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Abstract: Land-use optimization is an effective technique to produce optimal benefits in urban land-
use planning. There are many approaches and methods to optimize land-use allocation. However,
the focus on addressing urban sustainability in land-use optimization is very limited. In this study,
we presented a GIS-based multicriteria decision-making (GIS-MCDM) approach to optimize the
location of a new residential development considering sustainability dimensions (social, economic,
and environmental benefits). Rajshahi City in Bangladesh was taken as a case study. Different types
of data, including land use, land cover, ecosystem service value, land surface temperature, and carbon
storage, were used to define sustainability criteria. Five physical criteria, three sustainability criteria,
and two constraints were used to optimize residential land. Fuzzy membership functions were used
to standardize the criteria. The ordered weighted averaging (OWA) was used to produce a residential
suitability map. Finally, the multiobjective land allocation (MOLA) module of TerrSet v 19.0 was
used to generate optimal locations under an alternative decision scenario. The findings suggest that
about 9.00% more sustainability benefits can be achieved using our approach. Using our proposed
approach, we also generated six alternative decision scenarios. Among the alternative decision
strategies, “high risk–no trade-off” proved to be the most optimal decision strategy that generated
the highest sustainability benefit in our case.

Keywords: land-use optimization; multicriteria decision making; land suitability; ordered weighted
averaging; decision strategy; optimal location

1. Introduction

In 2018, the world’s urban population was 55% of the world population, and it has been
projected to reach 68% by 2050 [1]. With this increased urban population, it becomes a global
concern to devise effective urban land-use planning that can produce optimal benefits.
This problem is more acute in high-density countries such as Bangladesh. For example,
in 2021, the urban population of Bangladesh was 38.90% [2], and it was projected that the
urban population will rise to 57% by 2050 [3]. This higher rate of the urban population
causes unplanned urban development in Bangladesh. Current practice in urban land-use
planning, especially in developing countries, exhibits inefficient patterns and allocation
of land uses, which, in turn, produce a lot of problems in the face of sustainable urban
development [4–6]. For example, in Bangladesh, it has been acknowledged that problems
such as sanitation and drainage, solid waste management, degradation of soil and land,
uncontrolled emissions from domestic and industrial activities, traffic jams in the streets,
and improper disposal of hazardous waste are consequences of rapid urbanization [7,8].
To address the issue of inefficiency, a new concept of sustainable land-use planning has
begun to take focus in planning literature and practice. Sustainable land-use planning
ensures increased compatibility of adjacent land uses, promotes compactness, boosts up
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economic development, and results in desirable social and environmental outcomes [9–11].
Like other countries, Bangladesh has also started to prepare proper urban development
planning (e.g., structure plan, urban area plan, and detailed area plan), but the inclusion of
sustainability in urban development planning is still far from the expectation [12–14].

Land-use allocation concerning urban sustainability involves social, economic, and
environmental aspects. However, in reality, there exist many conflicting and competing
objectives among social, economic, and environmental outcomes. One objective may be
optimized at the expense of another objective. For example, if residential development is
to take place in a low-lying area, it may fulfill the demand for urban housing, but it will
create problems with urban drainage. Construction of building structures may increase
economic benefit, but it will deteriorate the environment and urban health. Therefore,
careful land allocation is of paramount importance in land-use planning. Sustainable land-
use optimization involves optimizing the composition and configuration of land-use types
within a geographical area in order to meet the requirements of sustainable development.
Typically, this method balances trade-offs between several land-use objectives (e.g., social,
economic, and environmental benefits), intending to maximize net benefits across all
outcomes. Often, one objective may only be optimized at the expense of other objectives [15].
However, the main problem is that, in early studies, the inclusion of sustainability criteria
is very limited due to the complexity of calculating social, economic, and environmental
benefits in land-use allocation. For example, Wang, Zhang, and Wang [16] optimized
land-use allocation in Dawa District, a district of Northeast China, but they did not include
social benefits due to the difficulty in the quantification of social benefits.

Rahman and Szabó [17] conducted an extensive systematic literature review on
multiobjective urban land-use optimization using preferred reporting items for system-
atic reviews and meta-analyses (PRISMA). In their systematic review, they investigated
55 journal papers (screened out from 2291 journal articles) to identify and analyze different
aspects of urban land-use optimization problems, where they identified that sustainability
criteria were merely touched upon in urban land-use optimization problems. While some
studies partially considered sustainability dimensions, the quantifications of sustainabil-
ity indicators lacked appropriate methods. For example, Song and Chen [18] optimized
land-use allocation using the NSGA-II method considering four objectives, including maxi-
mization of agricultural suitability, construction suitability, conservation suitability, and
spatial compactness; Zheng et al. [19] optimized land-use allocation in Wuhan, China,
to balance ecosystem services and economic benefits; Cao, Zhang, and Wang [20] opti-
mized land-use allocation considering land-use compatibility and environmental benefits.
A nondominated sorting genetic algorithm (NSGA) was employed by Cao et al. [21] to solve
a multiobjective land-use optimization problem (NSGA-II-MOLU) that aimed to reduce
conversion costs and increase accessibility while also ensuring that land-use types were
compatible with one another. Using a genetic algorithm, Haque and Asami [22] optimized
urban land-use allocation by considering the maximization of land price and minimization
of incompatibility between nearby land-use categories in an area. Neema and Ohgai [23]
used genetic algorithms to find the best locations for urban parks and open spaces based on
four objective functions, using the Euclidian distances between the facility and the demand
points, in a multiobjective optimization model. If we critically look at the optimization
objectives of the above studies, we could see that those studies did not directly include
three dimensions of sustainability.

The studies mentioned in the above text also noted that public participation was
very negligible to optimize land-use allocation, but only quantitative optimization was
insufficient to meet the public agreement. To integrate public opinion decision making,
the multicriteria decision-making (MCDM) approach was introduced in many disciplines.
MCDM is a collection of techniques that aim to determine a preference order among alterna-
tive decision options based on their performance in terms of multiple criteria [24]. Land-use
decision is a spatial allocation problem in which the geographic information system (GIS)
plays an important role in the spatial planning and management of land-use planning.
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MCDM integrated with GIS can help in many complex land-use decision supports, and
interest in this integration is increasing day by day to solve many complex spatial problems.
Combining MCDM procedures with GIS capabilities is becoming increasingly popular
because of the GIS’s capacity to handle enormous amounts of complicated geo-referred
data from many sources at a variety of spatial, temporal, and spatial scales, resulting
in a time-efficient analysis [25]. GIS-based multicriteria decision making (GIS-MCDM)
can be defined as a process of integrating and transforming geographic data (input map
criteria) and value judgments (decision makers’ preferences and uncertainties) into an
overall assessment of the decision alternatives [26]. Due to its applicability to solving the
complex spatial problem, GIS-MCDM was applied in the decision making of the many
land-use allocation problems. However, although the GIS-MCDM approach incorporated
public participation, the inclusion of sustainability criteria was overlooked. It was also
noted that only the physical criteria dominated in the GIS-MCDM approach in land-use
decision making with little attention to the inclusion of sustainability criteria. For example,
Nguyen et al. [27] designed a GIS-based multicriteria land suitability analysis for sustain-
able land-use planning at the regional level in Central Vietnam. They used seven criteria
for their suitability analysis. Although they used environmental criteria, other two criteria
(social and economic) were absent.

Given the above, this study aims to fill the gaps by presenting a GIS-based multicriteria
decision-making (GIS-MCDM) approach to optimize residential land-use allocation while
considering three dimensions of sustainability (maximization of social, economic, and
environmental benefits) and incorporating stakeholder opinion. This study specifically
seeks two research questions: (a) how can we integrate sustainability criteria into land-
use optimization problems, and (b) does inclusion of sustainability criteria increase the
overall sustainability benefits? The contribution of this paper is twofold: (a) integration
of sustainability factors to optimize residential land-use allocation and (b) use of our
developed method (calculation of social and environmental benefit) in the optimization
process. Previously, some proxy variables were used to measure social and environmental
benefits. In our previous studies, we developed a method for calculating social and
environmental benefits in urban land-use allocation [28,29]. In this study, we applied our
methods to quantify the social and environmental benefits of land-use allocation.

The rest of the paper is structured as follows. Section 2 describes the literature review.
Section 3 describes the data used in this study and the methods followed for optimizing
residential location based on selected factors and constraints. This section describes the
methods to calculate, standardize, and aggregate the factors to derive combined land-use
suitability for residential development. Section 4 presents and discusses the findings of
the study. Finally, this paper ends with Section 5, which contains concluding remarks on
this study.

2. Literature Review

Urban land-use optimization planning is very important to achieve long-term urban
sustainability. However, it becomes a global challenge, especially in developing countries,
to optimize urban land-use allocation in the face of rapid urbanization, migration, and
climate change [4,30–32]. Sustainable urban land-use optimization/allocation is considered
an effective tool to achieve urban sustainability. Sustainability is one of the important goals
of urban land-use planning, which requires taking into account the social, economic, and en-
vironmental benefits of people [33,34]. Sustainable land-use planning encompasses social,
economic, and environmental components, each of which has a distinct objective. Addition-
ally, optimality is a fundamental principle of sustainable land-use planning. Owing to this,
many researchers conducted land-use optimization. For example, Handayanto et al. [35]
combined particle swarm optimization, genetic algorithms, and a local search method into
a single hybrid optimization method for land-use planning in Bekasi City, Indonesia. They
used four criteria to optimize land-use allocation. These are maximizing compactness, com-
patibility, dependency, and suitability. Li et al. [36] applied a particle swarm optimization
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algorithm to optimize urban land-use allocation while maximizing spatial compactness,
land ecosystem service value, land-use suitability, and land transformation benefit. Mo-
hammadi et al. [31] optimized land-use allocation using nondominated sorting genetic
algorithm-II (NSGA-II) while maximizing spatial compactness, floor area ratio, land-use
compatibility, and economic benefit and maximizing mixed use. However, these studies
tried to optimize land-use allocation mainly based on the spatial configuration of urban
land-use types in which urban sustainability was ignored. While there are some studies on
sustainable land-use optimization [37,38], they did not consider all the three dimensions
(social, economic, and environmental) of sustainability.

Although some of the early studies included sustainability criteria partially, they
did not use any established method to quantify sustainability indicators. They used
a single variable-based measure to quantify sustainability dimensions. For example,
Zhang et al. [39] quantified social benefit as a function of the value of social security ser-
vices, Yuan et al. [38] quantified social benefit using the spatial compactness of an area,
and Cao et al. [37] used spatial accessibility as a proxy for social sustainability. However,
focusing exclusively on a single metric may not be the optimal way to assess social benefit.
Jenks and Jones [40], for example, noted that while spatial compactness in cities offers
numerous social benefits, it may result in less living space, reduced access to open spaces,
less affordable housing, and bad health. Even a compact city may suffer negative conse-
quences if land uses are incompatible. If the land uses are compatible but there is a lack
of accessibility, the social benefit is also reduced. Thus, compatibility and accessibility are
also factors in determining social benefit. Similarly, there may be additional indicators
contributing to the social benefit metric. As a result, we argue that many indicators can
be ascribed to the social benefit metric. As a result, some form of the composite index
is necessary to quantify societal gain. To resolve this problem, Rahman and Szabó [29]
developed a composite index to quantify social benefit in land-use allocation. In the
same way, there was no established method to quantify environmental benefits. Several
researchers used several methods to measure environmental benefits in urban land-use
allocation. Yuan et al. [38], for example, employed carbon storage as a proxy for quantify-
ing environmental benefits, assuming that carbon storage can help sustain air pollution
levels. Numerous studies have also used spatial compactness as a proxy for environmental
benefits, assuming that a compact city is more sustainable and livable [41], provides better
access to city facilities and promotes public health and well-being [42], and can maximize
the overall environmental benefits of people [43]. However, environmental benefits can
also be measured according to the approach proposed by Rahman and Szabó [29].

In the introduction section, it was mentioned that public participation was very neg-
ligible in the early land-use optimization problem. To overcome this, the multicriteria
decision-making (MCDM) approach was introduced [44,45]. With the help of an MCDM
process, decision making is aided by helping to structure the problem and providing all par-
ties involved with a common language for discussing and learning about the problem [46].
Since its inception, MCDM has been applied in many fields including land-use planning.
For example, Zhang et al. [47] proposed a GIS-based multicriteria decision analysis tech-
nique to resolve conflicts in urban land-use allocation games. They developed a spatial
conflict resolution strategy to help stakeholders and planners to formulate specific land-
use proposals through an iterative modification process. However, they did not mention
sustainability criteria in conflict resolution. Mendas and Delali [48] integrated multicriteria
decision analysis in GIS to develop land suitability for wheat cultivation in the region of
Mleta in Algeria. They also did not include sustainability criteria in their suitability analysis.
Luan et al. [49] conducted a land-use suitability assessment for urban development using a
GIS-based MCDM approach in Ili Valley, China. They used 13 criteria for land suitability
assessment. Although they grouped some subcriteria under socioeconomic factors, still,
sustainability criteria were not fully addressed. Romano et al. [25] integrated geographical
information systems (GIS) and multicriteria decision analysis (MCDA) to evaluate the
potential of a rural coastal area, located in northern Puglia (Southern Italy), to improve its
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sustainable development through the restoration of farmland. They used only physical
criteria for sustainable allocation of farmland. In fact, there was no specific inclusion of
sustainability criteria. Therefore, it is evident that although stakeholder participation was
addressed in the MCDM approach in land-use optimization/allocation, still, the inclusion
of sustainability criteria (social, environmental, and economic) is weak. This inevitably re-
quires incorporating both sustainability criteria and a participatory approach in sustainable
urban land-use optimization.

In this study, we used the MCDM approach to select the optimal location for a new
residential area. We used five physical criteria and three sustainability criteria (social,
economic, and environmental benefits) to determine the optimal location while maximizing
the sustainability benefits. First, we created suitability maps for each criterion using the
fuzzy membership function. Then, we created a combined suitability map using ordered
weighted average (OWA) [50] techniques for different decision risk scenarios. Finally, we
identified the optimal location considering overall sustainability benefits.

3. Materials and Methods
3.1. Study Area

This study was conducted in the Rajshahi Metropolitan Area (RMA) of Bangladesh.
It is one of Bangladesh’s eight administrative divisions and one of the country’s eight
metropolitan cities. Rajshahi is located in the country’s northwestern region. The famous
river the Padma forms the southern border with the Rajshahi division, while another
famous river, the Jamuna, forms the eastern border. Rajshahi is located in the Barind
Tract at a height of 23 meters above sea level at 24◦22′26′ ′N 88◦36′04′ ′E. The city is about
243 km from the capital city, Dhaka, and is close to the India–Bangladesh border. The
area and population of this metropolitan city are 365.55 km2 (Figure 1) and 1.3 million,
respectively. Rajshahi is a significant administrative, educational, cultural, and business
center. Due to the city’s high concentration of educational institutions and large student
population, it is referred to as Bangladesh’s educational city. This city is home to the
divisional headquarters. According to the Köppen climate classification, Rajshahi has a
tropical wet and dry climate. Monsoons, high temperatures, high humidity, and moderate
rainfall characterize Rajshahi’s climate.
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Figure 1. (a) Location of Rajshahi district in relation to Bangladesh; (b) location of the study area in
relation to Rajshahi district; (c) administrative boundary of the study area.

3.2. Dataset

In this study, we used a variety of datasets. The primary data used in this study
include land use and land cover, road network and other physical features, and a digital
elevation model (DEM). These data were sourced from the Rajshahi Development Authority
(RDA), Bangladesh. These data were in raster and ESRI shapefile format and were used to
derive land suitability maps for different factors. The land cover data were created from
Landsat images. The description of the detailed methodology of land cover classification
can be found in Rahman and Szabó [51]. In addition, ecosystem service value, land surface
temperature, carbon storage, and so forth were used in this study. The description of these
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data and processing can be found in Rahman and Szabó [28]. All the data were processed
using ArcGIS 10.8 software. In addition to these data, other data were used to calculate the
social, economic, and environmental benefits. This is described in the relevant section.

3.3. Methodology

In Section 2, we described the different methods used to optimize urban land-use allo-
cation. It was identified that many heuristic approaches and participatory approaches were
applied to find the optimal land for future allocation. However, many heuristic approaches
merely included public participation, although public participation is an indispensable
part of urban land-use decision making. Considering the above, we applied the MCDM
approach for land-use optimization.

In this study, we used the GIS-based MCDM approach to optimize the location of new
residential development. We added sustainability dimensions in the process of land-use
optimization. The whole process of optimizing the location for new residential develop-
ment involves two major steps: (a) evaluation of land suitability mapping of residential
development using multicriteria evaluation (MCE) and (b) identification of optimal location
for new residential development. The whole process is presented in Figure 2.
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3.3.1. Evaluation of Land Suitability

In the MCDM approach, four major steps are performed for the evaluation of land
suitability. These are (a) calculation of criteria value, (b) standardization of criteria,
(c) weighting of criteria, and (d) weighted aggregation of criteria. A brief description
of these steps is given below.

3.3.1.1. Calculation of Criteria Value

The first step in the evaluation of land suitability is to calculate the value of the criteria.
A criterion is a basis for judgment that is quantifiable and evaluable. Criteria can be divided
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into two categories—factors and constraints—and they can apply to either an individual’s
attribute or the entire decision set in question. In the context of an activity, a factor is a
criterion that either increases or detracts from a given alternative’s suitability. The most
frequent scale used to quantify it is a continuous scale, whereas constraints are used to limit
the choices considered. An excellent example of a constraint would be the exclusion of areas
designated as wildlife reserves from development. Constraints are typically expressed as a
Boolean (logical) map, with areas excluded from consideration denoted by a 0 and those
available for consideration denoted by a 1 [52]. In this study, we selected five physical
factors, three sustainability factors, and two constraints for residential land suitability
analysis. The physical factors and constraints were selected based on the local authority
and stakeholders through focus group discussion (FGD) as well as existing regulations
for new development. We also added sustainability factors to address sustainability in
land-use optimization for new residential development. The list of factors and constraints
is shown in Table 1.

Table 1. List of factors and constraints used for residential land suitability.

Criteria Types Name

Factors

Physical factors

Distance from the town center
Distance from main roads

Distance from existing residential land
Distance from brickfield

Land elevation

Sustainability factors
Social benefit

Environmental benefit
Economic benefit

Constraints
Existing land use

Existing water bodies

Distance (Euclidian distance) from main roads, existing residential land, and brickfield
were calculated using the “DISTANCE” operator of TerrSet v 19.0 software, and distance
from the town center was calculated using the “COST” operator with the “cost grow”
algorithm available in the same software. Land elevation value was sourced from sec-
ondary sources, as mentioned in Section 3.2. Social benefits were calculated following our
earlier developed method [29]. Environmental benefits were calculated using the method
developed by Rahman and Szabó [28]. Economic benefit was calculated following the
methodology developed by Gong et al. [53]. We are not going to repeat the methods here.
Interested readers can find the detailed methodology in the referred literature. Constraints
were developed from existing land uses of the study area.

3.3.1.2. Standardization of Criteria Value

Since different scales are used to measure the criteria, it is required to standardize and
transform the factors before combining them to ensure that all factors’ maps are positively
correlated with suitability. For example, a land residential development is more suitable
if it is located near main roads but far from brickfields. Therefore, we need to transform
the suitability so that higher value always remains of higher suitability. There are many
procedures for standardization, such as fuzzy membership function, Bayesian probability
theory, and Dempster–Shafer theory [54]. However, the fuzzy membership function is the
most popular and convenient for this kind of study since it provides a strong logical process
of standardization [55]. Therefore, the fuzzy membership function (FMF) was used in our
study to standardize the factors. A fuzzy set is defined by a fuzzy membership grade (also
known as a possibility) that ranges between 0.0 and 1.0, signifying a continuous progression
from nonmembership to complete membership. It is very important to determine the shape
and type of membership functions and variable threshold values (effective range) before
implementing fuzzy sets for standardizing criteria maps. In this study, we followed the
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guidelines by Eastman [56] to determine the shape and type of fuzzy membership function
in the standardization process of factors. There are many procedures of standardization,
but the simplest is linear scaling, which can be expressed in Equation (1).

xi =
(Ri − Rmin)

(Rmax − Rmin)
× standardized_range (1)

where R = raw score of factor.
The standardized value of factor varies. In this study, we used a standardized range

between 0 and 1, where 0 represents the lowest suitability and 1 represents the highest
suitability. The evaluation criteria with fuzzy membership function type, control points,
and function shape used in this study are presented in Table 2.

Table 2. The factors, fuzzy membership function, control points, and shape of the function used in
this study.

Factors
Fuzzy

Membership
Function

Control Points
Shape of Function

a b c d

Distance from city center Linear 0 1531 Monotonically decreasing
Distance from

main roads Linear 30 7648 Monotonically decreasing

Distance from existing
residential land Linear 30 3222 Monotonically decreasing

Distance from brickfield Sigmoidal 500 3000 Monotonically increasing
Land elevation Linear 12 22 Monotonically increasing
Social benefit Linear 0.23 0.8 Monotonically decreasing

Environmental benefit Linear 0.05 0.84 Monotonically decreasing
Economic benefit Linear 0.08 1 Monotonically decreasing

Constraint maps were developed by consulting the existing regulations. Two constraint
maps were prepared: land-use constraint and water constraint. Existing regulations pro-
hibit new development in water bodies and already-developed land. Only agricultural land
is allowed for new development. Control points and other criteria in Table 2 were deter-
mined with the consultation of the local authority, stakeholders, and representatives of local
people through FGD. Based on the FGD, it was decided that new residential development
should take place within proximity of the city center, main roads, and existing residential
land. Therefore, the suitability of residential development decreases with the increase in
distance from these factors. This decrease in a linearly correlated and thus a linear fuzzy
membership function with monotonically decreasing shape was used for standardization
of these factors setting control points between the lowest and highest values. Residential
development is prohibited within 500 m of brickfields. Participants in the FGD agreed
that land suitability for residential development increases beyond 500 m of brickfield, and
the maximum suitability reaches 3000 m. The suitability after 3000 m from the brickfield
remains the same. This function cannot be described by a simple linear relationship. It
is best described by an increasing sigmoidal curve. Therefore, we used a monotonically
increasing sigmoidal function to rescale the values in the distance-from-the-brickfield image
setting the control points at 500 and 3000 m. Existing regulation also prohibits residential
development on land having elevations of less than 12 m. Therefore, land suitability in-
creases beyond 12 m of elevation. This relationship between land suitability and elevation
was positively correlated. Thus, a linear fuzzy membership function with a monotonically
increasing shape was used to rescale the elevation image setting control points 12 and 22 m
(highest value). It was decided in the FGD that the new residential development can be
developed in a location where existing social, environmental, and economic benefits are low.
The logic is that new development will eliminate the benefits of those locations (although
the new development will create some social, economic, and environmental benefits, these
are new benefits that will be derived), so the loss of social, economic, and environmental
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benefits can be minimized. Thus, the social, economic, and environmental benefits can
be maximized by allocating land for new residential development in locations where the
existing benefits are lower. Therefore, in these cases, we used a monotonically decreas-
ing linear fuzzy membership function to rescale the social, economic, and environmental
benefits (values).

3.3.1.3. Weighting of Criteria

In the MCDM approach, the calculation of weights of different factors is very im-
portant. Different methods are used to derive weights, including the AHP method [57],
entropy method [58], analytic network process [59], and Delphi method [60]. Among oth-
ers, AHP is the most popular and used globally in the decision-making process. To consider
the viewpoints of stakeholders and to reach a consensus on the preferred choices, we
used the AHP method to determine the weights of the different factors. Details of the
AHP method can be found elsewhere [61,62]. Nonetheless, a basic summary of the AHP
procedure is provided here. The AHP technique compares the criteria pairwise and assigns
each criterion a numerical value in the range of 1 to 9 based on stakeholder judgments. This
number indicates the precedence of one criterion over another in the pair in question [57].
An FGD was held to ascertain the degree of importance attached to the various indicators.
This FGD involves a variety of stakeholders, including local development authorities,
representatives of the local population, and urban planners. It should be highlighted that
the entire FGD group was treated as a single individual. As a result, the consensus values
from FGD were utilized to rate the intensity of each indicator’s importance. The value of
this scale, its accompanying definition, and an explanation are listed in Table 3.

Table 3. The fundamental scale of numbers is used in the AHP method.

Intensity of Importance Definition Explanation

1 Equal importance Two activities contribute equally to the objective

3 Moderate importance of one over another Experience and judgment slightly favor one activity
over another

5 Essential or strong importance Experience and judgment strongly favor one activity
over another

7 Very strong importance An activity is strongly favored, and its dominance
demonstrated in practice

9 Extreme importance
The evidence favoring one activity over another is of

the highest
possible order of affirmation

2, 4, 6, 8 Intermediate values between the
two adjacent judgments When compromise is needed

Source: adapted from Saaty [63].

A pairwise matrix was created once the intensity values for each factor were obtained
using the FGD. Then, the weight values of factors can be obtained by computing the primary
eigenvector of the pairwise comparison square reciprocal matrix and then normalizing the
sum of the components to unity as Equation (2) [64]:

n

∑
i=1

Wi = 1 (2)

However, decision makers may make incoherent (subjective) assessments, in which
case the aforementioned consistency requirement is not always met. As a result, it was
critical to verify the matrix’s accuracy after getting the weight values. AHP gives quantita-
tive measures for evaluating this. Consistency is quantified using a consistency ratio. The
consistency ratio (CR) is calculated using Equation (3):

CR =
CI
RI

(3)
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where, CI and RI represent the consistency index and the random index, respectively, in
which

CI =
λmax − n

n− 1
(4)

where λmax is the largest or principal eigenvalue of the matrix and n is the order of the
matrix. RI is the average of the resulting consistency index depending on the order n.

If CR < 0.1, the pairwise comparison matrix is considered to be consistent, and the
weight values produced can be used. If CR > 0.1, the matrix is judged incoherently and
must be corrected by changing the element values [63].

3.3.1.4. Weighted Aggregation of Criteria

The concept of decision rules or evaluation algorithms is central to GIS-MCDM.
A decision rule is a process through which criteria are chosen and combined to arrive at a
particular evaluation, as well as how evaluations are compared and acted upon. Typically,
decision rules include techniques for integrating criteria into a single composite index and
an explanation of how alternatives will be compared using this composite index [65]. In
GIS, there are three primary types of decision (or combination) rules: Boolean overlay,
weighted linear combination (WLC), and ordered weighted averaging (OWA).

Boolean overlay reduces all criteria to logical declarations of suitability and then
combines them using one or more logical operators, such as intersection (AND) and
union (OR). Boolean evaluation is a very severe form of decision making. When paired
with a logical AND (the intersection operator), a location must satisfy all criteria to be
included in the decision set. If even one requirement is not met, the site is eliminated. This
technique is fundamentally risk-averse, and it chooses places using the most conservative
strategy possible—a location is chosen only if all criteria are met. On the other hand, when
a logical OR (union) is utilized, the converse is true—a location is included in the decision
set even if only one criterion passes the test [55]. Thus, this is a gambling technique that
entails (supposedly) high risk and does not produce decisions with an intermediate level
of risk (Figure 3). Boolean overlay results in the selection of appropriate sites and rejection
of others without knowing their suitability level. All criteria have equal weight in the final
composite suitability map, and a component with a high weight cannot compensate for a
minor factor (trade-off) when determining a site’s suitability [66]. These limitations can
be solved by introducing weight to the factors and combining them to find the composite
suitability of different levels.
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WLC involves standardizing continuous criteria (factors) to a common numeric range
and then combining them using a weighted average. WLC enables criteria to make trade-
offs between their qualities. Very poor quality might be offset by several extremely excellent
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qualities. This operator is neither AND nor OR—it is in between these two extremes. It is
neither risk-averse nor risk-taking. It is proved that vector methods to MCDM are domi-
nated by Boolean strategies, whereas raster systems are dominated by WLC solutions [26].
WLC is defined by complete trade-off and average risk, which is precisely halfway between
AND and OR operations, that is, neither excessive risk aversion nor extreme risk-taking
(Figure 3). WLC can be expressed by Equation (5):

Sj =
n

∑
i=1

wixi (5)

where Sj is the composite suitability (of the jth pixel or area); wi = weight of factor i;
xi = criterion score of factors i; n = total number of factors.

However, none is superior—they merely offer two opposed perspectives on the
decision-making process—what can be called a choice strategy. The WLC approach is
not always appropriate for territorial analysis due to the inherent risk of concealing a
limiting factor between the high values of other criteria. Thus, the decision maker has
limited control over Boolean and WLC methods to decide the level of risk and trade-off
in decision making. To avoid this problem, the ordered weighted average (OWA) was
proposed by Yager [50]. The third method, OWA, is identical to the WLC procedure, except
that OWA requires additional weights, referred to as order weights, and calculates the
factor weights’ combination. This method provides a comprehensive range of decision
methods along the two fundamental dimensions of the degree of trade-off and degree of
risk associated with the solution [55] (Figure 3). OWA can be expressed by Equation (6):

Si =
n

∑
j=1

(
ujvj

∑n
j=1 ujvj

)zi j (6)

where Si is the suitability at the ith location of the area, n is the number of indicators, uj is
the original weight factor of the criteria, vj is the ordered weight of the criteria such that
vj ∈ [0, 1] f or j = 1, 2, . . . , n, and ∑n

j=1 vj = 1, zij is the ordered value of the criteria at ith
location.

In the case of OWA, two sets of weights are used. The first weight (uj) of the criteria
can be determined using many methods, including the analytic hierarchy process (AHP)
method, as described in Section 3.3.1.3. The second weight, which is known as ordered
weight, was assigned to the ordered criteria based on either increasing order or decreasing
order depending on the level of acceptable risk and type of criteria. In this study, we used
OWA with different combinations of ordered weights to generate alternatives with different
levels of trade-off and risk following the guidelines of Eastman [56]. The combination of
ordered weights is presented in Table 4.

Table 4. Ordered weights used in different strategies.

Decision Strategies Ordered Weights

Average Level of Risk—Full Trade-Off 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
Low Risk—No Trade-Off 1 0 0 0 0 0 0 0
High Risk—No Trade-Off 0 0 0 0 0 0 0 1

Low Level of Risk—Some Trade-Off 0.4 0.3 0.12 0.07 0.05 0.03 0.02 0.01
High Level of Risk—Some Trade-Off 0.01 0.02 0.03 0.05 0.07 0.12 0.3 0.4
Average Level of Risk - No Trade-Off 0 0 0 0.5 0.5 0 0 0

3.3.2. Optimized Allocation of Suitable Land

In this study, we used the multiobjective land allocation (MOLA) module of TerrSet v 19.0
software to optimize residential land-use allocation under different levels of risk and trade-
off. MOLA is considered a spatial optimization model that allocates appropriate uses to
specific land units based on a variety of criteria, factors, and constraints [18]. The MOLA
module performs this through a decision heuristic. It is intended to allocate locations by
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the total area thresholds set by the decision maker. Here, we allocated 1000 hectares of
land for new residential development. This area was decided based on consultation with
the authority. It can be mentioned that we used a total of eight factors and two constraints
(Table 1) to optimize the residential land allocation. Out of these factors, five are physical
criteria and three are sustainability criteria. In the traditional GIS-MCDM approach, only
physical criteria were used to optimize land allocation. However, in this study, we added
the sustainability criteria (social, economic, and environmental) to make sustainable land-
use allocation decisions. To compare the result between the traditional approach and our
approach (by adding sustainability criteria), we optimized the residential land allocation
both adding sustainability criteria and without adding sustainability criteria. Then the
sustainability value (social, economic, and environmental benefits) was calculated for both
scenarios. Then we generated optimized land allocation, adding sustainability criteria
under different levels of risk and trade-off decisions. Finally, we also calculated the values
of sustainability in different decision scenarios to compare which decision produces the
highest sustainability benefits. The decision strategy that can maximize the sustainability
benefit (social, economic, and environmental benefits) can be decided as the optimal
solution for land-use decisions.

4. Result and Discussion
4.1. Criteria of Residential Land-Use Decision

In this study, we used five physical factors, three sustainability factors, and two constraints
to optimize residential land-use decisions. The values of the factors are presented in
Figure 4. These physical factors are very common and were also used in many other studies
for land-use suitability and optimization problems [27,52,66]. However, the sustainability
factors are not common to include in the land-use optimization problem.

Distance from the brickfield is the first factor in this study. In the study area, there
are six brickfields. The values of distance from brickfields are presented in Figure 4a and
the standardized value of the same is presented in Figure 5a. The standardized value
illustrates the suitability scale of residential development considering individual criteria.
From Figure 4a, it is seen that the brickfields are mainly located at the periphery of the
study area. In the suitability map (Figure 4a), it is seen that most of the area is suitable for
residential development in terms of the first criteria. Within 500 m, there is no suitability
value since, according to existing regulation, residential development within 500 m of
brickfield is prohibited. Suitability tends to increase beyond 500 m and continue to increase
up to 3000 m. After 3000 m of distance, the suitability is the same since it is considered
that there will be no negative impact on residential development beyond 3000 m from the
brickfield. In the case of distance from the main road (Figures 4b and 5b), the suitability
increase if the land is located near the main road. This strategy was also used in other
studies, like the study by Assefa et al. [52]. From Figure 5b, it is observed that the suitability
of residential development is comparatively higher throughout the area since the main
roads are evenly distributed all over the area. It can be noted that the suitability is very
low in the lower part of the study area since there exists a river and there are no roads
within the area. In the case of the city center (Figure 5d), the suitability decreased from the
city center since the new development is preferred within the proximity of the city center.
Therefore, residential suitability is lower along the periphery in case of distance from the
city center. Land height is another criterion for the selection of residential development. As
per existing regulation, residential development on land having a height of less than 12 m
is prohibited since it is low land and these lands are at risk of flooding and waterlogging.
Therefore, the suitability increases with the increase in land height as evident in Figure 5e.
Although land height was also used in many other studies for suitability analysis, the
threshold value of land height is different because the land elevation is different in different
places. Some studies also considered land slope for residential site suitability [67], but we
did not consider slope since in our cases most of the land is flat.
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The values of sustainability benefits were also included in the suitability mapping.
The value of the social benefit and its standardized value are presented in Figures 4f and 5f,
respectively. According to Figure 5f, the social benefit in the study area is average, with the
lowest and highest values being 0.23 and 0.8. The suitability of residential development
is higher where the social benefit value is lower. The logic is that if the new residential
development takes place in the low-benefit area, then the loss of social benefit will be
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minimized. The same is also true for economic benefits and environmental benefits. It is
wise to select the land for residential development where the benefits of social, economic,
and environmental values are lower so that the loss of these benefits can be minimized. In
other words, in this way, sustainability benefits can be maximized. In addition to physical
and sustainability factors, we also used two constraints to limit the new residential devel-
opment. These constraints are presented in Figure 4i,j. The constraints were determined
according to the existing regulation. Existing regulation prohibits the development of the
water body, and only agricultural land is allowed for new development.

4.2. Weighted Suitability of Residential Land

After calculating the land suitability for individual factors, we calculated the combined
land suitability based on the weights assigned to different factors. The weights of different
factors were calculated based on the AHP method described in Section 3.3.1.3. The weights
of different factors are presented in Table 5.

Table 5. Weights of different factors.

Factors Weight

Distance from brickfield 0.06
Digital elevation model (DEM) 0.05

Distance from main roads 0.16
Distance from the town center 0.10

Distance from existing residential land 0.11
Social benefit 0.27

Economic benefit 0.04
Environmental benefit 0.22

Based on the weights of different factors, we generated the weighted suitability of
residential land using the OWA method. The land suitability was derived from varying
levels of risk and trade-offs. In this study, we generated a suitability scale for six different
land-use decision strategies: (a) average risk—full trade-off, (b) average risk—no trade-
off, (c) low risk—no trade-off, (d) low risk—some trade-off, (e) high risk—no trade-off,
and (f) high risk—some trade-off, following the ordered weights in Table 4. However,
some studies followed different strategies to derive weighted suitability. For example,
Masoudi et al. [68] separated environmental factors and applied a low level of risk and no
trade-off reorder weight for environmental factors in which the first environmental factor
was assigned weight 1, and for the rest of the factor weights, 0 was applied. However, in
our study, we generated six alternative decision strategies for the decision makers. The
suitability scale for different decision strategies is presented in Figure 6. In the case of the
average risk—full trade-off decision (Figure 6a), the lowest and highest suitabilities are 0.31
and 0.90, respectively. This scenario is the output of a simple weighted linear combination.
This is the average situation of decision making. In this scenario, it is seen that most of the
area is not highly suitable for residential land. In the case of the average risk—no trade-off
decision (Figure 6b), the suitability increased since more weight was given to the higher
value of each cell. Thus, it is observed that most of the land is highly suitable for residential
development. In the case of the low risk—no trade-off decision (Figure 6c), the suitability
was suddenly decreased. The reason is that in this strategy, the suitability was determined
based on the lowest value of different factors. Therefore, the suitability value was reduced.
However, in the next scenario (Figure 6d), the suitability was increased since some extent
of trade-off was allowed with the low-risk decision. In the case of the high-risk—no trade-
off decision (Figure 6e), the suitability value was highly increased because, in this case,
the suitability was determined based on the highest value of the factors. Therefore, the
suitability value was increased drastically. If some degree of trade-off was allowed with
high risk, then the suitability was decreased to some extent (Figure 6f).
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4.3. Optimum Location for Residential Development

Based on the weighted suitability under different decision strategies, we generated
optimal locations for residential development. First, we generated optimal location con-
sidering sustainability factors (social, economic, and environmental benefit) and without
considering sustainability factors to understand to what extent sustainability benefit was
derived in both situations. The result of optimal location is presented in Figure 7.

It is observed from Figure 7 that there is a difference in allocation under the two scenarios.
In the case of Figure 7a, the shape of the land allocation is much more compact compared
with the output in Figure 7b. In Figure 7b, the right part of the allocated land is linearly
scattered. To understand the impact of this allocation on sustainability benefits, we cal-
culated total sustainability benefits for both scenarios. It can be mentioned that the total
sustainability value was calculated from Figure 4f–h. To calculate the total sustainability
benefit, the restricted land was excluded. The value of sustainability benefits is presented
in Table 6.
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Table 6. Sustainability benefit values of optimal land allocation.

Sustainability Dimension
Sustainability Benefit Value (Unitless)

Without Considering Sustainability Considering Sustainability % Increase of Benefit
Considering Sustainability

Social benefit 95,370.08 100,775.70 5.67
Environmental benefit 62,277.21 67,616.00 8.57

Economic benefit 20,283.13 25,553.56 25.98
Total 177,930.42 193,945.26 9.00

In the traditional GIS-MCDM approach, sustainability benefits were hardly considered.
Although some studies looked at some aspects of sustainability in land-use optimization,
the ways they measured sustainability indicators were not well established. For example,
Song and Chen [18] used the NSGA-II method to find the best land allocation, taking into
account four goals: maximizing agricultural suitability, construction suitability, conserva-
tion suitability, and spatial compactness. Zheng et al. [19] maximized ecosystem services
and economic benefits while allocating urban land use. However, in these studies, we in-
cluded all three aspects of sustainability for land-use allocation. From Table 6, it is observed
that sustainability benefits were increased when sustainability factors were considered in
the land-use optimization process. Table 6 shows that economic benefit was increased by
25.98% and overall sustainability benefit was increased by 9% compared with the tradi-
tional GIS-MCDM approach applied in many studies, such as Hajehforooshnia et al. [69],
Mendas and Delali [48], and Masoudi et al. [68]. Although the study by Masoudi et al. [68]
aimed to evaluate different land-use suitabilities to achieve sustainable land-use planning,
the study did not include social, economic, and environmental dimensions directly. Rather,
that study considered some environmental factors (e.g., water resource, soil, and cover) to
address sustainability.

The optimal residential development locations under different decision strategies
are presented in Figure 8. By different decision strategies, we mean a different level of
risk and trade-off. As we mentioned in Section 3.3.1.4., two sets of weights were used to
derive aggregated suitability. The first weights of factors were derived through AHP that
cannot be changed. However, the second weight, which is the known ordered weight, can
be varied to control the level of risk and trade-off. We applied a different combination
of ordered weights to control the level of risk, as presented in Table 4. However, some
studies used a different combination of ordered weights to control the level of risk and
trade-off. For example, Masoudi et al. [68] applied a low level of risk and no trade-off
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for environmental factors, so the first environmental factor was assigned weight 1, and
for the other factors, weight 0 was applied. They used such order since they grouped
environmental factors separately, but we did not divide factors into any group. In fact,
for our case, no such social or environmental group was required because we already
calculated social and environmental values considering multiple indicators, as described in
Rahman and Szabó [29].
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Figure 8. The optimum locations of new residential development are illustrated
under different decision strategies. It is seen from Figure 8 that the optimum location
of new residential development varies under different decision strategies. In the case of
Figure 8a,b,d,f, there are three parts of optimal location, whereas in Figure 8c, there are
two optimal locations, and in Figure 8e, optimal location is concentrated in one location.
These are the alternatives for new residential development. However, to aid the decision
maker, we also computed the sustainability values of land allocation under different
decision strategies. The sustainability values are presented in Table 7.
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Table 7. Sustainability benefit values under different decision strategies.

Sustainability Dimension
Sustainability Values Under Different Decision Strategies (Unitless)

ARFT ARNT HRNT HRST LRNT LRST

Social benefit 64,970.11 65,502.01 66,184.19 63,883.22 64,851.03 65,333.28
Environmental benefit 21,122.65 21,331.75 21,432.61 20,814.49 21,088.68 21,256.21

Economic benefit 184,282.03 185,542.07 188,179.53 182,448.89 184,897.84 185,908.95
Total benefit 64,970.11 65,502.01 66,184.19 63,883.22 64,851.03 65,333.28

ARFT = average level of risk—full trade-off, ARNT = average level of risk—no trade-off, HRNT = high risk and
no trade-off, HRST= high level of risk—some trade-off, LRNT = low risk and no trade-off, LRST= low level of
risk—some trade-off.

Table 7 shows that the sustainability benefit values of optimum land allocation are
different under different decision strategies. It is observed that the highest sustainability
benefit value was derived from the high risk and no trade-off decision (Figure 8e), followed
by low level of risk—some trade-off (Figure 8d) and average level of risk—no trade-off
(Figure 8b). The lowest sustainability value was derived from the high level of risk—some
trade-off decision (Figure 8f). In this study, we optimized residential land-use locations,
focusing on urban sustainability. We also calculated the value of sustainability in a different
scenario. However, some other studies considered sustainability in land-use optimization
but did not consider all three aspects of sustainability. For example, Cao et al. [37] and
Yuan et al. [38] optimized sustainable land-use allocation but only considered the social
benefit of land-use allocation; Cao, Zhang, and Wang [20] optimized land-use allocation by
taking the compatibility of land-use and environmental advantages into account.

5. Conclusions

This paper presents a GIS-based multicriteria decision-making (GIS-MCDM) approach
to optimize the location of new residential development. The traditional GIS-MCDM
approach only considered physical factors to optimize urban land-use allocation, and
sustainability dimensions (social, economic, and environmental benefits) were rarely ad-
dressed to optimize land-use allocation. In this study, we presented a GIS-MCDM approach
to optimize residential land-use allocation by addressing social, economic, and environmen-
tal factors. The main contribution of this paper is the integration of sustainability factors to
optimize residential land-use allocation, which was not addressed earlier. The study demon-
strated that about 9.00% more sustainability benefits can be derived using our proposed
approach. This proves that the proposed approach is much more efficient compared with
the traditional approach. Using our proposed approach, we generated six alternative deci-
sion scenarios of optimum locations for new residential development (Figure 8). Among the
alternative decision strategies, the “high risk—no trade-off” (Figure 8e, Table 7) decision
strategy generated the highest sustainability benefit in our case. In this study, we used
the OWA technique to aggregate multiple criteria. There are also some other functions to
aggregate the criteria, such as Bonferroni and Choquet integral, which could generate a
different result, but we did not use these functions. This is one of the limitations of this
study. Future studies can use some other aggregation functions, such as Bonferroni and
Choquet integral, to compare the results. The proposed approach and findings of the study
can be used to support land-use decision making in cities to achieve sustainable urban de-
velopment. Since the global urban population is increasing, it becomes a global concern to
devise an appropriate technique to plan urban land-use sustainably. However, the previous
techniques merely touched upon the sustainability issues in land-use optimization. Against
this background, the proposed approach incorporated sustainability criteria to optimize
urban land-use location. Therefore, the proposed approach has practical implications for
decision makers concerning sustainable urban land-use planning.



ISPRS Int. J. Geo-Inf. 2022, 11, 313 20 of 22

Author Contributions: Conceptualization, Md. Mostafizur Rahman; methodology, Md. Mostafizur
Rahman; software, Md. Mostafizur Rahman; validation, Md. Mostafizur Rahman; formal analysis,
Md. Mostafizur Rahman; investigation, Md. Mostafizur Rahman; resources, Md. Mostafizur Rahman;
data curation, Md. Mostafizur Rahman; writing—original draft preparation, Md. Mostafizur Rahman;
writing—review and editing, Md. Mostafizur Rahman and György Szabó; supervision, György Szabó.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used in this study are available from the corresponding
author on request.

Acknowledgments: This research work is an output of a doctoral study at the Department of
Photogrammetry and Geoinformatics, Budapest University of Technology and Economics. The
first author thanks the Ministry of Foreign Affairs and Trade and Tempus Public Foundation of the
Hungarian government for providing him with the opportunity to study Ph.D. with a Stipendium
Hungaricum Scholarship.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. United Nations, Department of Economic and Social Affairs. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420);

United Nations: New York, NY, USA, 2019. [CrossRef]
2. Knoema. Bangladesh Urban Population, 1960–2021, Jan. 2022. Available online: https://knoema.com/atlas/Bangladesh/Urban-

population (accessed on 26 February 2022).
3. UN/DESA. World Urbanization Prospect: The 2018 Revision, Key Facts. 2018. Available online: https://population.un.org/

wup/Publications/ (accessed on 26 February 2022).
4. Jabareen, Y.R. Sustainable Urban Forms: Their typologies, models, and concepts. J. Plan. Educ. Res. 2006, 26, 38–52. [CrossRef]
5. Persson, C. Deliberation or doctrine? Land use and spatial planning for sustainable development in Sweden. Land Use Policy

2013, 34, 301–313. [CrossRef]
6. Ward, D.P.; Murray, A.T.; Phinn, S.R. Integrating spatial optimization and cellular automata for evaluating urban change. Ann.

Reg. Sci. 2003, 37, 131–148. [CrossRef]
7. Akash, M.; Akter, J.; Tamanna, T.; Kabir, M.R. The Urbanization and Environmental Challenges in Dhaka City. In Proceedings of

the RAIS Conference, Tampa, FL, USA, 19–20 February 2018; pp. 45–57. [CrossRef]
8. Kudrat-E-Khuda. Causes of Air Pollution in Bangladesh’s Capital City and Its Impacts on Public Health. Nat. Environ. Pollut.

Technol. 2020, 19, 1483–1490. [CrossRef]
9. Ligmann-Zielinska, A.; Church, R.L.; Jankowski, P. Spatial optimization as a generative technique for sustainable multiobjective

land-use allocation. Int. J. Geogr. Inf. Sci. 2008, 22, 601–622. [CrossRef]
10. El Din, H.S.; Shalaby, A.; Farouh, H.E.; Elariane, S. Principles of urban quality of life for a neighborhood. HBRC J. 2013,

9, 86–92. [CrossRef]
11. Dempsey, N.; Bramley, G.; Power, S.; Brown, C. The social dimension of sustainable development: Defining urban social

sustainability. Sustain. Dev. 2011, 19, 289–300. [CrossRef]
12. Badhan, I.M.; Ching, S.W. The Exploration of Effective Spatial Performance of Accessible Neighbourhood Green (Ang), Including

its Proportion and Standard Distance from User in Dhanmondi Residential Area, Dhaka. Creat. Space 2021, 8, 57–66. [CrossRef]
13. Nancy, D.S.J. Urban Densification and Social Sustainability: A Case Study of Dhaka. Glob. J. Hum.-Soc. Sci. 2021, 21, 17–36. [CrossRef]
14. Roy, S.; Sowgat, T.; Islam, S.M.T.; Anjum, N. Sustainability Challenges for Sprawling Dhaka. Environ. Urban. ASIA 2021,

12, S59–S84. [CrossRef]
15. Karimi, A.; Hockings, M. A social-ecological approach to land-use conflict to inform regional and conservation planning and

management. Landsc. Ecol. 2018, 33, 691–710. [CrossRef]
16. Wang, S.-D.; Zhang, H.-B.; Wang, X.-C. Simulating Land Use Structure Optimization Based on an Improved Multi-Objective

Differential Evolution Algorithm. Pol. J. Environ. Stud. 2019, 28, 887–899. [CrossRef]
17. Rahman, M.; Szabó, G. Multi-objective urban land use optimization using spatial data: A systematic review. Sustain. Cities Soc.

2021, 74, 103214. [CrossRef]
18. Song, M.; Chen, D. An improved knowledge-informed NSGA-II for multi-objective land allocation (MOLA). Geo-Spat. Inf. Sci.

2018, 21, 273–287. [CrossRef]
19. Zheng, W.; Ke, X.; Xiao, B.; Zhou, T. Optimising land use allocation to balance ecosystem services and economic benefits—A case

study in Wuhan, China. J. Environ. Manag. 2019, 248, 109306. [CrossRef]

http://doi.org/10.18356/b9e995fe-en
https://knoema.com/atlas/Bangladesh/Urban-population
https://knoema.com/atlas/Bangladesh/Urban-population
https://population.un.org/wup/Publications/
https://population.un.org/wup/Publications/
http://doi.org/10.1177/0739456X05285119
http://doi.org/10.1016/j.landusepol.2013.04.007
http://doi.org/10.1007/s001680200113
http://doi.org/10.2139/ssrn.3152116
http://doi.org/10.46488/NEPT.2020.v19i04.014
http://doi.org/10.1080/13658810701587495
http://doi.org/10.1016/j.hbrcj.2013.02.007
http://doi.org/10.1002/sd.417
http://doi.org/10.15415/cs.2021.82005
http://doi.org/10.34257/GJHSSBVOL21IS3PG17
http://doi.org/10.1177/0975425321997995
http://doi.org/10.1007/s10980-018-0636-x
http://doi.org/10.15244/pjoes/85222
http://doi.org/10.1016/j.scs.2021.103214
http://doi.org/10.1080/10095020.2018.1489576
http://doi.org/10.1016/j.jenvman.2019.109306


ISPRS Int. J. Geo-Inf. 2022, 11, 313 21 of 22

20. Cao, K.; Zhang, W.; Wang, T. Spatio-temporal land use multi-objective optimization: A case study in Central China.
Trans. GIS 2019. [CrossRef]

21. Cao, K.; Batty, M.; Huang, B.; Liu, Y.; Yu, L.; Chen, J. Spatial multi-objective land use optimization: Extensions to the non-
dominated sorting genetic algorithm-II. Int. J. Geogr. Inf. Sci. 2011, 25, 1949–1969. [CrossRef]

22. Haque, A.; Asami, Y. Optimizing Urban Land-Use Allocation: Case Study of Dhanmondi Residential Area, Dhaka, Bangladesh.
Environ. Plan. B Plan. Des. 2011, 38, 388–410. [CrossRef]

23. Neema, M.; Ohgai, A. Multi-objective location modeling of urban parks and open spaces: Continuous optimization. Comput.
Environ. Urban Syst. 2010, 34, 359–376. [CrossRef]

24. Steele, K.; Carmel, Y.; Cross, J.; Wilcox, C. Uses and Misuses of Multicriteria Decision Analysis (MCDA) in Environmental
Decision Making. Risk Anal. 2009, 29, 26–33. [CrossRef]

25. Romano, G.; Sasso, P.D.; Liuzzi, G.T.; Gentile, F. Multi-criteria decision analysis for land suitability mapping in a rural area of
Southern Italy. Land Use Policy 2015, 48, 131–143. [CrossRef]

26. Malczewski, J. GIS-based multicriteria decision analysis: A survey of the literature. Int. J. Geogr. Inf. Sci. 2006, 20, 703–726. [CrossRef]
27. Nguyen, T.T.; Verdoodt, A.; Van, Y.N.T.; Delbecque, N.; Tran, T.C.; Van Ranst, E. Design of a GIS and multi-criteria based land

evaluation procedure for sustainable land-use planning at the regional level. Agric. Ecosyst. Environ. 2015, 200, 1–11. [CrossRef]
28. Rahman, M.; Szabó, G. A Novel Composite Index to Measure Environmental Benefits in Urban Land Use Optimization Problems.

ISPRS Int. J. Geo-Inf. 2022, 11, 220. [CrossRef]
29. Rahman, M.; Szabó, G. A Geospatial Approach to Measure Social Benefits in Urban Land Use Optimization Problem. Land 2021,

10, 1398. [CrossRef]
30. Abdullah, A.Y.M.; Masrur, A.; Adnan, M.S.G.; Baky, M.A.A.; Hassan, Q.K.; Dewan, A. Spatio-temporal Patterns of Land Use/Land

Cover Change in the Heterogeneous Coastal Region of Bangladesh between 1990 and 2017. Remote Sens. 2019, 11, 790. [CrossRef]
31. Mohammadi, M.; Nastaran, M.; Sahebgharani, A. Sustainable Spatial Land Use Optimization through Non-Dominated Sorting

Genetic Algorithm-II (NSGA-II): (Case Study: Baboldasht District of Isfahan). Indian J. Sci. Technol. 2015, 8, 118. [CrossRef]
32. Huang, B.; Zhang, W. Sustainable Land-Use Planning for a Downtown Lake Area in Central China: Multiobjective Optimization

Approach Aided by Urban Growth Modeling. J. Urban Plan. Dev. 2014, 140, 04014002. [CrossRef]
33. Wang, H.; Zhang, X.; Skitmore, M. Implications for sustainable land use in high-density cities: Evidence from Hong Kong. Habitat

Int. 2015, 50, 23–34. [CrossRef]
34. Kim, M.; You, S.; Chon, J.; Lee, J. Sustainable Land-Use Planning to Improve the Coastal Resilience of the Social-Ecological

Landscape. Sustainability 2017, 9, 1086. [CrossRef]
35. Handayanto, R.T.; Tripathi, N.K.; Kim, S.M.; Guha, S. Achieving a Sustainable Urban Form through Land Use Optimisation:

Insights from Bekasi City’s Land-Use Plan (2010–2030). Sustainability 2017, 9, 221. [CrossRef]
36. Li, F.; Gong, Y.; Cai, L.; Sun, C.; Chen, Y.; Liu, Y.; Jiang, P. Sustainable Land-Use Allocation: A Multiobjective Particle Swarm

Optimization Model and Application in Changzhou, China. J. Urban Plan. Dev. 2018, 144, 04018010. [CrossRef]
37. Cao, K.; Huang, B.; Wang, S.; Lin, H. Sustainable land use optimization using Boundary-based Fast Genetic Algorithm. Comput.

Environ. Urban Syst. 2012, 36, 257–269. [CrossRef]
38. Yuan, M.; Liu, Y.; He, J.; Liu, D. Regional land-use allocation using a coupled MAS and GA model: From local simulation to

global optimization, a case study in Caidian District, Wuhan, China. Cartogr. Geogr. Inf. Sci. 2014, 41, 363–378. [CrossRef]
39. Zhang, H.; Zeng, Y.; Jin, X.; Shu, B.; Zhou, Y.; Yang, X. Simulating multi-objective land use optimization allocation using

Multi-agent system—A case study in Changsha, China. Ecol. Model. 2016, 320, 334–347. [CrossRef]
40. Jenks, M.; Jones, C. (Eds.) Issues and Concepts. In Dimensions of the Sustainable City; Springer: London, UK, 2010; p. 9.
41. Mouratidis, K. Is compact city livable? The impact of compact versus sprawled neighbourhoods on neighbourhood satisfaction.

Urban Stud. 2017, 55, 2408–2430. [CrossRef]
42. Kotulla, T.; Denstadli, J.M.; Oust, A.; Beusker, E. What Does It Take to Make the Compact City Liveable for Wider Groups?

Identifying Key Neighbourhood and Dwelling Features. Sustainability 2019, 11, 3480. [CrossRef]
43. Nadeem, M.; Aziz, A.; Al-Rashid, M.A.; Tesoriere, G.; Asim, M.; Campisi, T. Scaling the Potential of Compact City Development:

The Case of Lahore, Pakistan. Sustainability 2021, 13, 5257. [CrossRef]
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45. Hošková-Mayerová, Š.; Talhofer, V.; Otřísal, P.; Rybanský, M. Influence of Weights of Geographical Factors on the Results of

Multicriteria Analysis in Solving Spatial Analyses. ISPRS Int. J. Geo-Inf. 2020, 9, 489. [CrossRef]
46. Köhler, B.; Ruud, A.; Aas, Ø.; Barton, D.N. Decision making for sustainable natural resource management under political constraints—

The case of revising hydropower licenses in Norwegian watercourses. Civ. Eng. Environ. Syst. 2019, 36, 17–31. [CrossRef]
47. Zhang, Y.; Li, A.; Fung, T. Using GIS and Multi-criteria Decision Analysis for Conflict Resolution in Land Use Planning. Procedia

Environ. Sci. 2012, 13, 2264–2273. [CrossRef]
48. Mendas, A.; Delali, A. Integration of MultiCriteria Decision Analysis in GIS to develop land suitability for agriculture: Application

to durum wheat cultivation in the region of Mleta in Algeria. Comput. Electron. Agric. 2012, 83, 117–126. [CrossRef]
49. Luan, C.; Liu, R.; Peng, S. Land-use suitability assessment for urban development using a GIS-based soft computing approach:

A case study of Ili Valley, China. Ecol. Indic. 2021, 123, 107333. [CrossRef]

http://doi.org/10.1111/tgis.12535
http://doi.org/10.1080/13658816.2011.570269
http://doi.org/10.1068/b35041
http://doi.org/10.1016/j.compenvurbsys.2010.03.001
http://doi.org/10.1111/j.1539-6924.2008.01130.x
http://doi.org/10.1016/j.landusepol.2015.05.013
http://doi.org/10.1080/13658810600661508
http://doi.org/10.1016/j.agee.2014.10.015
http://doi.org/10.3390/ijgi11040220
http://doi.org/10.3390/land10121398
http://doi.org/10.3390/rs11070790
http://doi.org/10.17485/ijst/2015/v8iS3/60700
http://doi.org/10.1061/(ASCE)UP.1943-5444.0000186
http://doi.org/10.1016/j.habitatint.2015.07.010
http://doi.org/10.3390/su9071086
http://doi.org/10.3390/su9020221
http://doi.org/10.1061/(ASCE)UP.1943-5444.0000425
http://doi.org/10.1016/j.compenvurbsys.2011.08.001
http://doi.org/10.1080/15230406.2014.931251
http://doi.org/10.1016/j.ecolmodel.2015.10.017
http://doi.org/10.1177/0042098017729109
http://doi.org/10.3390/su11123480
http://doi.org/10.3390/su13095257
http://doi.org/10.3390/sym10090393
http://doi.org/10.3390/ijgi9080489
http://doi.org/10.1080/10286608.2019.1615475
http://doi.org/10.1016/j.proenv.2012.01.215
http://doi.org/10.1016/j.compag.2012.02.003
http://doi.org/10.1016/j.ecolind.2020.107333


ISPRS Int. J. Geo-Inf. 2022, 11, 313 22 of 22

50. Yager, R. On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans. Syst. Man Cybern.
1988, 18, 183–190. [CrossRef]

51. Rahman, M.; Szabó, G. Impact of Land Use and Land Cover Changes on Urban Ecosystem Service Value in Dhaka, Bangladesh.
Land 2021, 10, 793. [CrossRef]

52. Assefa, T.; Jha, M.; Reyes, M.; Srinivasan, R.; Worqlul, A.W. Assessment of Suitable Areas for Home Gardens for Irrigation
Potential, Water Availability, and Water-Lifting Technologies. Water 2018, 10, 495. [CrossRef]

53. Gong, J.; Liu, Y.; Chen, W. Optimal land use allocation of urban fringe in Guangzhou. J. Geogr. Sci. 2012, 22, 179–191. [CrossRef]
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