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Abstract: The increase in traffic in cities world-wide has led to a need for better traffic management
systems in urban networks. Despite the advances in technology for traffic data collection, the
collected data are still suffering from significant issues, such as missing data, hence the need for
data imputation methods. This paper explores the spatiotemporal probabilistic principal component
analysis (PPCA) based data imputation method that utilizes traffic flow data from vehicle detectors
and focuses specifically on detectors in urban networks as opposed to a freeway setting. In the urban
context, detectors are in a complex network, separated by traffic lights, measuring different flow
directions on different types of roads. Different constructions of a spatial network are compared, from
a single detector to a neighborhood and a city-wide network. Experiments are conducted on data
from 285 detectors in the urban network of Surabaya, Indonesia, with a case study on the Diponegoro
neighborhood. Methods are tested against both point-wise and interval-wise missing data in various
scenarios. Results show that a spatial network adds robustness to the system and the choice of the
subset has an impact on the imputation error. Compared to a single detector, spatiotemporal PPCA is
better suited for interval-wise errors and more robust against outliers and extreme missing data. Even
in the case where an entire day of data is missing, the method is still able to impute data accurately
relying on other vehicle detectors in the network.

Keywords: urban traffic network; data imputation; spatiotemporal analysis; probabilistic PCA;
traffic management

1. Introduction

In cities world-wide, traffic is continuously increasing. Especially in urban environ-
ments, this makes the management of traffic more complex. In large-scale road networks,
appropriate traffic management systems are needed to control traffic flows under varying
conditions. Methods developed to deal with the traffic management system are, for exam-
ple, SCATS [1–3], max pressure control [4–9] and other methods reviewed in the following
literature [10–12]. To work with maximum efficiency, the methods require complete and
reliable traffic flow data.

Despite the advances in technology for traffic data collection, resulting traffic flow
data are not perfect, and important problems, such as missing data, are unavoidable [13,14].
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For example, the missing data ratio of loop detectors collected by the performance mea-
surement system (PeMS) in California is higher than 10% [15]. Missing data can occur due
to a malfunction of the sensing, communication errors, power problems, occlusion, etc.
Sometimes, detectors can fail for longer periods of time, creating gaps in the time signal.
These issues pose a challenge for traffic management systems that often rely on complete
and trusted data. Consequently, there is a clear need for methods that can accurately impute
missing data.

The problem of missing data has received a lot of attention in the literature and
has been studied across fields, such as engineering, medicine and economics [16–18].
Papers explore different categories of data imputation methods, such as prediction-based,
interpolation-based, and statistical learning-based methods. Prediction-based methods,
such as ARIMA, view missing data points as a value to predict based on the relation
derived from historical data [19]. Interpolation-based methods, such as linear, spline, and
nearest neighbor interpolation, impute missing data from a weighted average of known
past data points that have a similar pattern as the current data point and assume the
existence of seasonality in the data [20]. Statistical-learning-based methods assume that
data follow some probability distribution and learn the statistical features of the data for
data imputation. Examples of statistical-learning-based methods include mean imputation,
hot-deck, and multiple imputation [21].

Various techniques have been proposed specifically to address missing data in traffic
flow data. Most of them focus on temporal correlations on a day-to-day basis. Zhong et al. [22]
studied data imputation methods used in several transportation agencies in North America
and Europe. Most agencies mainly used simple factor and time series analysis methods
based on historical data. These approaches assume strong daily traffic flow similarity
over intervals. Experimental results show that these methods can have large errors up to
80% absolute percentage error in the morning peak hours. Ni and Leonard [23] proposed
a data imputation method using a Bayesian network to learn from historical data and a
Markov chain Monte Carlo technique to sample from probability distributions from the
trained Bayesian network. Statistical-learning-based methods such as these try to derive a
statistical model of traffic flow. They typically perform better compared to conventional
methods. Another statistical method is called the probabilistic principal components
analysis (PPCA) data imputation method, first proposed by Qu et al. [24]. PPCA imputes
missing data based on a PCA-like analysis of historical data and has shown to improve
performance up to 25%, compared to classical methods. Tan et al. [25] developed the
RPCA method that exploits known limits of traffic volume and day mode similarity. The
daily traffic similarity is used to impute missing data by the low-rank hypothesis of the
constructed traffic flow matrix. The physical limits of the road capacity and nonnegativity
are utilized in the optimization process as constraints.

Although all the mentioned data imputation methods above perform well compared
to conventional methods, the weakness of these methods is that they only utilize temporal
information from daily flow similarity, and hence, the change of the temporal pattern
caused by traffic breakdown or burst [26] might degrade the performance. It also assumes
that the traffic flow data are not spoiled by outliers which frequently occur in real-world
settings. Traffic data collected by vehicle detectors contain spatiotemporal information, as
vehicles pass through several vehicle detectors along their routes. Intuitively, the traffic
flow data collected from vehicle detectors located close to each other will be highly spatially
correlated; hence, the addition of spatial information in traffic data imputation method is
useful and could improve its performance. In recent years, more research on traffic data
imputation involves spatial correlation and shows promising results.

Smith et al. [27] studied both heuristic approaches and statistical approaches such
as historical average and data augmentation. The research showed that it is possible to
impute the data of a detector from other detectors surrounding it in a freeway context.
Chen et al. [28] proposed a data imputation method that models the relationship between
neighboring loops as a linear model, and linear regression is used to estimate the missing
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data using historical data. The presented results showed better performance compared
to conventional interpolation methods in freeways located in California. Li et al. [29]
researched that the spatial information extracted from the information of multiple sensors
help in reducing imputation error for the PPCA and KPPCA methods. Ran et al. [30]
proposed tensor-based missing traffic data imputation that utilizes four-way tensors, con-
sisting of day, week, time, and space information. The results have shown that the addition
of spatial information could help to reduce imputing errors, even in extreme missing data
cases. Laña et al. [31] developed the spatial-context sensing data imputation method that
utilizes all vehicle detectors in the central area of Madrid with well-distributed vehicle
detectors. The imputing method is built upon the predictions from an extreme learning
machine (ELM) model. Li et al. [32] showed that the PPCA-based method using a single
vehicle detector outperforms several data imputation methods, such as ARIMA, Bayesian
network, k-NN, local least squares (LLS), and Markov chain Monte Carlo (MCMC).

The above research shows that utilizing spatial information can improve data im-
putation. However, the studies mainly focus on freeway settings or assume detectors to
have similar behavior [29–32]. Urban traffic has very different characteristics compared
to freeways. In freeways, the spatial correlation between vehicle detectors is straightfor-
ward, as detectors on the same link and close distance are usually directly related, so the
characteristics of traffic flow between a vehicle detector and its upstream and downstream
counterparts is similar, only affected by time lag. In an urban context, detectors are usually
positioned to count vehicles that leave an intersection. This means that each detector is
located on a different link, separated by traffic lights. Consequently, although detectors
can be close together, they can measure very different flow behaviors, making the spatial
correlation between detectors in urban networks not straightforward.

This paper investigates the performance of data imputation in an urban setting under
different scenarios for spatial information, exploring single-detector, sub-network and
citywide network definitions. Data imputation is performed using the spatiotemporal
PPCA-based method, utilizing spatiotemporal correlation in an urban network by mod-
ifying the observed data matrix. The robustness of the method is explored by testing
the method from small to severe error conditions. The comparison explores the effect
of different definitions of spatial network related to the vehicle detectors on the data
imputation performance.

The rest of this paper is organized as follows. Section 2 explains the theory behind
PPCA-based data imputation methods, explanation of both the single detector PPCA-
based method and network PPCA-based method, missing data classification used in this
research work, case study used for experiment, and the data imputation performance
metrics used. The experiment results are shown in Section 3 and discussed in Section 4.
Section 5 concludes this research work and discusses future works.

2. Materials and Methods

In this paper, traffic flow data obtained from the area traffic control system (ATCS)
located in the urban network of Surabaya city, Indonesia, are used for experiments. Artificial
datasets with missing data were created by omitting data from the original dataset, and
imputation methods are evaluated on these datasets. The following section describes the
PPCA-based data imputation method and the extension toward spatiotemporal PPCA. The
section presents the missing data scenarios used in the paper, explanation of the case study,
and the performance metrics used for evaluation.

2.1. PPCA-Based Data Imputation Methods

PPCA-based data imputation methods for traffic data have been discussed in sev-
eral papers [24,29,33]. PPCA is a reformulation of the well-known PCA as a maximum-
likelihood estimation based on the data probability density model [34]. The PPCA method
has demonstrated several advantages compared to PCA, such as the ability to handle
missing data and better scalability. The idea behind the PPCA-based imputation method



ISPRS Int. J. Geo-Inf. 2022, 11, 310 4 of 20

is that missing data is treated as a random variable which is not observed. The model is
trying to predict the probability function from the observed data so that missing data can
be predicted from the probability function.

Supposing that the observed data are generated from PPCA model, the relation
between observed data with its principal components can be described as a standard factor
analysis mapping [35] as follows:

y = Wx + µ + ε (1)

where y is a d-dimensional vector of observed data, and x is a k-dimensional vector of
latent variables. Generally, k < d such that the latent variables reduce the dimension of
the model and offer a parsimonious model. The d× k matrix W is a projection matrix that
represents a linear mapping between observed data y and latent variables x. The mean
matrix µ allows the model to have non-zero mean values, and ε is a matrix representing
isotropic noise assumed to be independent and identically distributed normal with zero
mean and σ2 variance.

The number of principal components k is a design parameter of PPCA. Larger num-
bers of k lead to better preserved variance from the observed data and more accurately
reconstructed data but it might cause the model to overfit. To balance generality and
accuracy, k is usually calibrated using cross validation. The resulting model is defined
as follows:

y ∼ N(µ, WWT + σ2 I) (2)

For W and σ2, there are no closed-form analytic formulations, and hence their estimates
are determined by iterative maximization from the corresponding log likelihood using an
expectation–maximization (EM) algorithm. An efficient EM algorithm for the estimation of
these parameters was formulated in references [34,36,37].

The paper compares two approaches for PPCA-based data imputation methods. The
first one, proposed by Qu et al. [24], the single detector PPCA-based method, is dependent
solely on temporal correlation gathered from historical data of a single vehicle detector. The
second one, proposed in this paper, is a spatiotemporal PPCA-based method that utilizes
both temporal correlation and spatial correlation between vehicle detectors by modifying
the observed data matrix used and using traffic count data from multiple vehicle detectors
in an urban network.

2.1.1. Single Detector PPCA-Based Data Imputation Method

Assume traffic flow data at one vehicle detector is collected for one day and then
gathered as series of data as Y1 = [y1(1), · · · , y1(N)], where N denotes the number of data
points per day. For example, if the vehicle detector sampling interval is 15 min, N equals
96. If traffic flow data is collected for D consecutive days, this yields D-dimensional row
vectors. These row vectors are put together to result in a data matrix

Yd ,

 y1(1) . . . yD(1)
...

. . .
...

y1(N) · · · yD(N)

 (3)

where each column represents traffic flow data collected in a single day. The resulting data
matrix is Yd ∈ RN×D for each vehicle detector.

This method assumes that the traffic flow values on the same sampling time but on
different days are implicitly correlated through the PPCA model. It presumes that all
elements in a particular row follow a joint distribution. This method also simultaneously
uses the current-day flow fluctuation and its neighboring day traffic flow information, and
hence it does not require strict similarity between all different days.

As discussed by Qu et al. [24], this method has two requirements. Firstly, data
imputation results may be biased if the vehicle detector was malfunctioning for a long
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time. Secondly, the reconstructed data from the model should preserve important aspects
of the data, such as the distribution. This means that even though daily similarity of the
flow is not strictly required, if the resulting model cannot preserve the distribution of the
observed data, the imputation results might be inaccurate. In the remainder of this paper,
this method is abbreviated as Single PPCA.

2.1.2. Spatiotemporal PPCA-Based Data Imputation Method

Suppose traffic flow data on all different vehicle detectors on a network are collected,
and a series of data as Y1

1 = [y1
1(1), · · · , y1

1(N)], · · · , Y1
M = [y1

M(1), · · · , y1
M(N)] is ac-

quired, where N is the number of data points per day and M is the number of vehicle
detectors on a network. Assume the traffic flow data is gathered for consecutive days
and all data points in a single detector are put together as Y1

1 = [y1
1(1), · · · , y1

1(N)], · · · ,
YD

1 = [yD
1 (1), · · · , yD

1 (N)]. If all data points of a single vehicle detector are stacked as a
single vector, then the traffic flow data can be arranged together into the following data
matrix form Yt ∈ R(N×D)×M defined as

Yt ,



y1
1(1) y1

2(1) · · · y1
M−1(1) y1

M(1)
...

... · · ·
...

...
y1

1(N) y1
2(N) · · · y1

M−1(N) y1
M(N)

y2
1(1) y2

2(1) · · · y2
M−1(1) y2

M(1)
...

... · · ·
...

...

y2
1(N) y2

2(N)
. . . y2

M−1(N) y2
M(N)

...
... · · ·

...
...

yD
1 (1) yD

2 (1) · · · yD
M−1(1) yD

M(1)
...

... · · ·
...

...
yD

1 (N) yD
2 (N) · · · yD

M−1(N) yD
M(N)



(4)

where each column represents data points from a single detector. The resulting matrix
of observed data has dimensions ND×M, where D denotes the number of consecutive
days of traffic flow data on M vehicle detectors in the network. Figure 1 illustrates the
construction of the matrix in Equation (4).

The proposed data matrix structure assumes that the traffic flow values in similar time
slots over different detectors are implicitly correlated and follow a particular distribution.
The method tries to recover the relationship between a group of vehicle detectors at different
locations, utilizing both spatiotemporal information derived from traffic flow fluctuation
of a particular vehicle detector and traffic flow information from other vehicle detectors
in the network. As the method does not utilize traffic flow from neighboring days, there
is no daily flow similarity requirement if the distribution derived from different vehicle
detectors is preserved in the model. This can lead to better robustness in terms of traffic
breakdown or burst. However, there are some caveats. The spatial correlation between
different detectors typically decreases over distance. Additionally, in an urban network
the vehicle detectors are not only separated by distance, but also separated by traffic lights
located between detectors. Vehicle detectors can monitor different directions, even though
their distance is close. Therefore, the choice of network and which detectors to put in the
same network must be considered carefully. This is an important focus of this study. A
comparison of the process flow for the single detector and spatiotemporal PPCA-based data
imputation method is shown in Figure 2. The newly developed procedures are indicated
in blue.
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Figure 1. An example of construction of spatiotemporal data matrix (Equation (4)). The numbered
yellow boxes on the top figure represent each vehicle detector.

Generally, a network usually refers to a large administrative area, such as a city-wide
network. Unfortunately, in this definition of a network, vehicle detectors are not necessarily
closely correlated because of the distance and different characteristics related to their
position in the network. It is wiser to choose a subset of the network (‘sub-network’) that
is more focused, where the nodes have similar properties (e.g., as defined by road class
and land use). To show the impact of the network choice, two variants of this proposed
method are considered: (1) a spatiotemporal PPCA-based method trained using data of
an entire city-wide network termed Network PPCA and (2) a method trained using data
of a hand-picked sub-network termed Sub-Network PPCA. The difference is the spatial
correlation between detectors in the two approaches. Network PPCA is trained using
traffic flow data that might have weak spatial correlation because of their vast area, while
Sub-Network PPCA is trained using traffic flow data that have strong spatial correlation.

2.2. Missing Data

In general, there are three classes of missing data: missing completely at random
(MCAR), missing at random (MAR), and not missing at random (NMAR) [38]. Both
MCAR and MAR have no underlying mechanism for the missing data, while NMAR
assumes a dependence of the distribution of missing data on the complete dataset. These
classifications of missing data have been used in different research [24,39,40].
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In reality, missing data among the traffic flow observations may be a combination of
MCAR, MAR, and NMAR. Because it is difficult to differentiate MAR and MCAR from
NMAR based on data, Chiou et al. [41] suggested classifying the missing data as point-wise
and interval-wise. Point-wise missing data are completely independent of the observed
and unobserved value and also the missing points are randomly scattered. Point-wise
missing data might be caused by short-term malfunction. Interval-wise missing data is
missing data points that are grouped as an interval or a large group. Interval-wise missing
data can be caused by a long-term malfunction in vehicle detectors, such as hardware
malfunction, disconnected fiber optics, etc. Both point-wise and interval-wise missing data
are illustrated in Figure 3, and both types of errors are considered in the experiments.
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2.3. Case Study: Urban Network of Surabaya, Indonesia

In this paper, traffic flow data from 438 vehicle detectors in the urban network of
Surabaya, Indonesia are used in the experiments. The traffic count data are collected using
video-based vehicle detectors and provided by the Surabaya area traffic control system,
which uses the resulting data for the traffic control purposes. The traffic count data are
aggregated every 15 min to obtain the traffic flow information. In this paper, the data
were collected from 1 January 2020 to 29 February 2020. During this period, it was found
that only 285 out of 438 vehicle detectors are in working condition, while the rest of the
detectors either have a lot of missing data or are not working at all.

These 285 detectors are located at 115 intersections around the urban network of
Surabaya, Indonesia, covering an area around 200 km2 as shown in Figure 4a. As the
purpose of these detectors is traffic control, the detector counts vehicles that leave an
intersection. An illustration of the placement of detectors in an intersection is displayed
in Figure 4b. For the 285 detectors, the missing data ratio is on average 18.3%. There are
more interval-wise missing data compared to point-wise missing data because the most
common cause of missing data is communication problems caused by hardware problems
or internet disconnection.

In the PPCA-based method, it is assumed that the temporal pattern of the dataset
is similar on a day-to-day basis. The assumption is met by only using data collected on
Monday from eight different weeks. Each day has 96 data points, so the total number of
data points available is 768 data points for each of the 285 vehicle detectors, which leads to
a total of 218,880 traffic flow data points for the entire network.

The Diponegoro Neighborhood

As described in Section 2.1.2, this subsection examines the influence of the choice of
subset (“sub-network”) on performance compared to a city-wide network. In this case,
the paper assesses a sub-network of vehicle detectors that are close together and have the
same road class. This does not mean that they will measure the same flow as in a freeway
setting, as vehicles can enter or leave between detectors and measurements are done in
different directions. However, the vicinity and similar road class lead to a potentially higher
spatial correlation compared to a city-wide network and this might affect the imputation
performance. The city-wide network and sub-network are illustrated in Figure 4c.
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Figure 4. Maps of 115 intersections equipped with working vehicle detectors located in the urban
network of Surabaya, Indonesia. Every traffic light symbol in (a) represents one intersection. Every
intersection usually consists of 3–4 vehicle detectors. The placement of vehicle detectors in an
intersection is shown in (b), where each yellow square represents one vehicle detector that counts
vehicles leaving an intersection. Part (c) compares the city-wide network (blue dashed area) with the
hand-picked sub-network (red dashed area).

The Diponegoro neighborhood is a corridor that spans around 2.7 km, and roads
on which detectors lie are categorized as primary arterial roads [42]. If these detectors
are grouped in a sub-network, there are four intersections labeled as Site ID 2, Site ID 3,
Site ID 4, and Site ID 5 as shown in Figure 5. Vehicle detectors located at Site ID 34 and Site
ID 112 are not considered in this case study, as vehicle detectors in both intersections are
located in the link with a different road class, secondary arterial road class and secondary
collector road class, respectively.

For this case study, the attention is put on vehicle detectors that have the same road
class (primary arterial road class) on the Site ID 2, Site ID 3, Site ID 4, and Site ID 5
intersections. Each intersection consists of 4 vehicle detectors counting vehicles for each
link, resulting in 16 vehicle detectors across all mentioned intersections. There are 8 out of
16 detectors located in links categorized as primary arterial road, while the rest of the vehicle
detectors are located in different road class. One out of eight detectors malfunctioned at the
time of data collection, so seven working vehicle detectors are considered for the case study.
All seven vehicle detectors are located at different links, separated by traffic lights, and not
all of the vehicle detectors have a similar direction. The length of each link is considered
short in Surabaya, and there are not too many small roads that might contribute to sink
and source noises. The paper uses this choice of subset of detectors and explores if this
construction adds value compared to a single detector and a city-wide network method.
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2.4. Data Imputation Performance Metrics

Generally, the performance of imputation methods is evaluated on the difference
between imputed data and missing data. The popular performance metrics for data imputa-
tion are root mean square error (RMSE) and mean absolute percentage error (MAPE) [43–45].
RMSE is usually used as imputation performance metrics for single detector methods, as
it is scale dependent. In this paper, data imputation methods impute missing data for
multiple vehicle detectors simultaneously, so scale-invariant performance metrics are re-
quired. On the other hand, MAPE measures the percentage error of the imputed data in
relation to the actual observed data, so it is scale invariant, and comparing data imputation
performances for different vehicle detectors that have different mean values is possible.
Unfortunately, traffic flow data may contain zero values data especially during midnight
or dawn; hence, MAPE calculation of the traffic flow data imputation might have infinite
error issues.

To solve these issues, the weighted mean absolute percentage error (WMAPE) [46–48]
is considered to describe the imputation performance of each method. WMAPE is defined
by the following formula

WMAPE =

I
∑

i=1
|ŷi − yi|

I
∑

i=1
yi

× 100% (5)

where ŷi are the i-th vectors of the imputed data, yi are the i-th vectors of the known
observed data, and I is the number of missing data. The total error between imputed data
and known observed data is divided by the total values of known observed data, which
removes the issue of having to divide by zero for traffic flow data that do not have negative
values. The data points calculated in this performance metric are only at points where data
are intentionally omitted.



ISPRS Int. J. Geo-Inf. 2022, 11, 310 11 of 20

3. Results

In the experiments, three methods were implemented and compared as follow:

1. Single PPCA: Trained using traffic flow data of a single detector collected during
Monday for 8 weeks, leads to a 96× 8 dimensional matrix of the observed data. In
this approach, missing data in every vehicle detector in the Diponegoro neighborhood
are imputed separately.

2. Sub-Network PPCA: Trained using traffic flow data of 7 vehicle detectors located
at Diponegoro neighborhood and collected during Monday for 8 weeks, leads to a
768× 7 dimensional matrix of the observed data. Missing data are imputed simulta-
neously for all vehicle detectors.

3. Network PPCA: Trained using traffic flow data of 285 vehicle detectors located at
the urban network of Surabaya, Indonesia and collected during Monday for 8 weeks,
leads to a 768 × 285 dimensional matrix of the observed data. Missing data are
imputed simultaneously for all vehicle detectors, but only vehicle detectors located at
Diponegoro neighborhood are considered.

All mentioned methods were evaluated for various types and amounts of missing
data. The missing data are generated by intentionally omitting data from the observed
data. The defined ratio for point-wise missing data is denoted by ξ ∈ {10, 25, 50, 75}%, and
the defined interval for interval-wise missing data is ψ ∈ {8, 16, 32, 64} intervals per day.
For the point-wise missing data, ξ % of traffic flow data are omitted individually at random
across all the observed data, while for the interval-wise missing data, the ψ-interval of
traffic flow data is omitted randomly in every one-day data.

Three different scenarios were also considered in this paper to showcase the perfor-
mance and robustness of each method for various scenarios of missing data. Below is the
explanation of each scenario.

1. Scenario A: Missing data points are distributed uniformly across all vehicle detectors
and days.

2. Scenario B: Missing data points appear only in a number of vehicle detectors. The
purpose of this scenario is to examine the case when there is a mix of functioning and
malfunctioning detectors.

3. Scenario C: Scenario when several links suffer missing data for a day or more. The
purpose of this scenario is to examine the case when several vehicle detectors suffer
long-term malfunction.

a. Scenario A

Scenario A examines the performance where missing data is uniformly distributed
across all links and all days. After that, WMAPE is calculated for all detectors in the
Diponegoro neighborhood and the average error across all detectors. The results are shown
in Figure 6 for point-wise missing data and Figure 7 for interval-wise missing data. The
method fails to impute missing data in extreme cases, e.g., a ratio of 75% of point-wise
missing data and 64 interval-wise missing data in Figure 8. This failure happens when an
entire row of training data is missing, which happens at high levels of missing data.

b. Scenario B

Scenario A is not fully realistic, as it is unlikely that all vehicle detectors have missing
data at the same time. Usually only a number of detectors are suffering from missing
data in a network at a given time. In Scenario B, the performance between Single PPCA
and Sub-Network PPCA is compared for cases where only some links in the network are
suffering from missing data problems. Network PPCA is not included for this scenario, as
both Sub-Network PPCA and Network PPCA are variants of the spatiotemporal PPCA-
based method, and it is clear from Scenario A that Network PPCA performs worst. A
performance comparison is made with different varieties of missing data and number of
vehicle detectors malfunctioning.
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c. Scenario C

In the Surabaya network traffic flow data, there are cases where some of the vehicle
detectors suffer from interval-wise missing data, which can last more than a day. This can
happen because of internet connection problems, disconnected fiber optics or hardware
problems and can take days to be repaired. In scenario C, missing data is imputed for such
cases when 24 h of data is missing in the 8th week for a number of detectors.

d. Robustness against Outlier Vehicle Detectors

A robustness analysis is carried out by analyzing the impact of outlier vehicle detectors
by comparing a sub-network PPCA trained using six vehicle detectors in the Diponegoro
neighborhood plus an outlier detector, and a sub-network PPCA 2, using the same six
vehicle detectors, excluding the outlier. The robustness analysis results are explained in the
Discussion section.

4. Discussion

In Scenario A, for both point-wise and interval-wise missing data, Network PPCA
performs worst, with a similar performance as the other methods for point-wise errors with
ratios up to 25%, but performing worse on higher ratios and interval-type errors in general.
Although it performs worst for WMAPE performance, the Network PPCA, however, is
more robust in extreme missing data cases, as it can impute all missing data, even though
the missing data ratio is 75%. This robustness comes from the amount of data used for
training, as PPCA typically fails when an entire row of training data is missing due to
combined errors. This is less likely to happen for larger networks. The reduced accuracy
for Network PPCA can be explained by the heterogeneous characteristics of the detectors in
large networks that reduce the focus of the generalized distributions. The results show that
the choice of a better-defined network can have a significant impact on the performance of
the spatiotemporal PPCA-based method.

The performance comparison of Sub-Network PPCA and Single PPCA indicates that
both methods are close, with an average difference around 1% WMAPE. Single PPCA tends
to perform better in point-wise missing data cases, while Sub-Network PPCA performs
better in interval-wise missing data cases. Factors that reduce the performance of Single
PPCA in interval-wise missing data cases might be the limitation of Single PPCA in that
the method may be biased if the vehicle detector malfunctions for a long period of time as
explained in Section 2.1.1. As explained in Section 2.3, missing data in vehicle detectors in
urban networks are often interval-wise, making the proposed method, Sub-Network PPCA,
more performant in these conditions. The results show that Sub-Network PPCA is able to
impute missing data over a neighborhood, where the detectors are not necessarily fully
spatially correlated, with a performance that is similar or better compared to Single PPCA.

For Scenario B, Figure 9 shows the performance of both methods tested against point-
wise missing data for different numbers of malfunctioning detectors. In general, the
performance between both methods is close, which is a similar result as in Scenario A
Sub-Network PPCA indicates less influence by the missing data ratio, compared to Single
PPCA from the steepness of the plot. One other important point is that Sub-Network PPCA
successfully imputes all missing data, even when the missing data ratio is 75% as shown
in Figure 10. Sub-Network PPCA is able to achieve this because the method can impute
missing data from other healthy detectors, while in Single PPCA, each detector can only
rely on its own historical data, resulting in around 80–88 failed data imputation points for
each malfunctioning detector.

Figure 11 shows the performance of both methods tested against point-wise missing
data for different numbers of malfunctioning detectors. For interval-wise missing data,
the Sub-Network PPCA imputation performance is better than that of Single PPCA for all
missing data intervals and number of malfunctioning detectors. These results are also more
or less comparable to the results in Scenario A. This finding means that Sub-Network PPCA
performs better in an urban network, where the majority of its missing data is interval-wise.
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Figure 12 shows a similar result to the previous results tested on point-wise missing data,
where, even in extreme case of missing data, Sub-Network PPCA can still successfully
impute all missing data accurately, while Single PPCA fails more in interval-wise missing
data, failing to impute around 304–360 data points. These experiments show that the
Sub-Network PPCA imputation performance and robustness is better in Scenario B, and
the traffic flow information received from neighboring healthy vehicle detectors gives
Sub-Network PPCA the advantage.

In Scenario C, Single PPCA is unable to impute missing data if the traffic count data is
missing for an entire day because one entire column of the dataset is missing. To fix this
singular case, four data points (1 h of traffic flow data) are imputed based on the historical
average to enable Single PPCA to work. The number of malfunctioning detectors were
tested ranging from one to four out of seven vehicle detectors to see the impact of the
number of vehicle detectors malfunctioning. In this case, Sub-Network PPCA performs
significantly better compared to Single PPCA as shown in Table 1 because the Sub-Network
PPCA is able to impute data based on the spatial correlation derived from other vehicle
detectors in the sub-network. Single PPCA is unable to impute data accurately because the
resulting data from historical average are not accurate enough, thus resulting in inaccurate
data imputation. The results also show that the imputation error of Sub-Network PPCA
increases with the number of malfunction vehicle detectors as expected but continues to
outperform Single PPCA. It shows the robustness of Sub-Network PPCA against extreme
missing data, as it is able to impute missing data for vehicle detectors that malfunction for
longer periods, and a robustness against the number of detectors failing at the same time.
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Table 1. Imputation error comparison between Sub-Network PPCA and Single PPCA for
Scenario C.

Malfunctioning
Vehicle Detector

Sub-Network PPCA
Single PPCA1 Malfunctioning

Detector
2 Malfunctioning

Detector
3 Malfunctioning

Detector
4 Malfunctioning

Detector

2-1 8.67% 10.42% 11.52% 11.52% 23.47%

3-1 12.80% 14.40% 14.47% 46.02%

3-3 8.38% 10.14% 20.55%

4-3 9.13% 30.86%

For the analysis of the robustness against the outlier, in Table 2, it is found that one of
the vehicle detectors in the Diponegoro site, namely detector 4-1, has a large imputation
error compared to other detectors in all methods. The reason is because the temporal
pattern of detector 4-1 fluctuates over the weeks, which results in large imputation errors as
shown in Figure 13. All the methods show this error, confirming that this particular vehicle
detector is an outlier. Figure 14 shows that the performance results between Sub-Network
PPCA and Sub-Network PPCA 2 are quite similar, and it shows that the network PPCA
method is able to impute data accurately, even in the presence of outliers. This would give a
margin of error when constructing good subsets of detectors to include in one sub-network.

Table 2. Imputation error of each vehicle detector in Diponegoro neighborhood for 10% point-wise
missing data and 8 interval-wise missing data. Vehicle Detector 4-1 is considered an outlier, as it has
huge imputation error compared to other links.

Vehicle Detector
10% Point-Wise Missing Data Imputation Error

Network PPCA Sub-Network PPCA Single PPCA

2-1 7.39% 10.28% 7.89%

3-1 9.96% 9.86% 10.16%

3-3 7.28% 9.79% 8.55%

4-1 40.95% 29.55% 31.26%

4-3 8.97% 8.88% 10.84%

5-1 7.78% 8.63% 8.94%

5-3 6.59% 8.01% 8.68%

Average 12.70% 12.14% 12.33%

Vehicle Detector
8 Interval-Wise Missing Data Imputation Error

Network PPCA Sub-Network PPCA Single PPCA

2-1 8.38% 15.21% 12.96%

3-1 15.62% 11.88% 12.05%

3-3 10.55% 9.71% 8.62%

4-1 51.06% 28.68% 26.30%

4-3 8.88% 7.62% 9.63%

5-1 9.82% 12.65% 10.83%

5-3 8.70% 9.35% 9.90%

Average 16.14% 13.58% 12.90%
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5. Conclusions

In this paper, the spatiotemporal PPCA-based data imputation method was analyzed
by utilizing both temporal and spatial information from multiple vehicle detectors. Two
different choices of spatial networks were considered, namely, a city-wide network, or Net-
work PPCA, and a neighborhood-based network, or Sub-Network PPCA. Both networks
were compared with Single PPCA, relying only on temporal information. The methods
were tested against point-wise and interval-wise missing data. The results established
that Network PPCA has the lowest accuracy of the three methods but devises a better
robustness in extreme cases of missing data. Both Single PPCA and Sub-Network PPCA
performed similarly when missing data were uniformly distributed across all days and
all vehicle detectors. Sub-Network PPCA achieved better for interval-wise missing data,
while the Single PPCA was better for point-wise missing data.

In the more realistic case where only some vehicle detectors suffer missing data
problems, Sub-Network PPCA resulted in better performance for all types of missing data
compared to Single PPCA, exploiting the information derived from healthy neighboring
vehicle detectors. The neighboring healthy vehicle detectors in Sub-Network PPCA also
helped to impute all missing data without failure in extreme cases of missing data, up to
75% point-wise missing data and 64 time-intervals of missing data.

When several vehicle detectors were malfunctioning for an entire day, Sub-Network
PPCA was still able to impute data accurately by relying on other vehicle detectors informa-
tion. Single PPCA was unable to impute missing data without using other methods such
as historical average to impute current-day data points and was out-performed by Sub-
Network PPCA. In the experiments, it was determined that one vehicle detector showed
a fluctuating temporal pattern, resulting in a large local imputation error. The effect of
this outlier was examined, and it was found that Sub-Network PPCA is robust against
its presence. The result indicated that there was an error margin when constructing good
subsets of detectors to include in one sub-network.

Overall, the experiments confirmed good results and indicated that the spatial infor-
mation of a sub-network can lead to a precise and more robust performance. The choice of
which vehicle detectors to include in a sub-network is still an open problem, but results
show that a good choice leads to improved performance. Currently, the choice has been
made manually based on road class and vicinity. Future work will focus on automated
constructions of subsets of detectors. Furthermore, the results can be used for, to illustrate,
the verification and validation of sensor selection problems in traffic management.
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