the demographic and socioeconomic data originated from the US Census 

Bureau and were updated and converted by the Environmental Systems Research Insti-

tute (ESRI) into a geodatabase format readily usable with the Geographic Information 

System (GIS) software. The related variables are generally used in the development of 

vulnerability indices that have demographic, social, and economic components [24,77–

83]. The demographic data consist of population density and daytime population density, 

and of the percentages of minority population, senior Population (age ≥ 65), and house-

holds with 5 people or more. All the demographic data were obtained from 2019 ESRI 

Demographics, except for daytime population density, which originates from the 2018 

CDC Social Vulnerability Index [84]. The socioeconomic data consist of (1) geodatabase 

files from 2019 ESRI Demographics, which includes the following: unemployment rate, 

households below the poverty level, people with some high school but no diploma; (2) 

2019 food insecurity rate obtained from Feeding America [85]; and (3) uninsured popula-

tion obtained from the 2020 County Health Rankings and Roadmaps developed by the 

University of Wisconsin Population Health Institute [72]. 

2.3. Preliminary Data Processing 

Given the variety of formats, the county-level data were processed using ESRI’s 

ArcGIS. Although most of the data were already in a spatial format and added to a map 

document, some variables, such as adult obesity, diabetes, cancer rates, the number of ICU 

beds, number of smokers, uninsured populations, and food insecurity rate, came as tables 

that were added to the map document and joined to the attribute table of the spatial data, 

using county names as the common field. Health data presented as tables of addresses 

were first converted to point shapefiles by geocoding addresses, then summarized to pro-

duce the number of facilities per county. All the variables were assembled in a master-

dataset in shapefile format, by joining the various tables to the shapefile’s attribute table 

using the county names as the common field, and the associated attribute table was ex-

ported as a text file in a comma-separated format (csv) suitable for further processing in 

an Excel spreadsheet. From this master-table, three subsets were created, each of them 

regrouping the variables (indicators) belonging to the corresponding determinant. It is 

worth mentioning that all the count values were converted to percentages. For example, 

the household indicator was calculated as follows: (number of households with five or 

more people/total number of households) ∗ 100. 

2.4. Development of the Vulnerability Index 

2.4.1. Vulnerability Framework 

A system is vulnerable when it is likely to experience harm due to its exposure to a 

hazard and/or it is unable to cope with adverse effects of the hazard [86]. A hazard is 

defined as a “threat to a system, comprised of perturbations and stress, ... and the conse-

quences it produces” [87]. According to IPCC [86], vulnerability is a function of exposure, 

sensitivity, and adaptive capacity. Exposure is “the nature and degree to which a system 

is exposed”. Sensitivity is “the degree to which a system is affected, either adversely or 

beneficially”. Adaptive capacity is the ability of a system to implement effective 
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adaptation measures to moderate potential damages, to take advantage of opportunities, 

or to cope with the consequences, by using its whole capabilities, resources, and institu-

tions [86,88]. This vulnerability framework presented in the IPCC third assessment report 

[86] was employed in many subsequent studies (for example, [89,90]). 

In this study, we adopted this IPCC framework and developed a vulnerability com-

posite index, which combines the following three determinants (subindices): exposure, 

sensitivity, and adaptive capacity (Figure 2). Exposure and sensitivity describe the poten-

tial impacts COVID-19 can have on populations. High values of exposure and sensitivity 

combined with low values of adaptive capacity result in high scores of the overall index, 

which indicate high vulnerability. 

 

Figure 2. Vulnerability assessment framework used in this study. 

Therefore, the equation for computing the COVID-19 Vulnerability Index was de-

fined as the following: 

Vulnerability = (Exposure + Sensitivity) − Adaptive Capacity (1)

The selection of indicators constitutes a crucial stage in the development of a vulner-

ability index [47]. Our choice of vulnerability indicators for each determinant was guided 

by the framework chosen, which allowed us to categorize and structure indicators in ac-

cordance with the three components of the index. The choice of indicators was also based 

on (1) an extensive body of literature on various types of vulnerability assessments (vul-

nerability to climate change and other natural hazards, social vulnerability), which al-

lowed the selection of well-established variables used to quantify vulnerability; and (2) 

expert knowledge of COVID-19 from the World Health Organization (WHO) and leading 

health institutions, such as the Center for Disease Control and Prevention (CDC) and the 

National Institutes of Health (NIH). 

2.4.2. Indicators 

The indicators for each subindex are shown in Table 1. 

Table 1. Description of indicators for each subindex and data sources. 

INDICATOR DESCRIPTION SOURCE 

EXPOSURE     

Cases 
Total number of new COVID-19 cases per 1000 

(from 1 April 2021 to 30 April 2021) 

Alabama Department of Public Health 

(ADPH) 

Hospitalizations 
The 1-week average number of hospitalized per 

100,000 (24–30 April 2021) 
The New York Times 



ISPRS Int. J. Geo-Inf. 2022, 11, 320 7 of 29 
 

 

Deaths 
COVID-19 deaths per 1000 (1 April 2021 to 30 

April 2021) 
ADPH 

SENSITIVITY     

Crowding    

Density Population density (pop. per square mile) 2019 ESRI Demographics 

Daytime Density * 
Daytime population density (pop. per square 

mile)  
2018 CDC Social Vulnerability Index 

Crowding Level Households with 5 persons or more (%) 2019 ESRI Demographics 

Demographic Status   

Seniors Senior population (percentage of age 65+) 2019 ESRI Demographics 

Minority * Minority population (%) 2019 ESRI Demographics 

Socioeconomic Status   

Poverty Households below the poverty level (%) 2019 ESRI Demographics 

Unemployment  Unemployment rate 2019 ESRI Demographics 

Uninsured Uninsured population (%) 
2020 County Health Rankings and 

Roadmaps 

No Diploma Some high school, no diploma (%) 2019 ESRI Demographics 

Food Insecurity 2019 food insecurity rate (%) 2021 Map the Meal Gap 

Health Status    

Obesity Obese adults (%) 
2020 County Health Rankings and 

Roadmaps 

Diabetes Diabetes prevalence (%) 
2020 County Health Rankings ad 

Roadmaps 

Cancer Cancer prevalence (%) National Program of Cancer Registries 

Smokers Number of smokers (%) 
2020 County Health Rankings and 

Roadmaps 

Air Toxics Air Toxics Respiratory Hazard Index EPA EJScreen 

ADAPTIVE CAPACITY   

ICU Beds Adult staffed ICU beds per 10,000 HealthData.gov (2020) 

Vaccinated Fully vaccinated people aged > 16 (%) ADPH (2020–2021) 

Vaccine Providers Number of vaccine providers per 10,000 people ADPH (2020–2021) 

Test Sites Number of COVID-19 test sites per 10,000 ADPH (2020–2021) 

Tested Total population of age > 16 tested (per 10,000) ADPH (2020–2021) 

Doses * 
COVID-19 doses administered (per 1000 people 

> 16)  
ADPH (2020–2021) 

Clinics 
Clinics (drive-through and appointments only) 

per 10,000 
ADPH (2020–2021) 

* Indicators discarded after data reduction process. 

Exposure indicators. The indicators for exposure to COVID-19, calculated for each 

Alabama county, consist of the following three variables: (1) the total number of COVID-

19 cases in Alabama, from 1 April 2021 to 30 April 2021; the incidence rate was obtained 

by computing the difference of the number of cases between the two dates, dividing it by 

the county’s population, and multiplying the result by 1000; (2) the one-week average 

number of hospitalizations due to COVID-19 (24–30 April 2021); the hospitalization rate 

was computed for 100,000 people; (3) the COVID-19 death rate per 1000 people over the 

study period. 

Sensitivity indicators. To characterize sensitivity, this study used fifteen variables 

assigned to the following four subgroups: crowding, demographic status, socioeconomic 

status, and health status, including comorbidities. The crowding subgroup is defined by 

the following three variables: (1) population density; (2) daytime population density 

(which is also an indicator of mobility); and (3) residential crowding, which depicts the 
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percentage of households with five persons or more. We know now that COVID-19 is 

mainly transmitted by infected persons who breathe out droplets and very small particles 

that contain the virus; therefore, crowded and poorly ventilated spaces must be avoided 

[3,91]. High values of crowding variables indicate higher concentrations of people, which 

makes social distancing more difficult to implement efficiently, hence, an increased risk 

of spreading the disease. The demographic status subgroup is composed of the following 

two variables: (1) seniors, the percentage of the population aged 65 or older; (2) minorities, 

the percentage of minority populations. These two groups are known for being more 

prone to infection and adverse outcomes from contracting the virus [3,5,91]. The socioec-

onomic status subgroup includes the following five variables: (1) poverty, the percentage 

of households below poverty level; (2) unemployment, the unemployment rate at county 

level; (3) uninsured, the percentage of the population without health insurance; (4) no 

diploma, the percentage of the population that attended some high school but did not 

graduate; (5) food insecurity, the food insecurity rate computed by combining state and 

county-level food, demographic and socioeconomic data, such as homeownership, disa-

bility prevalence, median income, average dollar amount spent on food per week, and the 

non-undergraduate student poverty rate. The methods for computing the food insecurity 

index are detailed in a technical report from Feeding America [85]. The indicators in the 

socioeconomic status subgroup characterize marginalized populations with low income, 

limited access to health education, medical care, and many other crucial resources. In a 

large body of studies, such groups have been identified as more vulnerable, less able to 

cope with health threats [19,24,92,93]. The health status subgroup is determined by the 

following five variables: (1) obesity, the percentage of obese adults in each county; (2) 

diabetes prevalence, the percentage of people with diabetes; (3) cancer prevalence, the 

percentage of people with cancer; (4) smokers, the number of smokers as a percentage; (5) 

air toxics, the Air Toxics Respiratory Hazard Index. It is well known that people with 

certain underlying medical conditions are more likely to experience severe illness from 

COVID-19 [3,91,94,95]. Regarding smoking, although there is not yet evidence linking it 

to severe illness from COVID-19, such practice increases the risk of heart disease and lung 

disorders and may increase the risk of infection with the virus, due to the frequent hand-

to-mouth action while smoking [3]. 

Adaptive capacity indicators. Seven indicators were chosen to determine adaptive 

capacity, which are as follows: (1) ICU beds, the adult staffed ICU beds available per 

10,000 people; low values of this variable indicate that the county is less able to deal with 

severe COVID-19 illness and/or that hospitals are operating under high stress; (2) vac-

cinated, the percentage of fully vaccinated people older than 16; (3) vaccine providers, the 

number of vaccine providers per 10,000 people; (4) test sites, the number of COVID-19 test 

sites per 10,000 people; (5) tested, the total population older than 16 tested, per 10,000 

people; (6) doses, the COVID-19 doses administered, per 1000 people older than 16. (7) 

clinics, the number of clinics (both drive-through and appointments only) that are admin-

istering COVID-19 vaccines, per 10,000 people. Overall, higher values of all the adaptive 

capacity indicators indicate that the county has higher ability to prepare for and cope with 

the effects of COVID-19. 

2.4.3. Statistical Analysis 

Reduction in the number of variables: an important preliminary step is to use multi-

variate analysis (1) to explore the structure of the data and examine the interrelationships 

between variables. The successful development of a composite index depends first on an 

appropriate choice of the constituting variables, since overly complex data structure and 

too much data can adversely affect the index development process and confuse decision 

makers as well as potential users [47,96]; (2) to identify potential redundancy in the da-

taset, since it is preferable that each variable uniquely contributes to the data matrix, and 

the resulting data reduction will also improve computational performance [96,97]. In this 
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reduction process, the first step was to standardize all variables using the following for-

mula: 

z = (x − μ)/σ (2)

where z is the standard score, x is the observed value, μ is the mean of the sample set, and 

σ is the standard deviation of the sample set. 

Next, principal component analysis (PCA) was applied using the standardized vari-

ables grouped under each determinant, as a method for data reduction [98,99]. One of the 

PCA outputs is a correlation matrix of the variables. Under each determinant or subgroup, 

correlations were examined for redundancy, looking for pairwise correlations with a co-

efficient greater than 0.90 [100]. In such cases, the variable with the lowest PCA loading 

was removed. As a result of this process, the following three redundancies were identi-

fied: under the crowding subgroup, the correlation coefficient of density vs. daytime den-

sity was 0.99; under the demographic status subgroup, the coefficient for seniors vs. mi-

norities was 0.95; and under the adaptive capacity determinant, it was 0.97 for vaccinated 

vs. doses. The variables with lower PCA loadings, namely daytime density, minorities, 

and doses, were removed. 

Weighting: factor analysis (FA) with varimax rotation was used to assign weights to 

variables under each determinant. With this data-based method, each variable is weighted 

based on its contribution to the overall variance in the data [47,101]. The process consists 

of several steps, and prior to executing FA, the variables were normalized to have an iden-

tical range (0, 1), which is as follows: 

x’ = (x − min (x))/(max (x) − min (x)) (3)

where x’ is the normalized value, and x is an original value. 

First, it is necessary to verify whether FA is suitable for the data by using the follow-

ing two tests: the Kaiser–Meyer–Olkin (KMO) test and Bartlett’s test of sphericity. KMO 

is a measure of sampling adequacy (MSA) [102]. The test yields a MSA for each variable 

and an overall MSA. The KMO statistic can vary from 0 to 1, and a value smaller than 0.6 

indicates that the sampling is not adequate, and FA may not be appropriate for the data 

[103]. In this study, the KMO test for the three determinants showed that it is appropriate 

to use FA for the data, since the test yielded the following MSA results: exposure 0.68; 

sensitivity, 0.84; and adaptive capacity, 0.75. The second test, the Bartlett’s test of spheric-

ity, is used to test the hypothesis that the observed correlation matrix is an identity matrix 

(hence, the individual indicators in the correlation matrix are uncorrelated) [104]. Small 

values of the significance level (p-value less than 0.05) indicate that it is appropriate to 

proceed with FA. In this study, Bartlett’s test results showed the data were appropriate 

for FA, since all the resulting p-values were smaller than 0.0001. 

The next step was to perform factor extraction by running FA on the data and retain-

ing only the number of factors that will represent the data. There are various guidelines 

for deciding on the number of factors to keep. We followed a standard practice adopted 

in several studies and for a factor to be retained, there are three qualifications, which are 

as follows: (1) the factor is associated with an eigenvalue larger than unity (>1); (2) the 

factor explains more than 10% of the overall variance of the data; (3) the cumulative vari-

ance of the chosen factors must be more than 60% [47,51,101]. Based on these criteria, the 

factors for each determinant were retained as follows: sensitivity, three factors; adaptive 

capacity, two factors. Regarding the exposure determinant, which is composed of three 

indicators only, the full guidelines could not be followed; only the first factor had an ei-

genvalue larger than unity and was retained. 

Next, the factor loadings were rotated using the varimax method, which yields a sim-

pler organization of the retained factors. Instead of having all the salient loadings (indica-

tors with high loading) in the same factor, each indicator is loaded exclusively on one of 

the retained factors. The rotated factor loadings were then squared. The resulting values 
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represent the proportion of the total unit variance of the indicator, which is explained by 

the factor [105]. 

The squared factor loadings were scaled to sum to 1 as follows: 

N = 1/(x1 + x2 + … + xn) (4)

where N is the normalizer, and x is an item from the list of numbers to be normalized. 

Next, every number in the list was multiplied by the normalizer, and the resulting total is 

1.0, as shown in Equation (5), which is as follows: 

([x1 ∗ N] + [x2 ∗ N] + … + [xn ∗ N]) = 1.0 (5)

Intermediate composites were created by grouping indicators with highest loadings 

(also called salient loadings) into respective factors [101]. The intermediate composites 

were then aggregated, and each of the resulting values was assigned a weight by multi-

plying it to its corresponding eigenvalue. The last step of this statistical process was to 

scale the resulting weight scores to sum to unity as shown in Equations (4) and (5). 

For each determinant, the normalized value of the indicators was multiplied to its 

corresponding final weight, and the resulting scores were summed to obtain a subindex 

for the determinant. Finally, the scores of the three determinants were combined as indi-

cated in Equation (1) to create the final vulnerability index. 

GIS methods were used to join the resulting tables to a shapefile of the Alabama 

counties for spatial analysis and mapping, using the Environmental Systems Research In-

stitute GIS software, ArcGIS. Various classification schemes were employed, including 

mapping quantities using graduated colors and charts. The quantile method was used to 

classify scores resulting from the statistical analysis. 

3. Results 

In this section, the results from the statistical analysis and geospatial processing are 

presented for each determinant and the final vulnerability index. 

3.1. Statistical Analysis 

Table 2 shows the FA results for the exposure subindex, which is composed of only 

three indicators: the number of COVID-19 cases, deaths, and hospitalizations. The FA pro-

cess yielded only one factor with an eigenvalue of 1.4 and explains 23% of the variance. 

The largest weight score was assigned to COVID-19 deaths (0.46), followed by the number 

of cases (0.38). Hospitalizations received the smallest weight (0.17). 

Table 2. Factor analysis results for the exposure subindex. 

Indicators 
Rotated Factor 

1 Loadings 
Squared Factor Eigenvalue  Weight Score (Wi) 

Final Weight (ƩWi 

= 1) 

Cases 0.5 0.25 1.41 0.35 0.38 

Deaths −0.55 0.3 1.41 0.42 0.46 

Hospitalized 0.33 0.11 1.41 0.15 0.17 

Proportion of Variance (%) 22.7     

Eigenvalue 1.41         

The FA results for the sensitivity subindex are presented in Table 3. The three factors 

retained account for 63.2% of the variance (Table 3). Factor 1 has salient loadings on un-

employment (0.78), households below poverty level (0.97), food insecurity (0.41), house-

holds with 5+ people (0.19), Respiratory Index (1.26), and obesity (0.59). This factor is dom-

inated by socioeconomic conditions and, to a lesser extent, health status. Three of the in-

dicators were assigned the highest weights (Table 4). Factor 2, which is formed by popu-

lation density (0.40), some high school but no diploma (0.77), uninsured (0.08), smokers 

(0.54), and diabetes (0.39), represents a mix of socioeconomic and health conditions. Factor 
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3 has high loadings with seniors (4.43) and cancer (2.94). The final weights are displayed 

in Table 4. Overall, most of the indicators with the highest weights were loaded into Factor 

1. 

Table 3. Factor loadings for the exposure subindex. 

 Rotated Factor Loadings Squared Factor Loadings 

Indicators Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 

Population Density −0.24 −0.58 −0.38 0.06 0.33 0.14 

Seniors  0.19 0.93  0.03 0.86 

Unemployment Rate 0.73 0.24  0.53 0.06  

HS No Diploma 0.25 0.79 0.25 0.06 0.63 0.06 

HH Inc. Below Poverty Rate 0.81 0.22  0.66 0.05  

Uninsured −0.1 0.26  0.01 0.07  

Food Insecurity 0.46 0.31 0.28 0.21 0.1 0.08 

Households with 5+ people −0.28  −0.19 0.08  0.04 

Respiratory 0.93   0.86   

Cancer  0.31 0.76  0.1 0.57 

Smokers 0.38 0.66 0.37 0.14 0.44 0.13 

Obesity 0.63 0.25 0.12 0.4 0.06 0.01 

Diabetes 0.37 0.56 0.22 0.14 0.32 0.05 

Proportion of Variance (%) 24.3 16.8 15.2    

Cumulative Variance (%) 24.3 41.1 56.3    

Eigenvalues 5.96 2.28 1.4       

Bold values represent salient loadings. 

Table 4. Eigenvalues and weight scores for the Exposure subindex. 

Variables 
Combined  

Factors * 
Eigenvalues Weight Score (Wi) 

Final Weight  

(ƩWi = 1) 

Pop. Density 0.40 5.96 2.42 0.06 

Seniors 4.43 1.40 6.19 0.15 

Unemp. Rate 0.78 5.96 4.68 0.11 

HS No Diploma 0.77 2.28 1.76 0.04 

HH Inc. B.Pov 0.97 5.96 5.80 0.14 

Uninsured 0.08 2.28 0.19 0.00 

Food Insecurity 0.41 5.96 2.47 0.06 

HH 5+ 0.19 5.96 1.10 0.03 

Respiratory 1.26 5.96 7.51 0.18 

Cancer 2.94 1.40 4.11 0.10 

Smokers 0.54 2.28 1.22 0.03 

Obesity 0.59 5.96 3.52 0.08 

Diabetes 0.39 2.28 0.89 0.02 

* Salient loadings scaled to sum to 1. 

For the adaptive capacity subindex, the following two factors accounting for 62.2% 

of the variance were retained: Factor 1 explains 42.1% of the variance and has an eigen-

value of 2.6; Factor 2 explains 20.1% of the variance (eigenvalue: 1.5) (Table 5). Factor 1 

has high loadings with the variables test sites, clinics, vaccine providers, and ICU beds. 

Given its components, this first factor may be interpreted as the infrastructure available 

for dealing with COVID-19. Factor 2 is formed by the variables of vaccinated (which has 

the highest loading, 0.9), and tested (0.03). This factor depicts actions that have been taken 

by people to track the disease and reduce its transmission. Table 6 shows the final weights 
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of the adaptive capacity indicators. The following variables were assigned the highest 

weights: vaccinated (0.33), clinics (0.29), and vaccine providers (0.21). Test sites, ICU beds, 

and tested exhibited the lowest weight values. 

Table 5. Factor loadings for the adaptive capacity subindex. 

 Rotated Factor Loadings Squared Loadings 

Indicators Factor 1 Factor 2 Factor 1 Factor 2 

Test Sites 0.53 0.25 0.28 0.06 

Vaccinated 0.15 0.96 0.02 0.92 

Clinics 0.94 0.19 0.88 0.04 

Vaccine Providers 0.79  0.63  

ICU Beds per 10K people −0.44 0.13 0.19 0.02 

Tested −0.18 0.17 0.03 0.03 

Proportion of Variance (%) 33.9 17.6   

Cumulative Variance (%) 33.9 51.5   

Eigenvalues 2.61 1.5     

Bold values represent salient loadings. 

Table 6. Eigenvalues and weight scores for the Adaptive Capacity subindex. 

Variables 
Combined  

Factors * 
Eigenvalues Weight Score (Wi) 

Final Weight  

(ƩWi = 1) 

Test Sites 0.14 2.61 0.36 0.09 

Vaccinated 0.87 1.50 1.30 0.33 

Clinics 0.43 2.61 1.13 0.29 

Vaccine Providers 0.31 2.61 0.81 0.21 

ICU_10K 0.09 2.61 0.25 0.06 

Tested 0.03 2.61 0.07 0.02 

* Salient loadings scaled to sum to 1. 

3.2. Spatial Patterns of the Subindices and Final Vulnerability Index 

The spatial distribution of the exposure subindex scores is shown in Figure 3. Most 

of the counties with the highest incidence of COVID-19 cases, hospitalization, and/or 

deaths are located in the Alabama Black Belt (they constitute 6 out of the 10 counties with 

the highest exposure score). 
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Figure 3. Spatial distribution of the exposure subindex. The scores are classified as quintiles. The 

thick black lines indicate the boundaries of Black Belt counties. 

In those counties, COVID-19 deaths are the main contributor to the exposure subin-

dex, followed by hospitalizations and the number of cases (Figure 4a). Fourteen counties 

are classified as the least exposed to COVID-19. They are mainly located in the southwest-

ern part of the State. However, this group includes three Black Belt counties: Russel, Pike 

and Wilcox. The exposure subindex score in these counties is driven by COVID-19 hospi-

talizations and, to a lesser extent, COVID-19 cases and deaths (Figure 4b). 
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Figure 4. Percent contribution of each indicator to the exposure subindex for (a) the most exposed, 

and (b) least exposed counties. 

Figure 5 displays the spatial patterns of the sensitivity subindex scores. The counties 

that exhibit the highest scores are all located in the Alabama Black Belt, except for Monroe 

County. The sensitivity subindex score of these counties is mainly explained by the higher 

contribution of the number of smokers and the Respiratory Hazard Index, closely fol-

lowed by household income below poverty level, food insecurity, and obesity. Most of the 

counties with the lowest scores are located north of the Alabama Black Belt. In these coun-

ties, households with five people or more are the main contributor to the sensitivity sub-

index, followed by cancer, Respiratory Hazard Index, and smokers. 
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Figure 5. Spatial distribution of the sensitivity subindex. The scores are classified as quintiles. The 

thick black lines indicate the boundaries of Black Belt counties. 

The spatial distribution of the adaptive capacity scores is shown in Figure 6. The dis-

tribution patterns of the counties with the highest scores are not coherent since they are 

scattered over various parts of the state. The lowest scores are mostly found in a cluster 

of counties in the western Alabama Black Belt and neighboring southern counties. 
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Figure 6. Spatial distribution of the adaptive capacity subindex. The scores are classified as quintiles. 

The thick black lines indicate the boundaries of Black Belt counties. 

In high scoring counties, the main contributors to the adaptive capacity subindex are 

the number of ICU beds, followed by the number of test sites, vaccine providers and tested 

people (Figure 7a). In low scoring counties, the subindex is driven by the number of 

COVID-19 clinics, vaccine providers and test sites (Figure 7b). 
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Figure 7. Percent contribution of each indicator to the adaptive capacity subindex for counties with 

the (a) highest and (b) lowest subindex scores. 

The three subindices were aggregated to form the overall COVID-19 Vulnerability 

Index. The spatial distribution of the resulting overall scores is displayed in Figure 8. The 

most vulnerable counties are found in the Alabama Black Belt (a total of eight out of nine 

counties). In general, the least vulnerable counties are located north of the Black Belt (a 

total of eleven out of fourteen counties). Only two least exposed counties, Baldwin and 

Coffee, are located south of the Black Belt. Russel County constitutes one notable excep-

tion: despite being a Black Belt County, it is one of the least vulnerable counties, thanks to 

a lower exposure (number of COVID-19 cases and deaths) and a higher adaptive capacity 

(relatively high number of clinics, tested and vaccinated people). 
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Figure 8. Spatial distribution of the overall COVID-19 Vulnerability Index at county level. The thick 

black lines indicate the boundaries of Black Belt counties. 

The ranking of the five least and most vulnerable counties (Figure 9) confirms that 

Alabama’s most vulnerable counties to COVID-19 are located in the Black Belt, which also 

includes one of the least vulnerable counties (Russel County). However, it should be noted 

that a majority of the Alabama population lives in counties with low vulnerability. Based 

on 2021 population estimates from the US Census Bureau, 59.6% of Alabamians live in 

such counties, while only 28.4% live in highly vulnerable counties. 
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Figure 9. Ranking and location of the five least and most vulnerable counties. 

3.3. Deconstruction of the COVID-19 Vulnerability Index 

The relative importance of the subindices to the overall vulnerability index is sum-

marized in Table 7. The correlation of the subindices with the overall index shows that the 

vulnerability scores are mainly explained by adaptive capacity (−0.86) and sensitivity 

(0.85). 

Table 7. Correlation between subindices and the COVID-19 Vulnerability Index. 

  Exposure Sensitivity Adaptive Capacity Vulnerability Index 

Exposure 1       

Sensitivity 0.24 1   

Adaptive Capacity −0.33 −0.68 1  

Vulnerability Index 0.64 0.85 −0.86 1 

The overall vulnerability index is a summary of the constituting subindices and in-

dicators, which can be used by policymakers to start the decision-making process. How-

ever, to extend the analysis, understand the contribution of each subindex, and better un-

derstand the meaning of each score and the performance of each county, it is necessary to 

deconstruct the overall index [47,106]. Figure 10 shows the contribution of each subindex 

to the overall composite index for the five most and least vulnerable counties. In highly 

vulnerable counties, sensitivity and exposure are the main contributors to the overall in-

dex, while contribution from adaptive capacity is weak. The least vulnerable counties ex-

hibit very strong contribution from adaptive capacity and low contribution from the other 

subindices. For example, the percent contribution of the subindices to the overall index 

for the most vulnerable county (Lowndes) are as follows: exposure: 45%; sensitivity: 42%; 

adaptive capacity: 13%. In contrast, the values for the least vulnerable county (Baldwin) 

are 17%, 9%, and 75%, respectively. 
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Figure 10. Percent contribution of each subindex to the overall composite index for the five least and 

most vulnerable counties. 

This contrast is illustrated in Figure 11, which shows for the highest and lowest scor-

ing counties (Baldwin and Lowndes, respectively), the percent contribution of each indi-

cator to the overall index, with respect to the value range and average. To summarize, the 

highly vulnerable counties are more exposed to and affected by COVID-19, and less able 

to cope with the disease, due to weak adaptive capacity. 

 

Figure 11. Percent contribution to the COVID-19 Vulnerability Index for the least and most vulner-

able counties (Baldwin and Lowndes, respectively). E: exposure; S: sensitivity; AC: adaptive capac-

ity. The grey area shows the range of percent values for each indicator. 

The analysis can be further extended by disaggregating each subindex. It must be 

remembered that higher scores denote higher vulnerability to COVID-19. Figure 12 shows 

the correlation of each subindex with the constituting indicators. The exposure subindex 

(Figure 12a), with a correlation coefficient of 0.78, is highly correlated with COVID-19 
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deaths. The other two indicators are much less correlated with the subindex (hospitaliza-

tions, 0.28; cases: 0.26). The sensitivity subindex is mainly explained by the following four 

indicators: household income below poverty level (0.88), Respiratory Hazard Index (0.88), 

unemployment rate (0.83), and obesity (0.72) (Figure 12b). Three other indicators are rel-

atively important, but to a lesser extent: food insecurity (0.65), smokers (0.62), and diabe-

tes (0.61). The uninsured indicator displays a very weak relationship with the subindex 

(0.04). The two crowding indicators (population density and households with five people 

or more) are negatively correlated with the subindex. Overall, many indicators substan-

tially contribute to the sensitivity subindex. The adaptive capacity subindex is mainly 

dominated by four indicators: clinics (0.87), vaccine providers (0.72), vaccinated people 

(0.67), and test sites (0.62). The two other indicators (ICU beds and tested people) display 

a weak and negative correlation with the subindex (−0.20 and −0.01, respectively). Overall, 

the correlation coefficient values are consistent with the weights assigned to indicators; 

the highest (lowest) coefficients correspond to the highest (lowest) weights. 

 

Figure 12. Correlation of each subindex with its indicators: (a) exposure; (b) sensitivity; (c) adaptive 

capacity. All correlation coefficients are significant at the 5% level, except for those marked with an 

asterisk. 

By returning to the underlying indicators, the deconstruction allows a better under-

standing of each subindex score and associated rankings [47,106]. The spider diagrams 

(radar charts) presented in Figure 13 are an example of the disaggregation of subindices 

for an easier interpretation of the overall composite index scores. For each subindex, the 

scores of indicators for the least and most vulnerable counties (Baldwin County and 

Lowndes County, respectively) are displayed alongside the sample mean (average score 

for all counties). This method allows us to analyze the relative performance of each county 

with respect to the whole sample. The deconstruction of the exposure subindex (Figure 

13a) shows that Lowndes County scores higher than the sample mean on all indicators, 

while Baldwin County scores lower. However, for the number of COVID-19 cases and 

people hospitalized, the scores for both counties are relatively close to the sample mean. 

Most of the differences between the two counties is explained by one indicator, the num-

ber of COVID-19 deaths, which exhibits the largest gap between the scores:; the average 

score for the whole sample is 45%, while Lowndes County’s score is much above the av-

erage (88%), in contrast with Baldwin County’s score (15%). All the indicators point to 

Lowndes County’s greater exposure to COVID-19. Figure 13b displays the scores of 
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thirteen indicators, which constitute the sensitivity subindex for both counties, along with 

the sample mean. Lowndes County’s high sensitivity to COVID-19 is mainly explained by 

the high scores of socioeconomic and comorbidity indicators. Lowndes scores much 

higher than the sample mean for eight indicators, and matches it for the two other ones. 

In contrast, Baldwin County scores much lower than the sample mean for ten indicators. 

As a result, for most of the indicators, the gap between the two counties is very large. For 

example, Lowndes County surpasses Baldwin County by more than 50% for household 

income below poverty level, people with some high school but no diploma, food insecu-

rity rate, Air Toxic Respiratory Index, the number of smokers, and obesity. There are some 

notable exceptions: despite being the most vulnerable county, Lowndes scores lower than 

Baldwin County with population density, households with at least five people, and the 

number of seniors and uninsured people. The deconstruction of the adaptive capacity 

subindex is shown on Figure 13c. For all the indicators, Baldwin County scores higher 

than Lowndes County and the sample mean. The following 4 indicators (out of 6) have 

scores higher than 90%: the number of tested people, test sites, clinics, and vaccine pro-

viders. Conversely, Lowndes County scores below average with all indicators, except for 

a match with test sites. An area of concern for both counties and the State of Alabama is 

the number of ICU beds, which exhibits the lowest scores, including for the sample mean. 

 

Figure 13. Deconstruction of subindices shown as spider diagrams, for the least and most vulnerable 

counties (Baldwin and Lowndes, respectively), and the average for all the Alabama counties. Values 

are scaled between 0 (lowest performance) and 100 (highest). 

Regardless of the overall score achieved, the situation of each county must be ana-

lyzed in detail. Spider diagrams comparing each county’s indicator scores with the aver-

age score for all the counties can be displayed alongside the associated demographic, so-

cioeconomic and health data. One example (Madison County) is shown in Figure 14. The 

resulting county profile provides more information and better support for the decision-

making process [106]. 
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Figure 14. County profile for Madison County compared with the average for all the state’s counties 

(values are percentages). 

Furthermore, the deconstruction of subindices can be more useful for policy makers 

if the original values of individual indicators are considered, with respect to the sample 

[47,106]. Such a practice, by considering actual values rather than normalized ones, pro-

vides a better understanding of the meaning of the score of each indicator, since familiar 

units are used. 

4. Summary and Conclusions 

In this study, the vulnerability to COVID-19 at county level was assessed for the State 

of Alabama. Multivariate analysis methods were used to (1) assess and weigh demo-

graphic, socioeconomic, and health indicators that are relevant to the disease; (2) combine 

them into three subindices: exposure, sensitivity, and adaptive capacity; and (3) aggregate 

the subindices into a composite vulnerability index. GIS methods were used to map the 

results. 

Spatial patterns of the composite index showed that vulnerability to COVID-19 var-

ied considerably across Alabama counties. The most vulnerable counties were found in 

the Alabama Black Belt, while most of the least vulnerable ones were located north of the 

Black Belt. The subindices contributed differently to the vulnerability index, which was 

mainly explained by adaptive capacity and sensitivity. The subindices driving the com-

posite index also varied spatially: most vulnerable counties were characterized by low 

adaptive capacity, and high exposure and sensitivity, while the least vulnerable counties 

exhibited strong contribution from adaptive capacity. 

Further deconstruction of each subindex gave new insights into the meaning of the 

composite index and allowed the development of individual county profiles that can be 

very useful for decision makers. Information obtained from the deconstruction can allow 

decision-makers to detect strengths and weaknesses of each county, identify indicators 

that are less important, and precisely pinpoint areas where intervention is needed. For 

example, (1) being the least vulnerable county did not preclude Baldwin from showing 

weaknesses in some areas (e.g., cancer, seniors, uninsured); (2) decision-makers analyzing 

Lowndes’s situation would be able to quickly determine that although it was the most 

vulnerable county, crowding, level of health insurance enrollment, and number of seniors 

were not a main concern. Therefore, depending on each county’s situation, different re-

medial measures might be undertaken. 
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The limitations of this study include the non-availability of more recent datasets for 

some indicators, and well documented weaknesses that are inherent in the statistical 

methods used to normalize, weigh, and aggregate the data [47,54,105]. For example, both 

factor analysis and normalization are very sensitive to the presence of extreme values or 

outliers, which may result in the spurious variability of the data and affect the composite 

score. Moreover, all the weighting and aggregation methods have their pros and cons, 

and as concluded in a study, “there is no perfect solution to the weighting issue” [105]. In 

addition, the attribution of indicators to each determinant can influence the outcome of 

the analysis. For example, in this study, the number of deaths and hospitalizations are 

considered as exposure indicators (the nature and degree to which populations are ex-

posed). However, both indicators could also depict the degree to which populations are 

affected (sensitivity). Another limitation of this study consists in the lack of a sensitivity 

indicator indicating population mobility. Daytime population density was initially chosen 

as a measure of both crowding and mobility, given that a closer proximity of people in-

creases disease spread [59]. However, this indicator was eventually discarded for redun-

dancy and very low PCA loading. Our study was also limited by the lack of statewide 

data quantifying local policies that can influence the level of vulnerability to the pan-

demic. For example, some cities such as Birmingham, Tuscaloosa, and Montgomery tried 

to make their own rules (city-wide curfew, stay-at-home, mandatory face masks), but this 

was not a widespread trend. In general, there has been very few areas in Alabama with 

different prevention measures. Instead, the measures decided by the Governor at the peak 

of the pandemic (limited public gatherings, the stay-at-home order issued on 3 April 2020) 

were applied statewide, with no exceptions. 

The COVID-19 Vulnerability Index developed in this study was based on a set of 

indicators that have been confirmed by specialists in the medical and social fields as being 

relevant to the disease. They include comorbidities, the availability of ICU beds, and a 

variety of demographic and socioeconomic variables that are often referred to as health 

disparity determinants. The index was able to capture the prevalence of COVID-19 exac-

erbated by inequities related to the aforementioned factors. The fact that most vulnerable 

counties were found in the Alabama Black Belt is not surprising; according to the CDC, 

the rate ratio for black compared to white and non-Hispanic persons is 2.8× for hospitali-

zations and 2.0× for deaths [18]. As attested in many studies, the disproportional impact 

of COVID-19 on African Americans results from a variety of factors, including demo-

graphic, social, economic and health inequities [4,19,28,107]. Our study corroborates this 

fact. 

Future work to improve this study will consist of (1) the inclusion of an uncertainty 

analysis and sensitivity analysis to assess the robustness of the composite index; and (2) a 

further review of the indicators. This can be accomplished by implicating stakeholders 

and communities, further incorporating the contribution subject-matter experts, and as 

the diseases evolves, considering the removal of indicators that are not important and the 

addition of new indicators (such as disability, prisons, nursing homes, and homelessness). 

The products resulting from this study, if updated on a regular basis and refined, can help 

decision makers develop an efficient system for the integrated monitoring of the pan-

demic, and act on the underlying determinants of the composite index and subindices for 

a data-driven response to COVID-19. Integrating this tool into the larger framework of 

public health emergency management will enable the development of strategies adapted 

to each county, allow a targeted allocation of resources, and help communities build re-

silience during a pandemic. 
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