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Abstract: Poverty statistics are conventionally compiled using data from socioeconomic surveys. 

This study examines an alternative approach to estimating poverty by investigating whether readily 

available geospatial data can accurately predict the spatial distribution of poverty in Thailand. In 

particular, the geospatial data examined in this study include the intensity of night-time light (NTL), 

land cover, vegetation index, land surface temperature, built-up areas, and points of interest. The 

study also compares the predictive performance of various econometric and machine-learning 

methods such as generalized least squares, neural network, random forest, and support-vector re-

gression. Results suggest that the intensity of NTL and other variables that approximate population 

density are highly associated with the proportion of an area’s population that are living in poverty. 

The random forest technique yielded the highest level of prediction accuracy among the methods 

considered in this study, primarily due to its capability to fit complex association structures even 

with small-to-medium-sized datasets. This obtained result suggests the potential applications of us-

ing publicly accessible geospatial data and machine-learning methods for timely monitoring of the 

poverty distribution. Moving forward, additional studies are needed to improve the predictive 

power and investigate the temporal stability of the relationships observed. 
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1. Introduction 

Over the past three decades, the real GDP per capita of Thailand has grown by 3.35% 

annually. Prior to the COVID-19 pandemic, the country’s impressive economic growth 

was accompanied by declining household poverty rates, dropping from 61.41% in 1988 to 

5.04% in 2019 (Figure 1). However, significant pockets of poverty still exist, particularly 

in rural areas where about 6.76% of households are considered poor [1]. Furthermore, the 

pandemic brought about by COVID-19 may undermine poverty reduction gains over the 

years. 

Hence, poverty monitoring remains an essential task for the country’s development 

practitioners. At present, the National Economic and Social Development Council 

(NESDC) and National Statistics Office (NSO) are responsible for compiling poverty sta-

tistics in Thailand. Poverty statistics are based on the Household Socioeconomic Survey 

(HSES), which collects household income data every two years. The survey’s sample size 

provides estimates that fall within tolerable levels of reliability when presented at the na-

tional and provincial levels, but are typically not large enough to provide reliable esti-

mates at more granular levels. On the other hand, increasing the frequency and survey 

sample sizes is often not practical due to the high cost [2]. 

Given the need for more timely and granular poverty data that can be used to target 

population segments that have the greatest need for intervention, researchers and devel-

opment practitioners have explored alternative methodological approaches. For instance, 
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small area estimation (SAE) techniques that combine surveys with census and other types 

of administrative data have been widely used to facilitate estimation at levels more gran-

ular than can be afforded when working with surveys alone. However, since SAE requires 

census data that are not frequently available, the obtained poverty maps are not neces-

sarily timely. There are also initiatives to use innovative data from call detail records, so-

cial media, digital transactions, and remotely sensed data to compile more granular and 

timely poverty statistics [3–9]. 

 

Figure 1. Proportion of Thailand’s population living below its national poverty line. Source: Thai-

land’s NSO. Note: Thailand’s poverty line is calculated based on the minimum standard required 

by an individual to fulfill one’s basic food and non-food commodities. Details are provided in the 

NESDC report (2015). 

Mapping Thailand’s spatial distribution of poverty is an area that could greatly ben-

efit from the integration of remote sensing data. In this context, two types of analytical 

frameworks are worth pointing out. First, by capitalizing on ongoing developments in 

computer vision techniques and satellite imagery, several researchers have shown that it 

is feasible to develop an algorithm that can automatically predict survey-based estimates 

of poverty with satisfactory levels of accuracy [2–5]. Such approach is quite attractive for 

instances in which collecting survey data, particularly in remote and/or hard-to-reach ar-

eas, is onerous, and no other types of supplementary data are readily available. It is also 

useful when increasing the survey’s sample size is prohibitively costly. However, since 

the features extracted by computer vision techniques are relatively abstract [2], it is diffi-

cult to manually pinpoint exactly which features are being picked up by the computer 

when predicting poverty. Consequently, it is also difficult to validate what could have 

triggered an unexpectedly low or high estimate of poverty if such instances arise. Wider 

adoption of these new poverty compilation techniques may also be hampered if they do 

not generate features that are interpretable to policymakers [4]. 

Alternatively, if structured geospatial data are readily available, one can develop a 

more tractable and interpretable econometric model for predicting poverty. This can be 

achieved by leveraging interpretable geospatial data that have already been pre-compiled 

or are passively collected. This approach facilitates a more interpretable computational 

framework for predicting poverty. This study explores the second approach, where pov-

erty is predicted by identifying correlates from pre-compiled geospatial data. It contrib-

utes to the existing literature by assessing whether it is feasible to develop a model with 

satisfactory predictive performance, even if we solely depend on pre-compiled geospatial 

datasets, which theoretically can be considered as just a fraction of the number of covari-
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ates that the first approach can potentially generate, a feat that has not been explored thor-

oughly in the context of Thailand, in previous studies. Here, we also compare the perfor-

mance of different machine-learning techniques, a topic that has not been well explored 

in previous studies of poverty estimation using non-traditional data sources. In doing so, 

the study aims to contribute to the literature that explores other cost-effective methods of 

predicting poverty using an interpretable computational framework applied to geospatial 

data. 

The rest of this paper is structured as follows. The second section reviews related 

literature, while the third and fourth parts introduce the data and research methodologies, 

respectively. The fifth section presents the key findings of the econometric and machine-

learning methods adopted in this study. The last section summarizes lessons learned and 

draws brief recommendations for future studies. 

2. Literature Review 

2.1. Using Pre-Compiled Geospatial Data to Predict Socioeconomic Indicators 

The existing literature offers a wide range of case studies showcasing various appli-

cations of satellite imagery and geospatial data for development-related analyses. For in-

stance, data on the intensity of NTL compiled through Defense Meteorological Satellite 

Program (DMSP)/Operational Linescan System (OLS) and Suomi National Polar-orbiting 

Partnership (SNPP)—Visible and Infrared Imaging/Radiometer Suite (VIIRS) are widely 

used. Many studies found a statistically significant relationship between the intensity of 

NTL and various ground data such as GDP, electricity consumption, inequality, and in-

fant mortality rate [6–14]. 

In addition to NTL intensity, Landsat, National Oceanic and Atmospheric Admin-

istration (NOAA)—Polar Orbiting Environmental Satellites (POES) and Terra Moderate 

Resolution Imaging Spectroradiometer (MODIS) satellites have scanned the Earth’s sur-

face with multi-spectral sensors. These multi-spectral data have been used by various re-

searchers to compile a number of geospatial indicators such as the building density, water 

coverage, Normalized Difference Vegetation Index (NDVI), Land Surface Temperature 

(LST), NDWI (Normalized Difference Water Index), NDSI (Normalized Difference Snow 

Index) NDSI (Normalized Difference Soil Index), and NDBI (Normalized Difference Built-

up Index). Specifically, NDVI represents the spatiotemporal pattern of forest and culti-

vated areas and is considered one of the conventional indices commonly used in remote-

sensing analysis of vegetation. NDVI is calculated by measuring the difference between 

near-infrared (which vegetation reflects) and red light (which vegetation absorbs). For ap-

plications in socioeconomic studies, a correlation between urban expansion and decreas-

ing NDVI has been documented [15–17]. Similarly, the statistical relationship between 

NDVI and the spatial distribution of income inequality has been statistically verified [18–

21]. 

Data on land surface temperature is another type of pre-compiled geospatial infor-

mation which researchers are using to predict income. For instance, a statistically signifi-

cant relationship between land surface temperature and income has been statistically val-

idated [22–28]. Additionally, many studies found a statistically significant correlation be-

tween rainfall on income, human capital, and economic activity in developing countries 

[29–34]. 

In addition, the forecast models using both temperature and NDVI for predicting 

drought and, in turn, forecasting the loss of agricultural output and its effect on farmers’ 

incomes have been formulated [35,36]. 

Efforts to crowdsource geospatial data are also expanding. A good example is Open-

StreetMap, a collaborative project producing a crowdsourced geographic database, and 

one of the major platforms promoting the use of geospatial data in the fields of global 

humanitarian action and community development. The OpenStreetMap database also 

features other types of geospatial data such as the presence of roads, rivers, built-up areas, 
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and points of interest (POI), enabling investigation of the association between the geo-

graphical characteristics and socioeconomic conditions. Studies such as those by Hu et al. 

(2016), Ye et al. (2019), and Deng et al. (2019) [37–39] demonstrate that OpenStreetMap 

can provide details of the spatial distribution of population and economic activities. 

2.2. Poverty Mapping in Thailand 

For many countries, poverty was a critical development challenge even before the 

COVID-19 pandemic struck, with pre-pandemic trends in poverty reduction showing a 

relatively slower decline compared to what has been observed in the past. In Developing 

Asia, for instance, about 203 million people were living below USD 1.9 a day as of 2017, 

and there is evidence suggesting that the pandemic might have further turned back the 

region’s poverty clock.  

Spatial disparities in poverty have been well documented in a number of empirical 

studies. In general, geography can act as either a gateway to better living standards, espe-

cially when a specific location has greater access to richer natural resources, or to poverty 

when an area is too remote, has limited job creating-economic activities, and has limited 

access to various social services. On the other hand, severe climatic events such as rainfall 

shocks and even modest changes in temperature may make it difficult for poor and vul-

nerable people who have limited access to social safety-nets to escape poverty as their 

ability to accumulate assets and invest in human capital is hampered. 

As an upper-middle-income country, Thailand is considered as one of Asia’s great 

development success stories. In less than a generation, it was able to move away from 

being a low-income country. However, its development trajectory is constrained by spa-

tial income disparities, among other development challenges. The concentration of pov-

erty in rural areas is possibly driven by Bangkok’s high agglomeration force and the fact 

that most economic activities are concentrated in Bangkok and its suburbs [40]. Since rural 

provinces have a limited variety of economic activities, they have a constraint of creating 

non-agriculture jobs. Trends in non-pecuniary indicators of development are also con-

cerning (Figure 2). For instance, half of the country’s working population is still in precar-

ious employment. There is also ample room for improvement in the education sector as 

rural migrants and the urban poor generally lack the skills demanded by modern jobs. 

 

Figure 2. The Human Achievement Index in 2017. Source: NESDC (2017). Note: The Human 

Achievement Index value ranges from 0 (worst outcome) to 1 (best outcome). 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Income Employment Education Health Transport and
communication

Housing and living
environment

H
u

m
an

 A
ch

ie
ve

m
en

t 
In

d
e

x 

Bangkok Central

Northeast Northern

Southern



ISPRS Int. J. Geo-Inf. 2022, 11, 293 5 of 31 
 

 

As mentioned earlier, official poverty statistics in Thailand are based on the House-

hold Socioeconomic Survey, which provides reliable estimates from national down to pro-

vincial levels. However, recognizing the importance of having more geographically dis-

aggregated poverty data as inputs for policy targeting, NSO of Thailand started compiling 

small area (Tambon or subdistrict-level) poverty estimates in 2003 in collaboration with 

other development partners such as NESDC, Thailand Development Research Institute 

(TDRI), and the World Bank. Since then, small area poverty estimates in the country have 

been compiled for the following years: 2005, 2007, 2008, 2011, 2012, 2015, and 2017. The 

outputs in 2003 and 2005 were jointly prepared by three local institutions, namely, 

NESDC, NSO, and TDRI, together with the technical advisory from the World Bank. In 

2015, the World Bank provided further technical assistance to NSO to build its capacity to 

implement small area estimation among more NSO staff. Additional technical details on 

the process of compiling poverty maps are documented by Jitsuchon (2004) and Jitsuchon 

and Richter (2007) [41,42]. 

However, despite the availability of analytical tools for compiling granular estimates 

of poverty, it is important to identify alternative methods due to limitations associated 

with the conventional poverty mapping technique, which heavily relies on the availability 

of census data. For instance, since censuses are usually conducted every five to ten years 

only, poverty-mapping models that use covariates derived from census have restrictively 

strong assumptions [43]. 

Poverty statistics compilation presents exciting opportunities to blend traditional 

and innovative data sources, particularly information extracted from satellite imagery [3]. 

As discussed earlier, conducting detailed household surveys with a sample size large 

enough to reflect all geographic areas and different population groupings may not be a 

practical option due to the high cost. Moreover, the importance of poverty statistics for 

policy targeting requires that granular data are available regularly. Incorporating innova-

tive data can potentially address the restrictions that conventional data sources are asso-

ciated with. 

In a study published recently, researchers from ADB extended the conventional 

small-area poverty-estimation framework by tapping geospatial data extracted from day-

time imageries and NTL through machine-learning algorithms to create granular poverty 

maps of the Philippines and Thailand [2,4]. The adopted method was inspired specifically 

by Jean et al. (2016) [3], which was further used and/or enhanced in subsequent studies 

[44–47]. These studies fall under the strand of literature that broadly aims to explore ap-

plications of artificial intelligence and computer vision techniques for estimating poverty. 

However, as hinted earlier, this methodology has several technical issues. First, validating 

aberrant or unexpected predictions becomes challenging because the features being used 

to correlate poverty are abstract. Second, instead of directly predicting poverty, the 

method employs an intermediate step wherein an algorithm is first trained to predict the 

intensity of NTL. The intermediate step is necessary in this context because sources of 

NTL data, particularly satellite imagery, are readily accessible and can cost-effectively 

provide large volumes of labeled images on which to train a computer vision algorithm, 

something that cannot be easily achieved if we were to predict poverty outright, since 

readily available poverty data are not quite granular. Using data on NTL intensity as a 

proxy for poverty during the intermediate step is arguably valid if it is assumed that 

places that are brighter at night are less poor than those places that are less well-lit. How-

ever, if there are places that are equally lit but show varying levels of poverty on the 

ground, such an intermediate step could potentially lead to loss of vital information by 

not predicting poverty outright. Third, having abstract satellite image features as model 

covariates which cannot be intuitively understood by development practitioners and pol-

icymakers makes adoption of such techniques less appealing, as it is not straightforward 

to draw insights why a given location is associated with a specific level of poverty [4]. 
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This study contributes to the existing literature of poverty measurement in Thailand 

by developing a predictive model whose correlates were derived from pre-compiled geo-

spatial data, which are interpretable. By doing so, we aim to assess whether it is feasible 

to develop a model with satisfactory predictive performance even if we are solely depend-

ing on pre-compiled geospatial dataset(s) instead of applying computer vision techniques 

to automatically extract satellite image features that are potentially correlated with pov-

erty, a feat that has not been thoroughly explored in previous studies. 

The outcomes of interest in this study are income and multidimensional poverty in-

dices. Our model specifications include several covariates. First, we consider intensity of 

NTL, which serves as proxy measure of level of economic activity in a given area. To cap-

ture the level of urbanization, we also consider land surface temperature, land use, and 

vegetation index. Measures of density of points of interest are used to capture the acces-

sibility of services as well as the level of economic activity. Rainfall data capture climatic 

factors which may amplify poverty risk in a given location. Details are provided in the 

next section. 

3. Data 

3.1. Satellite Data 

3.1.1. Data Obtained from Google Earth Engine 

Google Earth Engine is an open cloud-based data storage and computing platform 

which provides access to satellite imagery for free. In this study, we extracted the follow-

ing information from Google Earth Engine : 

1. Intensity of night-time lights (NTL) 

2. Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS’) rainfall 

data 

3. Land Surface Temperature (LST) 

4. Normalized Difference Vegetation Index (NDVI) 

Table 1 summarizes the range of data that can be obtained from Google Earth Engine. 

Table 1. Technical specification of data obtained from Google Earth Engine. 

Data Satellite Data Full Name Resolution Area (Approximate) Frequency 

Rainfall  

CHIRPS Pentad: Climate 

Hazards Group InfraRed 

Precipitation with Station 

Data (version 2.0 final) 

0.05 arc degree 110 m2/Pixel Monthly 

NTL (Old) DMSP/OLS 

Nighttime Lights Time Se-

ries Version 4, Defense 

Meteorological Program 

Operational Linescan Sys-

tem 

30 arc seconds 1 km2/Pixel Monthly 

NTL (New) VIIRS/DNB 

VIIRS Nighttime 

Day/Night Band Compo-

sites Version 1 

15 arc seconds 375 m2/Pixel Monthly 

Land Surface 

Temperature 

(day) 

MODIS 

MOD11A1.006 Terra Land 

Surface Temperature and 

Emissivity Daily Global 1 

km 

30 arc seconds 1 km2/Pixel Daily 

Land Surface 

Temperature 

(night) 

MODIS 

MOD11A2.006 Terra Land 

Surface Temperature and 

Emissivity Daily Global 1 

km 

30 arc seconds 1 km2/Pixel Daily 
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Normalized 

Difference 

Vegetation 

(NDVI) 

MODIS 
MODIS Combined 16-Day 

NDVI 
15 arc seconds 375 m2/Pixel 18 Day 

Source: Google Earth Engine. Global Urban Footprint (GUF). 

The Global Urban Footprint (GUF) project by the German Remote Sensing Data Cen-

ter (DFD) of the German Aerospace Center (DLR) compiles geocoded data which identify 

urban areas, land surface, and water bodies. Geocoded data on built-up and non-built-up 

areas are also available from the GUF. 

Global Human Settlement Layer (GHSL) 

Mainly supported and supervised by the Directorate General Joint Research Centre 

of the European Commission, the Global Human Settlement Layer project has produced 

a fully open and free geospatial spatial dataset. The generated geospatial database pro-

vides informative evidence and the broadened insight of global human presence. 

USGS 

This geospatial dataset has been generated based on the ten years (2001–2010) collec-

tion of MODIS-based Global Land Cover maps (MCD12Q1 land cover type data). There 

are 16 classifications for each pixel, identifying the type of land cover based on the method 

of highest confidence during 2001–2010 [48]. 

European Space Agency Land Cover (ESA-LC) 

Initially, the main objective of the European Space Agency (ESA)’s Climate Change 

Initiative is to produce an accurate land cover classification that can serve the climate 

modeling community. This project has developed the Essential Climate Variable (ECV) 

spatial dataset based on the extensive archives of remote-sensing data. The database co-

vers time series from 1992 to 2017 and contains 38 land cover classes, which are based on 

the UN Land Cover Classification System. 

3.2. Crowdsourced Geospatial Database (OpenStreetMap) 

OpenStreetMap features crowdsourced data on locations of infrastructures, human 

settlements and economic activities. In this study, we extracted the following information 

from OpenStreetMap: road count, road length, Point of Interest (POI), and built-up area. 

We categorized POIs into 16 types based on its economic activity, matched to the official 

classifications of 16 production and service sectors published by NESDC. 

Figures 3–6 exemplify the spatial distributions of NTL, NDVI, Land Surface Temper-

ature (Day), and rainfall obtained from Google Earth Engine. Figure 7 exhibits the trans-

portation network and the distribution of POI derived from OpenStreetMap. For further 

details, Table A1 and Table A2 of the Appendix A provide the list of all variables obtained 

from geospatial data of 2015 and 2017, respectively. 
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Figure 3. Spatial distribution of NTL in 2017. Source: Google Earth Engine. 

 

Figure 4. Spatial distribution of NDVI in 2017. Source: Google Earth Engine. 
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Figure 5. Spatial distribution of Land Surface Temperature (Day) in 2017. Source: Google Earth En-

gine. 

 

Figure 6. Spatial distribution of rainfall in 2017. Source: Google Earth Engine. 
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Figure 7. Spatial distribution of transportation network and POI in 2017. Source: OpenStreetMap. 

3.3. Poverty Data 

3.3.1. Income-Based Poverty 

As mentioned earlier, poverty mapping is a regular initiative conducted by the Thai 

government. In this study, the ratio of the population living below the national poverty 

line per total population in each Tambon (i.e., subdistrict) is used as one of the dependent 

variables in our computations. 

3.3.2. Multidimensional Poverty Index 

As an alternative metric of poverty, NESDC and National Electronics and Computer 

Technology Center (NECTEC) also compile statistics on prevalence of multidimensional 

poverty index (MPI) starting 2017. Dimensions included in the calculation of MPI include 

education, healthy living, living conditions, and financial security (Table 2). 

Table 2. List of indicators included in MPI calculation. 

Dimensions  Indicators Deprivation Cut-Off 

Education 

Year of education 

A household is deprived if at least one mem-

ber of the household (1) aged 15–29 has not at-

tained grade 9-level education or (2) aged 30–

50 years and has not attained grade 6-level ed-

ucation. 

Late attendance 

Households with at least one child aged 6–17 

years who does not go to school or is up to 2 

years behind the grade they should be for their 

age, unless graduated from grade 9. 

Living with parents 

Households with at least one child aged 0–6 

years who does not live with their father 

and/or mother. (In cases where the father 

and/or mother are still alive.) 

Healthy living Drinking water 

Households drink water from (1) indoor wells 

or (2) outdoor wells or (3) rivers/streams/ca-

nals/waterfalls/mountains or (4) rainwater or 

(5) other sources. 
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Dimensions  Indicators Deprivation Cut-Off 

Taking care of yourself 

At least one household member aged more 

than 15 years is unable to take care of himself 

in daily life without help and is unable to 

travel outside the residential area without a 

guardian. 

Food poverty 

Households’ food expenditures are below the 

food poverty line, which is calculated from the 

minimum nutrient (calorie) needs that people 

of each age and gender require per day. 

Living conditions 

Garbage disposal 

Households dispose of waste by (1) burning, 

or (2) landfills, or (3) dumping into a river, ca-

nal, or (4) dumping in a public space, or (5) 

other. 

Internet access No household members use the Internet at all. 

Asset owner 

Household does not own at least four small 

objects (radio, TV, air conditioner, bicycle, 

phone, and refrigerator) and one large object 

(car and boat). 

Financial security 

Savings 
Households do not have financial assets to 

save. 

Financial burden 

In the past 12 months, households have diffi-

culty paying home rent, water, electricity, or 

tuition. 

Pensions 
At least one household member aged 60 and 

over has no pension and allowances. 

Source: NESDC. 

The data are based on: 

(1) Census-based Basic Minimum Need (BMN) data, supervised by the Community De-

velopment Department, Ministry of Interior, which includes a population of approx-

imately 36 million. 

(2) A register-based data source of approximately 11.4 million individuals gathered by 

the Ministry of Finance through the national welfare card program. 

The criteria used in identifying a multidimensionally poor person is inspired by the 

Multidimensional Poverty Index method developed by the Oxford Poverty and Human 

Development Initiative and United Nations Development Program. 

Figure 8 exemplifies the spatial distribution of poverty headcount in 2017, obtained 

from Thailand’s NSO. Similarly, Figure 9 illustrates the distribution of MPI in 2017 de-

rived from TPMAP data. 
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Figure 8. Spatial distribution of poverty headcount in 2017. Source: Thailand’s NSO. 

 

Figure 9. Spatial distribution of MPI (from TPMAP data) in 2017. Source: NESDC. 

3.4. Reference Period 

Our target reference period coincides with two most recent years where Tambon-

level estimates of poverty in Thailand are available: 2015 and 2017 for income poverty, 

and 2017 for the multidimensional poverty index. 

4. Methods 

Figure 10 summarized the analytical framework applied in this study. Data pre-pro-

cessing was undertaken, including the transformation of spatial resolution, variable nor-

malization [49], and data integration. Then, we applied four computational methods, Gen-

eralized Least Squares (GLS) method, and three other widely used machine-learning al-

gorithms: neural network (NN), random forest (RF) estimation, and support-vector re-

gression (SVR). Following the technical approaches suggested by McBride and Nichols 
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(2018) and Hu et al. (2022) [50,51], 50% of the data were allocated for training, while the 

remaining 50% constituted the validation set. Based on this allocation, we resampled the 

data 100 times. The values of metrics used to compare machine-learning algorithms are 

based on averages from these 100 datasets. 

 

Figure 10. Analytical framework of this study. Source: Graphics generated by authors. 

4.1. Generalized Least Squares 

GLS is considered a modification of the Ordinary Least Squares (OLS) as it relaxes 

the assumption that the variance of observation is homogeneous regardless of the explan-

atory variables associated with it. Mathematically speaking, the issue of inconsistent var-

iance of residuals is corrected by imposing the weight matrix derived from Cholesky de-

composition. In particular, applying the weight matrix throughout the regression equa-

tion yields the modified variance-covariance matrix with independent and identically dis-

tributed property (i.i.d.), subsequently leading to unbiased, consistent, and efficient re-

gression coefficients. The result obtained from GLS is the benchmark for comparing the 

predictive power between the conventional statistical method and those of other machine-

learning algorithms. 
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4.2. Neural Network 

A neural network (NN) is an example of a machine-learning model inspired by the 

biological neural network that constitutes the human brain. As with other types of ma-

chine-learning models, a neural network can learn to perform different tasks without be-

ing explicitly programmed to do so. 

Structurally, a neural network is composed of numerous nodes and edges. A node 

can be a variable or a mathematical function connected by edges. These nodes combine 

together to form different layers within the neural network. The input layer takes in the 

raw data. In the hidden layers, each node or neuron serves as a filter and is activated each 

time it detects a specific pattern or feature. The output layer simply organizes the identi-

fied features into an appropriate category. As alternatively described and compared by 

Anesti et al. (2021) [52], the conventional OLS method is a special case of a neural network 

comprised of only the single input and output layers, where input nodes are regressors, 

and the output layer generates the predicted value as the weighted sum of regressors. 

Thus, the neural network is considered the extended structure of OLS, incorporating a 

multi-layer process of weighted sums. 

As introduced by Ciaburro and Venkateswaran (2017) [53], this study used the R 

package of nnet as the main tool for performing prediction applying the neural network 

algorithm. All parameters followed the default of nnet package [54]. 

4.3. Random Forest 

Originally, Breiman (2001) [55] introduced the prediction method using a set of “de-

correlated” decision trees. Hastie et al. (2009) [56] subsequently suggested the algorithm 

to formulate a large number of decision trees. This development constituted the random 

forest (RF) method, an ensemble-tree-based technique, with each tree building on a ran-

dom subset of the training data and a random subset of the independent variables. This 

method can perform classification- and/or prediction-related tasks by averaging the out-

comes. It can also improve a model’s predictive accuracy and control over-fitting. 

This study used randomForestSRC package in R [57]. Following Alsharkawi et al. 

(2021) [58], all parameters were set to the default values. In particular, a total number of 

1000 trees is sufficient, as shown in Hu et al. [51]. In addition to poverty prediction, Vari-

able Importance (VIMP) and Minimal Depth (MD) analyses were conducted. These met-

rics use the main features obtained from all decision trees to assess the relative significance 

of explanatory variables in selecting the final predictors in the model. 

4.4. Support Vector Regression (SVR) 

Typically, the main objective in a linear regression framework is to minimize a spe-

cific loss function. For instance, OLS method aims to minimize the sum of squared errors. 

Methods such as lasso or ridge regression extend this framework by introducing addi-

tional penalty parameters to minimize complexity and/or reduce the number of covariates 

that marginally contribute to the model’s predictive performance. 

On the other hand, Vapnik (1998) [59] introduced the support vector regression 

(SVR), providing an alternative framework. Instead of minimizing a specific loss function, 

SVR is only concerned about reducing it to a certain degree. This gives greater flexibility 

in the estimation and helps in dealing with the limitations pertaining to distributional 

properties of the variables included in the analyses. As shown in the case of predicting the 

city-level poverty rate in Indonesia [60], flexibility with allowable error renders SVR su-

perior to other conventional estimation methods that are fixated on minimizing a loss 

function. This study used e1071 package in R [61] to conduct the SVR-based prediction. 

All parameters were set to the default values.  
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5. Results 

5.1. Preliminary Analysis 

As preliminary estimation tools, we first estimated a full model and various model 

specifications using OLS and stepwise regression. In general, we found that the propor-

tion of people living below the income-based poverty line and the value of the multidi-

mensional poverty index are negatively associated with geospatial indicators that repre-

sent the degree of an area’s urbanization, i.e., the intensity of NTL, building density, and 

a number of points of interest which are associated with the manufacturing and utility 

sectors. On the other hand, poverty outcomes are positively correlated with rainfall, 

NDVI, and other land cover classes that are typically associated with rural areas. While 

the directions of these correlations align with our expectations, the resulting adjusted R-

square values are relatively low, ranging from 0.13 to 0.33. 

5.2. Using Machine-learning algorithms to Predict Income-Based Poverty Rate 

As previously described, all four predictive models were constructed by using the 

training datasets. Then, the poverty headcount values of 2015 and 2017 were predicted by 

applying the test datasets to the constructed models. Subsequently, the comparison of 

predictive power was based on the goodness-of-fit of the predicted outcomes. Figure 11 

exhibits the comparison of the root mean square error (RMSE) (averaged across 100 trials) 

from the four computational methods, indicating that random forest yielded the lowest 

RMSE values (0.067 and 0.084 for 2015 and 2017, respectively). Under the same criterion, 

SVR performed second (with RMSE of 0.129 and 0.161 for 2015 and 2017, respectively), 

and GLS yielded the third lowest RMSE (0.133 and 0.170 for 2015 and 2017, respectively). 

Notably, the neural network generated the highest RMSE for 2015 and 2017 (with RMSE 

0.419 and 0.549, respectively). Alternatively, the graphical illustration of the goodness-of-

fit (Figures 12 and 13) also confirms that the random forest has the best predictive perfor-

mance among the four methods that we have considered, generating predicted values 

closest to the actual ones. 

 

Figure 11. Comparison of average root mean squared error (RMSE) obtained from four machine-

learning algorithms (on predicting poverty headcount rates of 2015 and 2017). Source: Calculation 

and graphics generated by authors. 
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Figure 12. Scatter plot comparing the actual and predicted poverty headcount rates of 2015 (ob-

tained from four machine-learning algorithms). Source: Calculation and graphics generated by au-

thors. 

 

Figure 13. Scatter plot comparing the actual and predicted poverty headcount rates of 2017 (ob-

tained from four machine-learning algorithms). Source: Calculation and graphics generated by au-

thors. 

Based on the outcomes of random forest, Variable Importance (VIMP) and Minimal 

Depth (MD) were further conducted to prioritize the significance of each variable. Figures 

14 and 15 show the result of VIMP for 2015 and 2017, while Figures 16 and 17 illustrate 

the outcomes of computing MD. 

VIMP identified the intensity of NTL and population-density-related variables as the 

biggest contributors to the model. Meanwhile, five variables were identified as false pos-

itive in the VIMP’s results for 2015 and 2017, indicating the irrelevance of these variables 

in predicting the poverty headcount rate. Alternatively, it is also possible that the infor-

mation provided by these variables is already captured by other variables. The ‘unim-

portant’ variables are the area covered by tree or shrub (ESALC_12), the area covered by 

tree (broadleaved and deciduous more than 40%) (ESALC_61); the area covered by mosaic 

herbaceous (more than 50%) (ESALC_110); the area covered by tree, flooded, fresh, or 

brackish water (ESALC_160); and the bare areas (ESALC_200). The variable ranks indi-

cated by VIMP are equally important, exhibiting the power-law distribution of relative 
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magnitudes. Specifically, the magnitudes of top three variables are approximately three 

times higher than those of the fifth and lower ones. 

The results obtained from Minimal Depth (MD) calculation generated similar out-

comes, confirming that intensity of NTL and population-density-related variables are 

highly associated with poverty headcount. In addition, the variables located on the right-

hand side of the dashed line in Figures 16 and 17 are considered as having low explanatory 

power. The results based on this criterion show that five variables possess very low pre-

dictive power—the same five variables identified by VIMP result as irrelevant to the 

model. These variables can therefore be excluded from the model in further analysis 

 

Figure 14. Result of Variable Importance (VIMP) analysis on predicting poverty headcount rates of 

2015 (based on RF’s outcome). Source: Calculation and graphics generated by authors. 
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Figure 15. Result of Variable Importance (VIMP) analysis on predicting poverty headcount rates of 

2017 (based on RF’s outcome). Source: Calculation and graphics generated by authors. 



ISPRS Int. J. Geo-Inf. 2022, 11, 293 19 of 31 
 

 

 

Figure 16. Result of Minimal Depth (MD) analysis on predicting poverty headcount rates of 2015 

(based on RF’s outcome). Source: Calculation and graphics generated by authors. 
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Figure 17. Result of Minimal Depth (MD) analysis on predicting poverty headcount rates of 2017 

(based on RF’s outcome). Source: Calculation and graphics generated by authors. 

5.3. Using Machine-Learning Algorithms to Predict Multidimensional Poverty Index (MPI) 

In addition to the income-based poverty rate, we also applied GLS, neural network, 

random forest, and SVM to predict the MPI. 

Figure 18 depicts the comparison of Root Mean Squared Error (RMSE) obtained from 

four machine-learning methods. Similar to the case of income poverty rates, the random 

forest method yielded the lowest RMSE (0.0877), while those of the SVR and GLS are al-

most identical (0.1631 and 0.1634, respectively). The neural network prediction produced 

the largest RMSE (0.2998). The scatterplot in Figure 19 compares the actual MPI and the 

predicted values. It shows that most predicted values generated by the random forest are 

located closest to the 45-degree line, suggesting that it has the best fit among the four 

methods considered in this study. 

 

Figure 18. Comparison of average Root Mean Squared Error (RMSE) obtained from four machine-

learning algorithms (on predicting MPI of 2017). Source: Calculation and graphics generated by au-

thors. 

 

Figure 19. Scatter plot comparing the actual and predicted MPI of 2017 (obtained from four ma-

chine-learning algorithms). Source: Calculation and graphics generated by authors. 
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Again, based on the outcome of random forest, we examined the degree of the ex-

planatory power of each variable by calculating VIMP and MD. Figure 20 exhibits that 

based on VIMP, variables related to population density such as NTL, rainfall, Land Sur-

face Temperature (LST), and road density have a high degree of contribution to predict 

the variation in the poverty rate. Similar to VIMP results of poverty headcount prediction 

(Figures 14 and 15), the order of magnitudes shows the power-law distribution of explan-

atory power. In particular, the magnitudes of the top four variables are approximately 

two times larger than the fifth and lower ones. 

The result obtained from MD, as illustrated in Figure 21, also shows qualitatively 

similar results, revealing that NTL, LST, rainfall, road density, and the area covered by 

woody Savannas (USGS8) are key geographical features associated with the value of MPI. 

 

Figure 20. Result of Variable Importance (VIMP) analysis on predicting MPI of 2017 (based on RF’s 

outcome). Source: Calculation and graphics generated by authors. 

 

Figure 21. Result of Minimal Depth (MD) analysis on predicting MPI of 2017 (based on RF’s out-

come). Source: Calculation and graphics generated by authors. 
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In summary, among the methods applied in this study, the random forest technique 

yielded the highest accuracy when predicting both the income poverty rate and the mul-

tidimensional poverty index. Furthermore, the resulting random forest models fit the da-

tasets well, as suggested by the adjusted R-square values presented in Table 3. 

Table 3. Adjusted R2 values for RF-based models. 

Variable Being Predicted Adjusted R2 

NSO’s poverty headcount of 2015 0.8526 

NSO’s poverty headcount of 2017 0.8459 

TPMAP’s poverty rate of 2017 0.8632 

Source: Calculation and graphics generated by authors. 

6. Discussion 

Globally, poverty and inequality have been major concerns for researchers and poli-

cymakers [62–66]. These development challenges have been similarly addressed at the 

regional level [67,68]. Hence, the spatiotemporal accuracy of data indicating socioeco-

nomic conditions is invaluable for monitoring and formulating development programs. 

In the case of Thailand, the spatial analysis of poverty is crucial because the economic 

development has been geographically disproportionate for decades [69–71]. With the in-

creasing accessibility of open data, the applications of geospatial indicators for poverty 

analysis have been recommended [72–74]. The poverty and inequality mapping have been 

developed using single-satellite data [75–79]. Alternatively, the estimation of spatial dis-

tribution can be enhanced by using a combination of remote sensing and geospatial indi-

cators [80–83]. Following many publications’ technical progress and data availability, this 

study integrated data obtained from open platforms such as Google Earth Engine [84], 

OpenStreetMap [85,86], and Point of Interest (POI) [87]. Similarly, guided by the interna-

tional experience of implications, the machine-learning techniques were applied to predict 

poverty indicators [50,51,88–94]. 

The obtained results of this study show that random forest yielded the highest pre-

dictive power, which is in accordance with findings of several previous publications 

[51,88,90–92,95]. In particular, the obtained accuracy is higher than 70%, similar to other 

studies using the random forest to predict poverty [51,89,90]. Likewise, a review con-

ducted by the World Bank [93] suggested that random forest could contribute to a highly 

accurate predictor of poverty. Fundamentally, one of the unique features of the random 

forest method is the combination of decision trees, allowing the discrete and continuous 

explanatory variables to predict the output jointly. Moreover, the random forest enables 

extended analyses of VIMP and MD, empowering the ranking of the explanatory power 

of independent variables. The outcomes obtained from the two methods show that NTL 

has a very high predictive power, which is similar to the case of predicting county-level 

poverty in China [96] and Bangladesh [90]. The obtained results are in accordance with 

those of previous literature, suggesting that several geospatial characteristics are associ-

ated with poverty, such as travel accessibility [90,97,98], proximity to important public 

services [99], and land-use types, as well as household surroundings [51,100]. 

The outcome of this study emphasized the significance of geographical conditions as 

crucial factors influencing the socioeconomic status of households. Similar to the cases of 

Latin America [101], Africa [99], and neighboring countries in Southeast Asia [102], agri-

culture and resource-based manufacturing are the main economic activities of low-income 

families. Thus, geographical features related to those activities represent the high concen-

tration of poverty. Furthermore, the geographical isolation from markets and other infra-

structures is the major constraint to access economic opportunities, implying the extreme 

poverty condition [103]. On the contrary, proximity to urban areas and infrastructures 

provides access to job opportunity, healthcare, education, and the city’s agglomeration 
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force [94]. Therefore, development policies can alleviate poverty by either expanding in-

frastructures or relocating low-income families [104]. 

There are several areas which merit further investigation. Firstly, the analysis can be 

extended to include other data sources (e.g., mobile phone data and texture features), en-

abling the multidimensional examination of spatial associations [79,80,105,106]. Secondly, 

the temporal coverage of survey-based data should be lengthened, allowing larger da-

tasets for training models [107,108]. Thirdly, the spatial resolution should be enhanced in 

order to identify the urban poor (i.e., slums), which would broaden insights on intra-city 

inequality [109–111]. 

7. Conclusions 

The contribution of this study is twofold. Firstly, it introduces the integration of data, 

composed of the nationwide survey, register-based data, geospatial information, and sat-

ellite imagery. Secondly, this paper has applied computational techniques to examine the 

relationship between geospatial features such as intensity of NTL, land cover, land use, 

etc., and the proportion of people living below the poverty line as measured using the 

conventional method of estimating poverty. It is shown that the Random Forest is the best 

prediction method, yielding an accuracy of more than 80%. Furthermore, the results ob-

tained from Variable Importance (VIMP) and Minimal Depth (MD) reveal the associations 

between geospatial covariates such as intensity of NTL, population density, and poverty 

rates. These contributions suggest the potential of applying the open data and open-

source computational tools for timely analysis of the spatial distribution of poverty, espe-

cially for developing countries which conventionally have data-compilation constraints. 
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Appendix A 

Table A1. List of variables obtained from geospatial data of 2015. 

Variable Definition 

VNTL2015f_sum VIIRS cloud mask—outlier removed—NTL average DNB radiance, year 2015 

log_VIIRS_2015 
Logarithm (based 10) of VIIRS cloud mask—outlier removed—NTL average DNB 

radiance, 2015 

log_VIIRS_density_2015 
Logarithm (based 10) of VIIRS cloud mask—outlier removed—NTL average DNB 

radiance, 2015, per area 

log_POP_2018 Logarithm (based 10) of population size, 2018 

log_Total_Pop_density Logarithm (based 10) of population density, year 2015 
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log_LST_2015 Logarithm (based 10) of land surface temperature, 2015 

log_Rain_2015 Logarithm (based 10) of amount of rainfall, 2015 

GUF_255 Global Urban Footprint, pixel count of built-up areas (2011–12) 

GHSLsmod2015_2 
Global Human Settlement Layer, pixel count of “urban clusters” or low-density clusters, 

2015 

GHSLmod2015_3 
Global Human Settlement Layer, pixel count of “urban centres” or high-density clusters, 

2015 

log_NDVI_2015 Logarithm (based 10) of normalized difference of vegetation index, 2015 

USGS_0 USGS Land Cover, pixel count of Water (2001–2010 data) 

USGS_2 USGS Land Cover, pixel count of Evergreen Broadleaf Forest (2001–2010 data) 

USGS_5 USGS Land Cover, pixel count of Mixed Forests (2001–2010 data) 

USGS_8 USGS Land Cover, pixel count of Woody Savannas (2001–2010 data) 

USGS_9 USGS Land Cover, pixel count of Savannas (2001–2010 data) 

USGS_11 USGS Land Cover, pixel count of Permanent Wetland (2001–2010 data) 

USGS_12 USGS Land Cover, pixel count of Croplands (2001–2010 data) 

USGS_13 USGS Land Cover, pixel count of Urban and Built-up (2001–2010 data) 

USGS_16 USGS Land Cover, pixel count of Barren or Sparsely Vegetated (2001–2010 data) 

ESALC2015_10 ESA Land Cover, pixel count of Cropland, rainfed, 2015 

ESALC2015_11 ESA Land Cover, pixel count of Herbaceous cover, 2015 

ESALC2015_12 ESA Land Cover, pixel count of Tree or shrub cover, 2015 

ESALC2015_20 ESA Land Cover, pixel count of Cropland, irrigated or post-flooding, 2015 

ESALC2015_30 
ESA Land Cover, pixel count of Mosaic cropland (>50%)/natural vegetation (tree, shrub, 

herbaceous cover) (<50%), 2015 

ESALC2015_40 
ESA Land Cover, pixel count of Mosaic natural vegetation (tree, shrub, herbaceous cover) 

(>50%)/cropland (<50%), 2015 

ESALC2015_50 
ESA Land Cover, pixel count of Tree cover, broadleaved, evergreen, closed to open 

(>15%), 2015 

ESALC2015_60 
ESA Land Cover, pixel count of Tree cover, broadleaved, deciduous, closed to open 

(>15%), 2015 

ESALC2015_61 ESA Land Cover, pixel count of Tree cover, broadleaved, deciduous, closed (>40%), 2015 

ESALC2015_70 
ESA Land Cover, pixel count of Tree cover, needleeaved, evergreen, closed to open 

(>15%), 2015 

ESALC2015_110 
ESA Land Cover, pixel count of Mosaic herbaceous cover (>50%)/tree and shrub (<50%), 

2015 

ESALC2015_120 ESA Land Cover, pixel count of Shrubland, 2015 

ESALC2015_121 ESA Land Cover, pixel count of Evergreen shrubland, 2015 

ESALC2015_130 ESA Land Cover, pixel count of Grassland, 2015 

ESALC2015_150 
ESA Land Cover, pixel count of Sparse vegetation (tree, shrub, herbaceous cover) (<15%), 

2015 

ESALC2015_160 ESA Land Cover, pixel count of Tree cover, flooded, fresh or brackish water, 2015 

ESALC2015_200 ESA Land Cover, pixel count of Bare areas, 2015 

Density_2015_Road_Count Number of road paths per area, 2015 

Density_2015_Road_Length Total length of road paths per area, 2015 

Density_2015_POI Number of Point of Interest (POI) per area, 2015 

NESDC5_3 Number of POIs in 2015 of this type: manufacturing 

NESDC5_7 
Number of POIs in 2015 of this type: wholesale and retail trade and repair of motor 

vehicles 

NESDC5_8 Number of POIs in 2015 of this type: transportation and storage 

NESDC5_9 Number of POIs in 2015 of this type: accommodation and food-service activities 

NESDC5_10 Number of POIs in 2015 of this type: information and communication 

NESDC5_11 Number of POIs in 2015 of this type: financial and insurance activities 



ISPRS Int. J. Geo-Inf. 2022, 11, 293 25 of 31 
 

 

NESDC5_13 Number of POIs in 2015 of this type: professional, scientific, and technical activities 

NESDC5_14 Number of POIs in 2015 of this type: administrative and support service activities 

NESDC5_15 
Number of POIs in 2015 of this type: public administration and defense; compulsory 

social security 

NESDC5_16 Number of POIs in 2015 of this type: education 

NESDC5_17 Number of POIs in 2015 of this type: human health activities 

NESDC5_industry 

Number of POIs in 2015 of this type: mining and quarrying/manufacturing/electricity, 

gas, steam, and air-conditioning supply/water supply, sewerage, waste management, 

and remediation activities/construction 

NESDC5_svcs1 
Number of POIs in 2015 of this type: wholesale and retail trade and repair of motor 

vehicles/transportation and storage/accommodation and food service activities 

NESDC5_svcs2 

Number of POIs in 2015 of this type: information and communication/financial and 

insurance activities/real-estate activities/professional, scientific, and technical 

activities/administrative and support-service activities 

NESDC5_svcs3 

Number of POIs in 2015 of this type: public administration and defense; compulsory 

social security/education/human health activities/arts, entertainment and 

recreation/other service activities 

Density_POI_Area_2015 Total area of Point of Interest per area, 2015 

Density_NESDC5_industry 

Number of POIs per sq km in 2015 of this type: mining and 

quarrying/manufacturing/electricity, gas, steam, and air-conditioning supply/water 

supply, sewerage, waste management, and remediation activities/construction 

Density_NESDC5_svcs1 
Number of POIs per sq km in 2015 of this type: wholesale and retail trade and repair of 

motor vehicles/transportation and storage/accommodation and food-service activities 

Density_NESDC5_svcs2 

Number of POIs per sq km in 2015 of this type: information and communication/financial 

and insurance activities/real-estate activities/professional, scientific, and technical 

activities/administrative and support service activities 

Density_NESDC5_svcs3 

Number of POIs per sq km in 2015 of this type: public administration and defense; 

compulsory social security/education/human health activities/arts, entertainment and 

recreation/other service activities 

Table A2. List of variables obtained from geospatial data of 2017. 

Variable Definition 

VNTL2017f_sum VIIRS cloud mask—outlier removed—NTL average DNB radiance, year 2017 

log_VIIRS_2017 
Logarithm (based 10) of VIIRS cloud mask—outlier removed—NTL average DNB 

radiance, 2017 

log_VIIRS_density_2017 
Logarithm (based 10) of VIIRS cloud mask—outlier removed—NTL DNB radiance, 2017, 

per area 

log_POP_2018 Logarithm (based 10) of population size, 2018 

log_Total_Pop_density Logarithm (based 10) of population density, year 2017 

log_LST_2017 Logarithm (based 10) of land surface temperature, 2017 

log_Rain_2017 Logarithm (based 10) of amount of rainfall, 2017 

SYNMAP_46 Synergetic Land Cover, pixel count of urban, 2000 

USGS_13 USGS Land Cover, pixel count of urban and built-up areas (2001–2010 data) 

GUF_255 Global Urban Footprint, pixel count of built-up areas (2011–12) 

log_GUF_255 Logarithm (based 10) of Global Urban Footprint, pixel count of built-up areas  ( 2011–12 

GHSLsmod2017_2 
Global Human Settlement Layer, pixel count of “urban centres” or low-density clusters, 

2017 

GHSLmod2017_3 
Global Human Settlement Layer, pixel count of “urban centres” or high-density clusters, 

2017 

log_NDVI_2017 Logarithm (based 10) of normalized difference of vegetation index, 2017 

log_NDVI_density_2017 Logarithm (based 10) of normalized difference of vegetation index, 2017, per area 
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USGS_0 USGS Land Cover, pixel count of Water (2001–2010 data) 

USGS_1 USGS Land Cover, pixel count of Evergreen Needle Leaf Forest (2001–2010 data)  

USGS_2 USGS Land Cover, pixel count of Evergreen Broadleaf Forest (2001–2010 data) 

USGS_3 USGS Land Cover, pixel count of Deciduous Needle Leaf Forest (2001–2010 data) 

USGS_4 USGS Land Cover, pixel count of Deciduous Broadleaf Forest (2001–2010 data) 

USGS_5 USGS Land Cover, pixel count of Mixed Forests (2001–2010 data) 

USGS_6 USGS Land Cover, pixel count of Closed Shrublands (2001–2010 data)  

USGS_7 USGS Land Cover, pixel count of Open Shrublands (2001–2010 data) 

USGS_8 USGS Land Cover, pixel count of Woody Savannas (2001–2010 data) 

USGS_9 USGS Land Cover, pixel count of Savannas (2001–2010 data)  

USGS_10 USGS Land Cover, pixel count of Grasslands (2001–2010 data)  

USGS_11 USGS Land Cover, pixel count of Permanent Wetland (2001–2010 data)  

USGS_12 USGS Land Cover, pixel count of Croplands (2001–2010 data) 

USGS_13 USGS Land Cover, pixel count of Urban and Built-up (2001–2010 data) 

USGS_14 USGS Land Cover, pixel count of Cropland/Natural Vegetation Mosaic (2001–2010 data) 

USGS_16 USGS Land Cover, pixel count of Barren or Sparsely Vegetated (2001–2010 data) 

USGS_PCA USGS Land Cover, First Principal Component of USGS_0—USGS_16 

ESALC2017_10 ESA Land Cover, pixel count of Cropland, rainfed, 2017 

ESALC2017_11 ESA Land Cover, pixel count of Herbaceous cover, 2017 

ESALC2017_12 ESA Land Cover, pixel count of Tree or shrub cover, 2017 

ESALC2017_20 ESA Land Cover, pixel count of Cropland, irrigated or post-flooding, 2017 

ESALC2017_30 
ESA Land Cover, pixel count of Mosaic cropland (>50%)/natural vegetation  ( tree, shrub, 

herbaceous cover) (<50%), 2017 

ESALC2017_40 
ESA Land Cover, pixel count of Mosaic natural vegetation (tree, shrub, herbaceous cover) 

(>50%)/cropland (<50%), 2017 

ESALC2017_50 
ESA Land Cover, pixel count of Tree cover, broadleaved, evergreen, closed to open (>15%), 

2017 

ESALC2017_60 
ESA Land Cover, pixel count of Tree cover, broadleaved, deciduous, closed to open 

(>15%), 2017 

ESALC2017_61 ESA Land Cover, pixel count of Tree cover, broadleaved, deciduous, closed (>40%), 2017 

ESALC2017_70 
ESA Land Cover, pixel count of Tree cover, needleeaved, evergreen, closed to open (>15%), 

2017 

ESALC2017_80 
ESA Land Cover, pixel count of Tree cover, needleleaved, deciduous, closed to open 

(>15%), 2017 

ESALC2017_100 
ESA Land Cover, pixel count of Mosaic tree and shrub (>50%)/herbaceous cover(<50%), 

2017 

ESALC2017_110 
ESA Land Cover, pixel count of Mosaic herbaceous cover (>50%)/tree and shrub (<50%), 

2015 

ESALC2017_120 ESA Land Cover, pixel count of Shrubland, 2017 

ESALC2017_121 ESA Land Cover, pixel count of Evergreen shrubland, 2017 

ESALC2017_122 ESA Land Cover, pixel count of Deciduous shrubland, 2017 

ESALC2017_130 ESA Land Cover, pixel count of Grassland, 2017 

ESALC2017_150 
ESA Land Cover, pixel count of Sparse vegetation (tree, shrub, herbaceous cover) (<15%), 

2017 

ESALC2017_160 ESA Land Cover, pixel count of Tree cover, flooded, fresh or brackish water, 2017 

ESALC2017_170 ESA Land Cover, pixel count of Tree cover, flooded, saline water, 2017 

ESALC2017_180 
ESA Land Cover, pixel count of Shrub or herbaceous cover, flooded, fresh/saline/brackish 

water, 2017 

ESALC2017_190 ESA Land Cover, pixel count of Urban areas, 2017 

ESALC2017_200 ESA Land Cover, pixel count of Bare areas, 2017 

ESALC2017_210 ESA Land Cover, pixel count of Water bodies, 2017 



ISPRS Int. J. Geo-Inf. 2022, 11, 293 27 of 31 
 

 

Density_2017_Road_Count Number of road paths per area, 2017 

Density_2017_Road_Length Total length of road paths per area, 2017 

Density_2017_POI Number of Point of Interest (POI) per area, 2017 

NESDC7_3 Number of POIs in 2017 of this type: manufacturing 

NESDC7_7 Number of POIs in 2017 of this type: wholesale and retail trade and repair of motor vehicles 

NESDC7_8 Number of POIs in 2017 of this type: transportation and storage 

NESDC7_9 Number of POIs in 2017 of this type: accommodation and food service activities 

NESDC7_10 Number of POIs in 2017 of this type: information and communication 

NESDC7_11 Number of POIs in 2017 of this type: financial and insurance activities 

NESDC7_13 Number of POIs in 2017 of this type: professional, scientific, and technical activities 

NESDC7_14 Number of POIs in 2017 of this type: administrative and support service activities 

NESDC7_15 
Number of POIs in 2017 of this type: public administration and defense; compulsory social 

security 

NESDC7_16 Number of POIs in 2017 of this type: education 

NESDC7_17 Number of POIs in 2017 of this type: human health activities 

NESDC7_industry 

Number of POIs in 2017 of this type: mining and quarrying/manufacturing/electricity, gas, 

steam, and air conditioning supply/water supply, sewerage, waste management and 

remediation activities/construction 

NESDC7_svcs1 
Number of POIs in 2017 of this type: wholesale and retail trade and repair of motor 

vehicles/transportation and storage/accommodation and food service activities 

NESDC7_svcs2 

Number of POIs in 2017 of this type: information and communication/financial and 

insurance activities/real estate activities/professional, scientific, and technical 

activities/administrative and support service activities 

NESDC7_svcs3 

Number of POIs in 2017 of this type: public administration and defense; compulsory social 

security/education/human health activities/arts, entertainment and recreation/other 

service activities 

Density_POI_Area_2017 Total area of Point of Interest per area, 2017 

Density_NESDC7_industry 

Number of POIs per sq km in 2017 of this type: mining and 

quarrying/manufacturing/electricity, gas, steam, and air-conditioning supply/water 

supply, sewerage, waste management and remediation activities/construction 

Density_NESDC7_svcs1 
Number of POIs per sq km in 2017 of this type: wholesale and retail trade and repair of 

motor vehicles/transportation and storage/accommodation and food-service activities 

Density_NESDC7_svcs2 

Number of POIs per sq km in 2017 of this type: information and communication/financial 

and insurance activities/real estate activities/professional, scientific, and technical 

activities/administrative and support-service activities 

Density_NESDC7_svcs3 

Number of POIs per sq km in 2017 of this type: public administration and defense; 

compulsory social security/education/human health activities/arts, entertainment, and 

recreation/other service activities 

log_House_density_2017 Logarithm (based 10) of registered house, 2017, per area 

Density_Building_Area Total sq. meter of building per area, year 2017  

log_F2017_Buil_Density Logarithm (based 10) of build-up (square meter), 2017, per area 
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