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Abstract: Spatial autocorrelation describes the interdependent relationship between the realizations
or observations of a variable that is distributed across a geographical landscape, which may be divided
into different units/areas according to natural or political boundaries. Researchers of Geographical
Information Science (GIS) always consider spatial autocorrelation. However, spatial autocorrelation
research covers a wide range of disciplines, not only GIS, but spatial econometrics, ecology, biology,
etc. Since spatial autocorrelation relates to multiple disciplines, it is difficult gain a wide breadth of
knowledge on all its applications, which is very important for beginners to start their research as
well as for experienced scholars to consider new perspectives in their works. Scientometric analyses
are conducted in this paper to achieve this end. Specifically, we employ scientometrc indicators and
scientometric network mapping techniques to discover influential journals, countries, institutions, and
research communities; key topics and papers; and research development and trends. The conclusions
are: (1) journals categorized into ecological and biological domains constitute the majority of TOP
journals;(2) northern American countries, European countries, Australia, Brazil, and China contribute
the most to spatial autocorrelation-related research; (3) eleven research communities consisting of
three geographical communities and eight communities of other domains were detected; (4) hot
topics include spatial autocorrelation analysis for molecular data, biodiversity, spatial heterogeneity,
and variability, and problems that have emerged in the rapid development of China; and (5) spatial
statistics-based approaches and more intensive problem-oriented applications are, and still will be,
the trend of spatial autocorrelation-related research. We also refine the results from a geographer’s
perspective at the end of this paper.

Keywords: spatial autocorrelation; scientometric indicators; scientometric network mapping;
bibliographical data driven

1. Introduction

Spatial autocorrelation (SA) is a concept employed by researchers in a wide range of
disciplines and whose datasets have locational information. The essential cause of SA may
be geographical or locational proximity. As the first law of geography [1] says: “everything
is relating to everything else, but near things are more related than distant things”; hence,
SA is a widely existing geographical characteristic. Thanks to the endeavors of pioneering
quantitative geographers (e.g., the “Washington School” [2]), in the 1950–1960s, SA drew
much attention and became the central part of quantified geography. However, the first
mention of SA appeared in 1968 (i.e., [3,4]), before which it was called spatial association,
spatial dependence, spatial interaction, etc. The seminal works of the geographer Cliff and
the statistician Ord [5,6] lay the theoretical foundation of SA, which inspired its flourishing
development (i.e., [7–23]) across the natural and social sciences. Therefore, SA is also
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a series of statistical theories and methods used to deal with the dependence among
spatial variables.

Different from a purely statistical concept, SA has a geographical feature, which means
it applies to a variety of disciplines. Research relating to locational information confronts
the problem of SA, because the dependence between the observed values of a variable
caused by SA leads to the invalidation of the classical independent assumption, so the
results will not be reliable. For example, researchers may obtain incorrect Type I error rates
and biased estimates [24] when employing traditional statistical methods. Therefore, SA
is not only a problem of geography, the area in which it originated, but also a problem
of many other disciplines, such as spatial econometrics [25], ecology [26], biology [27],
etc. A series of challenges that come with SA are, for example, how to test it in a spatial
process (e.g., [28]) so that a proper model can be specified, how to deal with it in a model
(e.g., [29,30]) so that one can obtain reasonable results, and how to make use of it so that
representative samples can be drawn (e.g., [31,32]).

These are problems caused by SA from the statistical or technical perspective, whereas
SA also has very rich implications for empirical studies. For example, Liu et al. [33]
employed SA analysis to explore whether or not foreign direct investment affects environ-
mental pollution in China, and Zhang et al. [34] addressed the spatial interaction between
ecosystem services and urbanization, while Wang et al. [35] conducted spatiotemporal
analysis to discuss the transmission and influencing factors of COVID-19.

The problems as well as the benefits that SA brings have been addressed not only
from a geographer’s perspective, but also from the perspectives of scholars from other
domains. However, it is difficult to provide an overview for the multiple disciplines of
SA simultaneously, because researchers may lack experience beyond their own fields. In
addition, with the era of information exploration, thousands of papers are continuously
being written, which brings even more challenges for scholars to follow research from other
fields. To this end, this paper aims to present a global view for SA research in different fields
by employing scientometric techniques, and thus tries to figure out: the leading countries
and institutions, influential research communities, key topics and important references, and
the development as well as future research trends of SA. These constitute basic knowledge
and may help researchers to gain a comprehensive understanding of SA research so that
they can efficiently decide upon their interested research directions or gain new views from
unfamiliar domains.

As a key methodology that provides statistical and visualized results for this paper,
scientometric analysis deserves to be reviewed here. This is a bibliographical data-driven
analytical theory, and can eliminate personal bias introduced by authors’ preferences and
knowledge limits. Different from a traditional literature review, a scientometric analysis
treats articles as datasets, and shifts from solely comprehending the context of papers (by
human researchers) to using them as indicators that quantitatively qualify research, and
to graphics that depict the global traits of disciplinary trends. As discussed in papers
published in the journals Science [36] and Physical Reports [37], scientometric analysis
has become more important with the now highly available scientific literature, because
it provides a method by which a researcher can gain an understanding of a field more
objectively. In this paper, numerical scientometric indicators and three scientometric
network mining methods, i.e., co-authorship analysis, co-word analysis, and citation
relations methods [38], are applied to the collected papers that have SA as the research
topic. The numerical indicator provides a rank for the publications, countries/regions, and
institutions. The network-based methods provide structural information that illustrates co-
occurrences (e.g., co-words and co-citations) and collaborative activities (i.e., writing papers
with co-authors), which are important research topics, references, and some academic
schools or communities.

This paper employs the scientometric technique to provide a broad view of SA research
that covers various disciplines. We believe that the results have positive referential values
for GIS researchers (as well as researchers from other fields relating to SA research). The
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subsequent sections are organized as follows: Section 2 presents the datasets and sciento-
metric methodologies which are employed in this paper. Section 3 provides the results and
analyses, where Sections 3.1 and 3.2 present influential journals, countries, and institutions,
respectively, and Section 3.3 explores SA research communities. Section 3.4 focuses on
important topics and papers of SA research, and Section 3.5 analyzes the development
trajectory and possible future research trends. Section 4 discusses the results and refines
them from a GIS researcher’s perspective. Section 5 draws some conclusions.

2. Datasets and Methodologies
2.1. Datesets

The bibliographical datasets analyzed in this paper were retrieved from the Web of
Science Core Collection (WOSCC) database. The detailed search conditions are listed in
Table 1. Specifically, the Science Citation Index Expanded (SCI-E) and the Social Science
Citation Index (SSCI) databases were used, because they are the most recognized data
sources. After setting these conditions, 8461 records were obtained.

Table 1. Bibliography search conditions.

Topic Timespan Indexes Refined by

“Spatial Autocorrelation” * 1 January 1991 to 31
December 2021 SCI-E, SSCI

Document types: articles,
proceedings articles
Language: English

* The quotation mark is necessary for more accurate search results.

We chose the terminology “spatial autocorrelation” as the keyword when researching
this topic because “spatial autocorrelation” may be more generic than other expressions,
such as “spatial correlation”, “spatial covariogram”, “spatial association”, “spatial de-
pendence”, “spatial interaction”, etc., which can also represent spatial autocorrelation.
For example, spatial covariograms or spatial correlograms are often used in geostatistics,
and spatial association and spatial dependence are chosen by some researchers of spatial
econometrics, but spatial autocorrelation can cover them all. In fact, when we talk about
spatial autocorrelation, we not only think of basic spatial autocorrelation statistics (global or
local), but also of semivariograms in geostatistics, spatial autocorrelation-related regression
models that are widely employed by spatial econometricians as well as scholars in other
fields, and other methods in ecology and biology.

The overall disciplinary distribution of the top ten subjects is depicted in Figure 1,
which shows that ecology accounted for more than 2000 papers and is the most active and
productive discipline relating to SA research. Other highly productive disciplines include
environmental sciences/studies, biodiversity conservation, geography, multidisciplinary
geosciences, etc. Figure 1 also shows that the percentage of papers in the geographical
domain is about 19%, which indicates that other disciplines account for around 80% of
SA-related research.

Except for the disciplinary information, the bibliographical datasets also contain the
complete information of metadata, including authors, institutions, publication names, cita-
tion counts, and references. Hence, not only can the basic bibliography be extracted but also
the network structures can be formed by picking the relevant information from the dataset.
These items constitute original materials for scientometric analyses. In this paper, we em-
ployed several techniques, including scientometric indexes, co-authorship/words/citations
analysis, to conduct our research.
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2.2. Methodologies
2.2.1. Scientometric Indexes

For the datasets, three scientometrical indexes, the records (Recs), the Total Local
Citation Score (TLCS), and the Total Global Citation Score (TGCS), were used to quantify
the institutions as well as countries/regions. The Recs counts the frequency of an object
(e.g., an institution) appearing in the dataset and thus describes the popularity of this object.
The TLCS is the citation counts within the 8461 papers; it quantifies the SA-related domains
impact. Additionally, the TGCS is the citation counts within papers in WOSCC; it measures
the global impact. A phenomenon that has been observed is that some journals are so
professional that they have a small audience, and thus their impact factors (IF) are relatively
low, but they have good reputations among scholars within some domains; the TLCS is
a metric that represents specialization. In contrast, the TGCS is a metric that represents
universality. We used HistCite [39] to report the three counts.

2.2.2. Scientometric Network Mapping

(1) Co-authorship analysis

Co-authorship analysis is often conducted to discover research/academic communities
or schools by presenting cooperative relationship networks. There are three types of co-
authorship analyses, i.e., authors analysis, institutions analysis, and countries/regions
analysis [40]. We only focus on author analysis in this paper, aiming to find out scholars
who have similar research interests. VOSviewer [41] was employed to carry out this work,
with authors in the same community presented by the same color and connected by links.
More specifically, each author is shown by a node, and co-authorship is expressed by
links among the nodes. To visualize the co-author network and simultaneously reflect
the leading scholar(s), we set the weight as “normalized citations”, which determines the
size of a node. In other words, a node with a bigger size indicates that its corresponding
author has been cited more frequently. Other types of weights include “links” and “total
link strength”, which focus on the tightness of the co-authorship, and “documents” which
represents the number of papers in which an author cooperated with other scholars.

(2) Co-words analysis

The co-words (also called co-keyword or keywords co-occurrence) analysis enables
researchers to gain knowledge of hot topics of their domain of interest. For beginners, it is
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helpful to have an overall impression of a research field, and thus to start his or her research
by selecting a promising topic. For (relatively) mature scholars, it is also useful to obtain
fresh ideas that may come up with the map of co-words networks. We still used VOSviewer
to carry out the visualization. Being similar to the co-author networks, co-words networks
consist of nodes and the links among them. To present the popularity of the words, we set
weights as “occurrences”, a bigger node indicates more frequent occurrences of a word
co-occurring with other words in the literature. The thickness between two words is
determined by the number of their co-occurrences, and thicker links between two words
signify stronger relevance. Other weights include “links” and “total link strength”, which
emphasize the relevance of two keywords.

(3) Co-citation analysis

Co-citation means that two articles are cited in one paper. Co-citation analysis builds
co-cited relationships between articles, and then helps researchers to find important papers
as well as their related researchers efficiently. It is a classic method in scientometrics [42].
We employed CiteSpace [43,44] to gain co-citation networks. Two important indices that
CiteSpace can implement are “betweenness centrality” and “burst”. The former was first
introduced by Freeman [45] to measure centrality based on the shortest path in a graph, and
is used to show the pivotal nodes for information flow in a network (CiteSpace highlights
the pivotal nodes with purplish red circles). Additionally, the latter was developed by
Kleinberg [46], and is used to detect the burst of an event (citation, keyword, or publication)
in CiteSpace with burst nodes colored with red circles. Another merit of CiteSpace is that it
can generate the co-citation networks for different periods simultaneously, which is not
only helpful for researchers to see the development of a research domain, but also helps
one to infer the possible research trends.

Co-authorship, co-words, and co-citation analyses can be implemented by other
scientometric mapping tools, not only those mentioned above. For a thorough overview of
scientometric mapping tools, we refer the reader to the work of Li et al. [38]. The purpose
of this paper is to gain knowledge of SA research on a macro-level, so we focus on the
interpretation of the (visualized) results rather than the comparison of results output by
different mapping tools.

3. Results and Analysis

SA research covers a wide range of disciplines because data with geographical or
locational information have the feature of spatial autocorrelation. Additionally, SA research
increased yearly over 1991–2021, which is shown in Figure 2 (i.e., Recs, the blue bars).
Figure 2 also depicts the yearly changes of TLCS and TGCS for SA-related papers. Three
significant peaks appear for 1993, 2007, and 2013, indicating that there were important
contributions published in these years. There are also several moderate peaks between
1993 and 2007, showing that the SA methods and theories were continuously developed
over these 15 years. The decreasing trend of the TLCS and TGCS after 2013 makes sense
because there has not been enough time for newly published articles to be cited.

As mentioned in Section 2.1, the collected dataset contains complete metadata infor-
mation which can tell a full story for each article. Therefore, compared to quantitative
statistics, qualitative cognitions are more interesting. In this paper, we focus on influential
journals, the main countries and institutions, representative research communities, hot
topics and important references, and the evolution as well as possible research trends of SA
research, which are discussed in the following subsections.
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3.1. Influential Journals

An important element for scientific studies is the platform on which research findings
are published and thus can be propagated. A formal platform can be academic journals
which often are peer reviewed. It is necessary for researchers to know the influential jour-
nals in their research domains so that they can keep up to date with cutting-edge research.
Table 2 presents ranks for journals in terms of Recs, TLCS, and TGCS. It shows that most
productive journals relate to ecology. Specifically, Ecology, Global Ecology and Biogeography,
and Ecography are the most representative journals with high TLCS values. These journals
also have high TGCS values. In addition, as a geographical journal, Geographical Analysis is
an outstanding geographical journal with TLCS 1002 and TGCS 4937. Except classic jour-
nals, open access journals such as PLoS ONE, Sustainability, and ISPRS International Journal
of Geo-Information appear in the Recs rank. For a research domain, important papers are
probably published in journals with a high TLCS, so scholars typically pay more attention
to these journals.

Table 2. Top ten influential journals in terms of Recs, TLCS, and TGCS.

ID Recs Journal TLCS Journal TGCS Journal

1 199 PLoS ONE 1556 Ecology 10,056 Ecology

2 150 Molecular Ecology 1242
Global Ecology

and
Biogeography

10,021 Molecular Ecology Notes

3 147 Sustainability 1240 Ecography 9105 Molecular Ecology

4 118 Journal of Biogeography 1016 Heredity 8955 Global Ecology and
Biogeography

5 115 Ecography 1002 Molecular
Ecology 7474 Ecography

6 115
International Journal of

Environmental Research and
Public Health

1002 Geographical
Analysis 6483 Bioinformatics

7 107 Global Ecology and Biogeography 823 Evolution 5915 Journal of Biogeography

8 80 Ecology 498 Ecological
Modelling 4937 Geographical Analysis

9 77 ISPRS International Journal of
Geo-Information 449 Journal of

Biogeography 3834 Heredity

10 75 Science of the Total Environment 372 Ecological
Monographs 3683 PLoS ONE
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3.2. Main Countries and Institutions

For a scholar, conducting research includes not only reading and publishing articles in
academic journals, but also conducting academic visits and communicating their research.
Hence, knowing influential countries and institutions is necessary.

Table 3 shows different ranks Recs, TLCS, and TGCS. The top ten countries for each
rank were extracted. USA ranks the first in all the three aspects, indicating that it has very
big influence in SA research. Australia, Canada, and UK also have considerable impacts.
As the only Asian country, China has the second largest amount of SA publications, and
middling TLCS and TGCS ranks.

Table 3. Top ten influential countries in terms of Recs, TLCS, and TGCS.

ID Recs Country TLCS Country TGCS Country

1 2825 USA 9478 USA 118,762 USA
2 1604 China 2883 Canada 31,761 Australia
3 723 UK 2319 Australia 30,427 UK
4 599 Canada 1942 UK 24,079 Canada
5 511 Australia 1381 Brazil 22,674 China
6 469 Germany 1341 France 19,268 France
7 455 France 1334 China 16,927 Germany
8 424 Spain 1234 Germany 12,091 Spain
9 410 Brazil 697 Spain 10,947 Brazil

10 343 Italy 584 Italy 10,224 Italy

Table 4 presents the top ten institutions. Australian National University has the largest
TLCS and TGCS values; University Montreal (Canada) and University Federal de Goiás
(Brazil) also have high TLCS and TGCS values. Chinese Academy of Science and University
of Chinese Academy of Science published the most SA research papers, but only has a
rank of TGCS, indicating that ground-breaking works may be lacking somewhat. Except
these institutions, the universities of USA make up a large proportion in this table, which is
coincident with the result in Table 3.

Table 4. Top ten influential institutions in terms of Recs, TLCS, and TGCS.

ID Recs Institution TLCS Institution TGCS Institution

1 367 Chinese Acad Sci 1424 Australian Natl Univ 19,481 Australian Natl Univ
2 118 Univ Chinese Acad Sci 1346 Univ Montreal 16,672 Rutgers State Univ
3 93 US Geol Survey 1204 Univ Fed Goiás 7317 Chinese Acad Sci
4 89 Univ Fed Goias 838 Univ Calif Irvine 5959 Univ Montreal
5 89 Univ Wisconsin 562 San Diego Univ 5678 Univ Fed Goias
6 81 Wuhan Univ 538 Rutgers State Univ 5592 Univ Illinois
7 77 Michigan State Univ 484 Univ Toronto 4449 Univ Oxford
8 76 CSIC 482 Univ Illinois 3835 Univ Calif Davis
9 73 Univ Calif Davis 475 Univ Tennessee 3689 Univ Calif Irvine
10 70 Univ Florida 460 UFZ Helmholtz Ctr 3649 Univ Toronto

3.3. Representative Research Communities

The total number of authors for the 8461 papers is 27,752. In order to discover
representative research communities, we conducted a co-authorship analysis for authors.
Figure 3 shows the co-author networks of those authors who published more than five
papers of SA research. Each node presents an author; the links between nodes indicate
co-authorship between authors. A larger node means that papers of the respective author
have more citations; a thicker link between two nodes means more collaborations of the
authors. Two types of nodes can be recognized in the figure, grey ones which have rare
co-authors that can hardly forms a community, and colored ones which have at least
one co-author and indicate clusters. We focus on the colored clusters which are labeled
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by authors’ names and discuss the research communities according to the geographical
locations of authors’ affiliations. Of note is that the figures shown in Sections 3.3.1–3.3.4
(Figures 4–7) are zoomed in counterparts of Figure 3 with the scores of normalized citations
of the leading authors listed in each figure caption.
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(Griffith, 30.43).
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3.3.1. Research Communities in the Southern Hemisphere

Two communities can be recognized in the southern hemisphere, as shown in Figure 4.
The first is the Peakall community, and the second is the Diniz–Bini–Rangel community.
Peakall’s GenAIEx, which is a “cross-platform package” [47] used to conduct population ge-
netics analyses, contributes much to the TLCS and TGCS ranks of Australia and Australian
National University (see Tables 1 and 2). The package provides both frequency-based and
distance-based methods to explore the spatial pattern of genetic structures; not only clas-
sical statistical analyses are available, but also spatial autocorrelation analyses, including
spatial heterogeneity tests for genetic structures. In recent years, Peakall’s community
pays much attention to the fine-scale genetic structure, which may offer new evolutionary
insights that are overlooked by large-scale analyses [48–50].

The Diniz–Bini–Rangel community represents the Federal University Goiás (i.e.,
Univ Fed Goiás in Table 4) in Brazil. The SA research fruits of this community relate to
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multiple themes such as the geographical patterns of biodiversity and simulations [51],
geographical genetics [52], and spatial statistics [53–55]. Compared to Peakall’s community,
the Diniz–Bini–Rangel community is more connected and balanced. The Diniz–Bini–
Rangel community consists of nodes with similar sizes, which indicates that the authors
in these communities were cited at similar frequencies, whereas Peakall was cited far
more frequently than other authors in Peakall’s community. The authors in the Diniz–Bini–
Rangel community focus on spatial analysis and modelling for species distribution and
patterns within macroecology [56,57].

These two communities constitute the main forces of SA research in the southern
hemisphere. However, research communities in the northern hemisphere are more diverse,
so in the following discussion, they are grouped at the continent level.

3.3.2. Research Communities in Northern America

Figure 5 presents five communities of SA research from northern America. The Ep-
person community is devoted to research of geographical genetics, developing probability
and distribution theories of spatial statistics [58] and simulation processes to analyze popu-
lation genetic data [59]; Epperson also considered the geographical scale problem, which is
similar to the modifiable areal unit problem (MAUP) [60,61] in geography relating to the
correlation among spatial statistics themselves [62]. The Jetz community (Yale University)
addresses the geographical and environmental factors behind the distributions of biodi-
versity [63], and especially how the scale dependencies function on biodiversity [64]; in
their studies, spatial autocorrelation always mingles with environmental variables, which
impacts species distribution or co-occurrence [65].

Scholars from University of Montreal and University of Toronto constitute the Legendre–
Fortin community, who study SA in the background of ecology. The beginning of Legen-
dre’s SA work is the paper published in 1993 [28], which develops a frame within which SA
can be described and measured, hypothesis testing can be conducted properly, and spatial
structures can be introduced to ecological models explicitly. This paper led to the citation
peaks in 1993 (see Figure 2). From then on, the SA works of Legendre and his team mainly
emphasized exploring proper statistical methods for ecological studies [66]. Fortin’s team
also focused on modelling ecological processes [67,68], however, from a perspective of con-
servation biology [69]. Sokal (1926–2012) is a pioneer who introduced SA to biology [70,71]
and led studies of population genetics [27]; he collaborated extensively with authors in
the Legendre–Fortin community. Another SA model-oriented research community is the
Peres Neto–Dray community (Dray is from Université Claude Bernard Lyon 1, France; his
co-authorship with northern American authors groups him into this community), who
are especially interested in exploring multi-scale and multivariate problems in ecological
studies [72], and problems relating to the spatial weights matrices which represent spatial
structures [73–75].

The Griffith community is devoted to spatial statistics and geographical information
science (GIS) studies relating to the domain of geography. Griffith developed the Moran
Eigenvector Spatial Filtering (MESF) technique to deal with the SA latent in the regressive
model for spatial data [76,77], and this community develops a series of methods for solving
mathematical or computational problems relating to SA (e.g., [78,79]).

3.3.3. Research Communities in Europe

Two research communities of SA research, presented in Figure 6, were discovered
by VOSviwer. The Thuiller–Kuehn community focuses on species distribution mod-
elling [80], uncovering the relationships between species distribution (in time series) and
environmental factors [81]. Kuehn’s team developed an R package, “spind”, to improve
prediction accuracy by selecting appropriate accuracy measures [82], and analysis lattice
data at different spatial scales [83]. The Svenning community is focused on dealing with
SA latent in spatial data in terms of regression models to conduct biodiversity studies [24].
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3.3.4. Research Communities in Asia

The SA research forces of Asia are mainly in China. Figure 7 shows two communi-
ties: the Wang–Yang–Liu community, colored in red, and the Wang community, colored
in pale blue. The common research object of the Wang–Yang–Liu community is cities.
However, they concern different urban problems. Wang Shaojian and his co-workers study
urban environmental pollution by spatial modelling, especially regression modelling with
SA [33,84]. Yang Jun’s team use SA techniques to explore spatial factors that impact urban
temperature [85,86]. Liu Yanfang’s research group is interested in urbanization [34] and
urban public services, such as in Greenland [87], and medical facilities [88]. The Wang
community is mainly made up of scholars from Chinese Academy of Science. Wang Jinfeng
and his team developed “Sandwich Spatial Sampling” [31] and released “GD” (geograph-
ical detector or GeoDetector) [32,89] to handle spatial (stratified) heterogeneity latent in
spatial/geographical datasets.

There are another two clusters of Chinese scholars in Figure 3: the blue cluster near
the red community, and the green-yellow cluster near the Peakall community. We have
not listed them out because the major nodes (i.e., Wang Chao, and Wang Yan) are made
up of different scholars whose names are pronounced the same. As a summary, the blue
cluster consists of researchers who apply SA analysis to spatial epidemic include the
COVID-19 studies [35]; and authors in green-yellow cluster published papers about the
spatial distribution of chemical elements in soil [90,91].

We discuss 11 SA research communities in total, except the Griffith community and
two Chinese communities (Figure 7) belong to geography discipline, other 8 communities
can be grouped in ecology and biology disciplines. Most of these 11 communities are
methods originated so that they have great impacts.

3.4. Hot Topics and Important Papers

We analyze the research subject of SA in Sections 3.2 and 3.3, and probe the research
objects (hot topics) and important references in this part.

3.4.1. Hot Topics

A keywords co-occurrence map generated by VOSviewer is shown in Figure 8 (the
co-occurrences of selected keywords are also listed); it provides evidence for picking out
hot topics from more than 8000 references. Because “spatial autocorrelation” is a common
topic in the literature, it has the largest size and is in the center of the co-occurrence map. In
addition, other keywords still have significant sizes on which we focus to gain knowledge
of the hot topics.

The blue cluster represents spatial autocorrelation analysis for molecular data, for
the word “genetic” appears frequently in this group (e.g., landscape genetics, genetic
structure, genetic diversity, etc.). The possible hot research topics include exploring the
sources of diversity, e.g., seed dispersal [92,93], (isolation by) distance [94,95], (genetic) dif-
ferentiation [96], and developing computer programs [97] for spatial genetic data analysis.
The green-yellow cluster indicates studies pertaining to biodiversity, whose related topics
include (species) richness [98], and beta-diversity [99]. Studies of this type consider factors
such as scale [100] and climate [101], which impact biodiversity.

The green cluster highlights spatial heterogeneity and variability, for which geo-
statistical methods such as the use of variograms are frequently employed [87,102]. In
addition, technologies including remote sensing and lidar are used to investigate topics
related to land use [103], soil [104], and vegetation [105]. In this cluster, machine learning
techniques [106], e.g., random forest, are applied to SA-related studies. The red cluster
addresses topics such as urbanization, carbon emission, economic growth, health and
epidemiology pertaining to China [107–110]. The spatial model selection, application,
and improvement for specific research problems are frequently discussed by authors in this
cluster [111–113]; in particular, the geographical weighted model is intensively developed
and applied [114–117].
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3.4.2. Important Papers

Figure 9 displays 959 papers whose nodes have larger sizes and are thus more influ-
ential. The biggest node is that of Peakall (2006) [20], who introduced GenAIEx 6 to the
genetic analysis community, the popularity of this package may contribute to its conve-
nience, i.e., that it can be used directly in Microsoft Excel. Another computer package used
by this community is PopGenReport (Adamack (2014)) [118]. Hence, the purple cluster
presents the main articles about packages that can conduct genetic data analyses. The
green group suggests important works about geographical or environmental factors that
impact genetic structure (e.g., Vekemans (2004) [119] and Streiff (1998) [120]).

The red and brown blocks emphasize important papers in spatial econometrics;
these papers focus on local spatial autocorrelation indicators that describe spatial hetero-
geneity, e.g., Ord (1995) [121], and also focus on model building for spatial econometric
analysis. The selected representative papers are Anselin (1996, 2002) [122,123], Griffith
(2004) [124], and Leenders (2002) [125], etc. Papers of spatial model construction for eco-
logical data are clustered into green-yellow, orange, and pink groups. Dray (2006) [75],
Griffith (2006b) [30], Segurado (2004) [126], Naimi (2014) [127], Brenning (2005) [128],
Telford (2005) [129], and Lichstein (2007) [130] are conspicuous. The (light) blue clusters
are references relating to the demonstrations of the impacts of spatial autocorrelation in
ecological modelling, e.g., Legendre (1993) [28], Diniz (2003) [51], and Kissling (2008) [131];
problems such as scale and spatial configuration (or weight matrix) are also addressed
(Legendre (2002) [18], Jelinski (1996) [132], and Dungan (2002) [60]).

The important papers displayed in Figure 9 are in line with our reasoning: researchers
prefer to cite references which are method-original or about user-friendly tools for im-
plementing data analysis in their specific domains. Two other frequently used computer
packages are GeoDa [133] and spdep [134,135], which are designed to handle spatial de-
pendence hidden in geographical data. These references, however, are not presented in
Figure 9.
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3.5. Research Development and Trends

Section 3.4 discusses hot topics and important articles. However, the visualizations
are for the whole time period so that papers which were published earlier have a bigger
chance of being displayed, so we need to remove the intertwined knowledge so that the
vein of the development of SA research from 1991 to 2021 can be clear. To gain information
of the evolution of SA research, we need to consider the timeline, and CiteSpace [43,44]
can meet this requirement. Figure 10 shows the co-keyword (or keywords co-occurrence)
map and co-citation map with the timeline divided by six periods: 1991–1996, 1997–2002,
2003–2008, 2009–2014, 2015–2020, and 2021.

Table 5 presents the cluster labels of the co-keyword clusters map and co-citation clus-
ters map. Although the CiteSpace extracted labels for co-citation clusters of 1991–1996 and
1997–2002, we can also summarize more accurate expressions through the representative
papers displayed in the respective clusters. In the first period (1991–1996, purple), Sokal’s
articles (e.g., [136,137]) were intensively cited; research in this period is mainly about SA
analysis for biological data, which are pioneer works introducing SA in biology. In the
second period (1997–2002, blue), studies were about spatial genetic structure [138] and
diversity [139] considering SA in ecological modelling [140]. In the third period (2003–2008,
cyan), SA studies also focused on spatial genetic structure and diversity, but publications
pertaining to genetic population structure were emerging (e.g., [141,142]). In the fourth
period, authors studied species richness, species distribution, etc.; “land use” appeared
in this period, indicating that SA methodologies were applied to research more inclined to
people. In the fifth period, except the “ecological niche model” and “moran eigenvector”, a
large number of scholars employed SA methods to study city problems (air pollution [143],
urbanization of China [144]), and problems of public health [145].
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(Representation of the timeline: 1991–1996 (the purple strip), 1997–2002 (the blue strip), 2003–2008
(the cyan strip), 2009–2014 (the light-green strip), 2015–2020 (the yellow strip), and 2021 (the red
strip).) Convex hulls of different time periods are, respectively, colored; e.g., in the co-keyword
clusters map, there are three clusters in 2015–2020, and in the co-citation clusters map, there are four
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clusters. A keyword’s color(s) is/are coincidence with its year(s) color(s), e.g., “spatial autocorrelation“
is colored purple, blue, cyan, light-green, yellow, and red like annual rings, indicating that it appears
throughout 1991–2021. An article node is colored by color(s) of its citation year(s), e.g., Wang JF
(2016) [32] was cited in 2015–2020 and 2021. These pivotal keywords have purplish red circles, and
bursting cited papers are in red circles.

Table 5. Label titles of clusters in Figure 10.

Time Period Label Titles of Co-Keyword Clusters Map Label Titles of Co-Citation Clusters Map

1991–1996 - #13 paleolithic colonization (1 cluster)

1997–2002 - #2 sexual reproduction; #7 terrestrial bird
(2 clusters)

2003–2008 #1 gene flow; #2 population structure; #3 genetic
structure; #4 genetic diversity (4 clusters)

#0 spatial genetic structure; #4 nutritional factor;
#6 population structure (3 clusters)

2009–2014
#0 spatial autocorrelation; #5 species richness;

#6 land use; #9 diversity; #11 dynamics
(5 clusters)

#2 species richness; #3 species distribution;
#5 dispersal constraint;

#10 sister species; #11 avian species richness
(5 clusters)

2015–2020 #7 air pollution; #8 china; #10 climate change
(3 clusters)

#1 city level; #8 ecological niche model; #9 moran
eigenvector; #14 mouth disease (4 clusters)

2021 - -
Num. of clusters 12 15

There seems to be a change that appeared in 2009–2014 after which SA research about
studies in the geographical domain can be recognized in the global background, and SA
studies began to cover problems pertaining to people and people’s lives. It can be inferred
from the trajectory that more and more humanistic studies which employ SA methods will
emerge in the future, so that SA may be a bridge which connects the observed phenomenon
and its unobserved causes.

4. Discussion
4.1. Merits and Shortcomings of This Paper

In our research, we employed bibliographical-data-driven methods to explore the
features of SA research which has several merits. Firstly, the results tell readers the general
information of SA studies, such as those important journals, leading countries/regions,
institutions, representative authors and articles. Secondly, the visualizations developed by
scientometric tools suggest main research topics, and evolution of SA research. In a word,
bibliographical analysis and visualization present objective results, and give researchers an
overall view of SA research.

Although the results are objective, interpreting the results depends on people. For
example, we organized the research communities in terms of countries/regions; however,
it may be better to discuss these communities in terms of disciplines or research domains.
Another point that needs to be explained is the division of time periods. The period
1991–2021 may be divided in a more “representative” manner rather than being equally
divided (2021 is the single year left). The term “representative” means that topics in
one period had better be different from the topics in its neighbor periods so that the
development process can be presented more clearly. At last, as we mentioned in the very
beginning of this paper, SA research covers to a wide range of disciplines within which
geography-related domains counts small proportions, so works in geographical domains
may be overlooked under such a huge base. To prevent this, we conducted co-keyword
and co-citation analyses on papers within geographical domains.

4.2. Refine the Results from a Geographer’s Perspective

A total of 1699 records within geographical domains were extracted from the original
dataset which have 8461 records. We conducted keywords co-occurrence analysis and



ISPRS Int. J. Geo-Inf. 2022, 11, 309 17 of 25

co-citation analysis for the sub-dataset. Figure 11 shows topics highlighted in different
time periods.
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To interpret the co-keyword and co-citation map more efficiently and clearly, we
condense the information to Figure 12. Instead of applying SA methods to specific research
objects in Figure 10, topics in Figure 11 are more technical or method oriented. It can
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be seen from Figure 11 that, research often used Monte Carlo method to simulate SA in
the early 1990s; in the middle-to-late 1990s and early 2000s, authors concentrated their
attention to local SA, which is the variation (also called spatial heterogeneity) in a finer
spatial scale comparing to the global scale on which global SA may not be significant.
Classical SA methods developed in this period were Anselin’s LISA [146], Ord’s and
Getis’ local SA statistics [121,147], and Fotheringham’s geographically weighted regression
(GWR) [29]. Over 2003–2008, scholars considered temporal autocorrelation as well as spatial
autocorrelation; related methods are thoroughly discussed in Cressie’s work [148]. Con-
structing proper models for data with different features is one of the hot topics in 2009–2014.
Many social scientists employed regression models to explore econometric problems, and
model specification tests are an important work during model-building processes. The
Lagrange multiplier test for SA and spatial heterogeneity developed by Anselin [149] was
frequently used to conduct specification tests. In 2015–2020, GWR, Wang’s geographical
detector [89], and Griffith’s Moran Eigenvector Spatial Filtering (MESF) [15,76] were widely
applied. Moreover, intensive developments and implementations [150] of these methods
also contribute to their popularities. In 2021, SA methods were used to discover spatial or
spatiotemporal distributions or patterns of COVID-19 (e.g., [151,152]); in addition, algo-
rithms such as projection pursuit [153] and fuzzy c-means [154] were improved for spatial
clustering in 2021.
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Figure 12 also indicates a technical evolution of SA research. From the Monte Carlo
simulation to combine typical clustering algorithm to spatial clustering, SA methods or tech-
niques evolve with research needs and the features of datasets. Three main research trends
of SA techniques may be: (1) developing faster-computing methods to handle massive
spatial datasets; (2) exploring more intensive model building or parameter setting schemes
to deal with finer-scale datasets as well as diversified research objects; and (3) improving
model diagnosing methodologies to ensure the reliability of spatial models for datasets
with huge sizes and multi-sources.

5. Conclusions

This paper employs scientometric methods, i.e., scientometric indicators and sciento-
metric network techniques (co-author/word/citation analysis), to gain an all-encompassing
perspective of SA research which covers a wide range of disciplines. Firstly, we used three
indicators, Recs, TLCS, and TGCS, equipped in HistCite to evaluate the impacts of journals,
countries/regions, and institutions relating to SA research. The results indicate that most
of the top journals are of ecological and biological domains, among which geographical
analysis ranks highly in terms of TLCS and TGCS. Northern American countries, European
countries, Australia, Brazil, and China as well as institutions in these areas are influential.
This gives general information about SA research.
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Secondly, we employed VOSviewer to conduct an co-author analysis and identified
11 SA research communities. Griffith’s MESF community, Wang’s GeoDetecor community,
and the Wang–Yang–Liu community are three groups contributing to SA research in the
geographical domain. Anselin’s GeoDa group was not recognized. A reason for this may
be that we did not include “spatial association”, which was the keyword of its seminar
work [146] as a search topic.

Thirdly, we applied CiteSpace to conduct co-keyword and co-citation analyses and
divided 1991–2021 into six time periods (2021 is the year single listed) so that the evolu-
tionary path can be clearly presented. Global (the whole dataset with 8461 records) and
local (the 1699 records relating to geographical domains) analyses were both conducted,
from which research trends from two different views can be inferred. The first is from the
view of all the related disciplines; SA research may be more humanistic, i.e., researchers
may focus more on people and the natural as well as social environment within which
they are living. SA models or SA analysis may better uncover the spatial pattern or key
factors of the observed phenomena. The second is from the view of geography-related
disciplines, and we make a technical summary. As the spatial datasets are becoming bigger,
and their scales are finer, more efficient algorithms for computation are needed, and more
intensive spatial model building or parameter setting schemes are also needed. In addition,
improving model diagnosing methodology is very necessary for the reliable modelling of
spatial data with huge sizes and multiple sources.

Although we have discussed SA-related research in geographical domains in the previ-
ous paragraph, it is still necessary to give an overall summary at the very end of this paper.
As shown by the results of our analyses, SA-related research in geographical domains only
makes up about 19% of the whole literature in which research of ecological and biological
domains count the most. Before 2009, SA research in geographical domains can hardly
be recognized in the global background, although fundamental works [4–6,15,29,146,147]
were conducted by pioneering and later geographers. Hence, it may be after 2009 that
these theoretical works of geographical domains are widely cited and deeply developed.
Except the technical trends of SA research addressed in the above paragraph, the research
trends of empirical studies should also be discussed. In fact, a very large portion of the
detected research is applied research (e.g., the Wang–Yang–Liu community in Figure 7a
and co-keywords clusters in Figure 11a) which implies that SA-related methodologies are
potent to a wide range of research topics. Therefore, making geographers’ more visible
and known is important for applying SA to more domains which use data with locational
information as their research objects.

A last point that needs to be mentioned is that not all SA-related research is included in
the 8461 records, because there are no searching strategies guaranteeing a collection without
a single article left. However, these records should cover the majority of publications.
Meanwhile, it does not mean that works not included in the datasets or not mentioned in
this paper are not important. Although we cannot guarantee all SA papers to be included
in the dataset, the results of this work still have referential value for SA researchers: not
only for beginners to start a research topic more efficiently, but also for (relatively) mature
researchers to gain new insights into their studies.
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