
Citation: Liang, H.; Wang, S.; Li, H.;

Ye, H.; Zhong, Y. A Trade-Off

Algorithm for Solving p-Center

Problems with a Graph

Convolutional Network. ISPRS Int. J.

Geo-Inf. 2022, 11, 270. https://

doi.org/10.3390/ijgi11050270

Academic Editors: Peng Yue,

Danielle Ziebelin and Yaxing Wei

Received: 15 February 2022

Accepted: 15 April 2022

Published: 19 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

A Trade-Off Algorithm for Solving p-Center Problems with a
Graph Convolutional Network
Haojian Liang 1 , Shaohua Wang 2,3,4,5,* , Huilai Li 6, Huichun Ye 2,4,5 and Yang Zhong 7

1 School of Artificial Intelligence, Jilin University, Changchun 130012, China; hjliang20@mails.jlu.edu.cn
2 International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China;

yehc@aircas.ac.cn
3 State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute,

Chinese Academy of Sciences, Beijing 100094, China
4 Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of

Sciences, Beijing 100094, China
5 Key Laboratory of Earth Observation of Hainan Province, Aerospace Information Research Institute,

Chinese Academy of Sciences, Sanya 572029, China
6 School of Mathematics, Jilin University, Changchun 130012, China; lihuilai@jlu.edu.cn
7 Department of Information System and Technology, Claremont Graduate University,

Claremont, CA 91711, USA; yang.zhong@cgu.edu
* Correspondence: wangshaohua@aircas.ac.cn; Tel.: +86-010-8217-8178

Abstract: The spatial optimization method between combinatorial optimization problems and GIS has
many geographical applications. The p-center problem is a classic NP-hard location modeling prob-
lem, which has essential applications in many real-world scenarios, such as urban facility locations
(ambulances, fire stations, pipelines maintenance centers, police stations, etc.). This study imple-
ments two methods to solve this problem: an exact algorithm and an approximate algorithm. Exact
algorithms can get the optimal solution to the problem, but they are inefficient and time-consuming.
The approximate algorithm can give the sub-optimal solution of the problem in polynomial time,
which has high efficiency, but the accuracy of the solution is closely related to the initialization
center point. We propose a new paradigm that combines a graph convolution network and greedy
algorithm to solve the p-center problem through direct training and realize that the efficiency is faster
than the exact algorithm. The accuracy is superior to the heuristic algorithm. We generate a large
amount of p-center problems by the Erdos–Renyi graph, which can generate instances in many real
problems. Experiments show that our method can compromise between time and accuracy and affect
the solution of p-center problems.

Keywords: p-center problems; graph convolutional network; heuristic algorithm; minimum domain
set; deep learning

1. Introduction

With the excellent performance of deep learning in a growing number of tasks, re-
searchers have begun to use deep learning to solve combinatorial optimization problems
(COPs). COPs are of great significance in practical problems, such as logistics transporta-
tion [1–4], facility location analytics [5–9], and urban planning [10,11].

There are three main types of classic methods to solve this problem.

• Exact algorithm. An exact algorithm refers to the method to find the optimal solution
to the problem [12]. When the size of the problem is small, the exact algorithm can
obtain the optimal solution in an acceptable time. However, the scale of the problem
is often significant in industrial application scenarios. The amount of calculation
and storage space required to obtain the optimal solution increases rapidly, prone to
“combinatorial explosion”. It is not easy to find the optimal solution. The essence of the

ISPRS Int. J. Geo-Inf. 2022, 11, 270. https://doi.org/10.3390/ijgi11050270 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi11050270
https://doi.org/10.3390/ijgi11050270
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0003-4077-1187
https://orcid.org/0000-0001-8651-9505
https://doi.org/10.3390/ijgi11050270
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi11050270?type=check_update&version=2

ISPRS Int. J. Geo-Inf. 2022, 11, 270 2 of 15

exact algorithm is to search the space of the solution. Therefore, with the increase of the
scale of the problem, the time complexity is exponential order or even factorial order.

• Approximate algorithm. An approximate algorithm refers to using approximate
methods for solving optimization problems [13]. For an NP-hard problem, since
an exact solution cannot be obtained in polynomial time, it is considered to use an
approximate algorithm to obtain an available sub-optimal solution in polynomial time.
One of the simplest approximation algorithms is to search for an approximate solution
of the original problem with an exact algorithm within a given solution time and then
measure whether the approximate solution is feasible.

• Heuristic algorithm. A heuristic algorithm is an algorithm based on intuition or
empirical, which is widely used in various optimization problems [14,15]. It can give
a relatively optimal solution to the problem in an acceptable time. However, there
is no theoretical guarantee, and it is impossible to measure the relationship with the
optimal solution.

The rise of neural networks provides new ideas for solving COPs. There are two
main directions. One direction is reinforcement learning (RL) combined with combinatorial
optimization, in which many problems can be modeled as sequential decision-making
processes. RL is an effective tool for processing the Markov decision process. Numer-
ous researchers consider using RL to deal with sequential decision-making processes in
COPs [16,17]. There are still many challenges, such as the feasibility of the solution, the
difficulty of modeling, the difficulty of migrating to large-scale problems, and the trouble of
data generation. Another direction is deep learning combined with combinatorial optimiza-
tion, which combines learning and optimization to improve the performance of solving real
problems. Previous literature on using deep learning to solve COPs contains three types:
First, pure end2end [18,19] predicts decisions directly from input, but optimization is hard
to encode in a neural network. Second, two-stage training predicts and then optimizes [20].
Third, given that the accuracy and consistency of decision-making results cannot be guar-
anteed at present, decision-focused learning [21] establishes a differentiable optimization
objective in the training process. However, it is still a challenge to establish a differentiable
optimization system.

We mainly study the p-center (PC) problems to establish a more effective model to
deal with practical problems. PC is a classic NP-hard problem and has extremely important
guiding significance in the urban facility location, social network analytics, and other issues.
PC can be described as selecting p points as the center point in a point dataset and assigning
other points to the p-center points so that the maximum distance from all points to their
corresponding center points is minimum. Usually, the design of objective functions and
constraints for optimization problems is determined according to the practical problems.
There are many ways to solve PC problems. In our study, we give an exact algorithm
based on minimum domain sets (MDS) [22] and a greedy approximation algorithm [23]
to solve the problems. MDS can give the optimal solution to the problem. However, it
cannot be solved easily in polynomial time as the problem size is increased. The greedy
algorithm can give a sub-solution of the problem in a short time, but the quality of the
solution is closely related to the setting of the initial value. We focus more on combining
graph learning with optimization problems. A general framework that combines graph
learning with optimization is proposed. Using a graph convolutional network (GCN) to
give the result of clustering to achieve the efficiency is superior to the exact algorithm and
the accuracy is better than the greedy algorithm.

Our contributions are as follows:

• A new approach with a greedy algorithm is proposed to solve p-center problems by
directly training GCN.

• Our method achieves that the solution accuracy is superior to the greedy algorithm
and the efficiency is better than the exact algorithm.

• The method is transferable and can be combined with various existing approximation
or heuristic algorithms.

ISPRS Int. J. Geo-Inf. 2022, 11, 270 3 of 15

This study is divided into six sections. The rest of the article is organized as follows.
Section 2 introduces the related work about COPs, which combines with deep learning.
Section 3 presents the preliminary knowledge for this study. Section 4 is our approach to
solving PC and introduces a clustering algorithm to implement the GCN training strategy.
Section 5 shows the experiments. We use a different algorithm to solve PC problems on
many different scale graphs and achieve the desired results. Section 6 is the conclusions.

2. Related Work

There are many types of research on solving combinatorial optimization problems by
training neural networks [24,25]. The pointer network (PN) is one of the representative
networks for processing COPs and was first proposed by Vinyals et al. [26]. PN is a
sequence-to-sequence learning paradigm, which can mainly solve the problem of the
immutable size of the output vocabulary. It can be used to solve the problem of the variable
number of nodes in the COPs [27]. The traditional seq2seq cannot solve the problem that
the output sequence will change with the different input sequence lengths, especially the
problem that the output is heavily dependent on the input. In essence, PN solves the
problem of forced constraints on the input and output by simplifying and adjusting the
attention mechanism. As a predefined heuristic algorithm is complicated, Zhang et al.
used a graph neural network (GNN) to solve the link prediction problem and proposed
to learn a heuristic algorithm from a given network instead of a predefined one [28]. By
extracting the local sub-graphs around each target link, it can learn a mapping from the
sub-graph pattern to the existence of the link to learn a heuristic method suitable for the
current network. Highlight a method of learning heuristics from local sub-graphs using
GNN. Khalil et al. combined RL and graph embedding to solve COPs [17]. The article
mainly used the graph embedding method of struc2vec and proposed a meta-algorithm to
solve this problem.

Through meta-algorithms, the same type of COPs based on graph theory can be
solved directly, relying on meta-algorithms and not requiring solving one by one. Bello
et al. combined RL with PN to solve the COPs [16]. They used the policy gradient method
to calculate the parameters of the PN model for TSP and then optimize the solution to the
TSP problem. Kool et al. proposed a model based on the transformer model [29]; they built
a model architecture that unifies COPs with RL and solved TSP, VRP, OP, and PCTSP.

Tian et al. first proposed learning deep representations for graph clustering [30].
The idea of the article is simplicity. Firstly, they advised applying the autoencoder to the
graph structure to get feature extraction. Then, achieve clustering by K-means directly,
which came from spectral clustering. Based on it, Yang [18] replaced the Laplace matrix
with a modularity matrix. The optimization of the modularity matrix is equivalent to
spectral clustering. Xie et al. proposed the deep embedding clustering (DEC) for cluster
analysis [31], which defines a parameterized nonlinear mapping from data space X to
low-dimensional feature space Z and optimizes the clustering target in low-dimensional
space. Guo et al. considered manipulating the feature space to disperse data points by
preserving the data structure and the clustering loss as a guide [32]. They put forward the
improvement of the deep embedding clustering (IDEC) algorithm. IDEC joint clustering
label allocation and learning are suitable for clustering and retaining the characteristics of
the data structure by fusing the clustering loss and the loss of the autoencoder.

Wilder et al. thought that the BP in a neural network is in a continuous space, while
K-means is used to deal with discrete space problems as an algorithm [33]. They present a
differentiable K-means algorithm to effectively deal with modularity and PC problems that
combine GNN and K-means clustering. The paper treats CoreData as a PC problem to solve.
Although GNN can classify CoreData sets well, it cannot effectively solve p-center. The
CoreData is a kind of unweighted graph in which isolated points (not connected with any
point or indirectly) will exist in the graph. In their paper, the distance between the isolated
and center points is directly set as the current maximum distance, which is problematic and
unreliable. We mainly explore and research the PC problem and propose a new method to

ISPRS Int. J. Geo-Inf. 2022, 11, 270 4 of 15

solve the PC problems. Meanwhile, we use ER graph to randomly generate a large number
of examples of PC problems to prove the feasibility of our method.

3. Preliminary

This section introduces some basic concepts and algorithms about PC problems for
our work. We will solve the PC problems with two classic algorithms: an exact algorithm
based on minimum domain sets and a fast-approximation method by a greedy algorithm.

3.1. The Definition of the p-Center Problem

The description of PC is as follows [34]: Given an undirected graph G = (V, E) and
a positive integer p, the aim is to find a subset C ∈ V as centers with |C| < p, such
that the distance from farthest vertex v to its closest center in S is minimized. We give a
strict mathematical definition of PC [35] for having a clear understanding of the algorithm.
Figure 1 is a diagram of the p-center problem. The objective of the p-center problem is to
minimize the maximal distance for all demand points.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 4 of 15

with any point or indirectly) will exist in the graph. In their paper, the distance between

the isolated and center points is directly set as the current maximum distance, which is

problematic and unreliable. We mainly explore and research the PC problem and propose

a new method to solve the PC problems. Meanwhile, we use ER graph to randomly gen-

erate a large number of examples of PC problems to prove the feasibility of our method.

3. Preliminary

This section introduces some basic concepts and algorithms about PC problems for

our work. We will solve the PC problems with two classic algorithms: an exact algorithm

based on minimum domain sets and a fast-approximation method by a greedy algorithm.

3.1. The Definition of the p-Center Problem

The description of PC is as follows [34]: Given an undirected graph G = (V, E) and a

positive integer p, the aim is to find a subset C ∈ V as centers with |C| < p, such that the

distance from farthest vertex v to its closest center in S is minimized. We give a strict

mathematical definition of PC [35] for having a clear understanding of the algorithm. Fig-

ure 1 is a diagram of the p-center problem. The objective of the p-center problem is to

minimize the maximal distance for all demand points.

Figure 1. The diagram of the p-center problem.

In metric space X, :d X X R → is the metric function in X, which indicates the

similarity or proximity between two elements in X. S is a set in X, the proposal is to find

a set C S of the most p centers and generate an assignment : .S C → The operator

𝜓 maps each element in S to one of the points in C. According to the above definition, for

each , (, ())i S d i i is present the distance between i and the cluster center ().i The

distance can not only express the true distance between two points, but also the similarity

or proximity for any two elements. In many individual issues, the goal is to require

(, ())d i i to be as small as possible. The optimization objective of PC is to be minimized

max (, ())i S d i i .

For each point i ∈ S , we define max (,)
ii j CU d i j= . Obviously,

{ | (,) }.i iC j S d i j U  

PC is an NP-hard problem, under P NP , PC cannot be solved in polynomial time

[36]. Therefore, we measure the quality of p-center problems’ solutions by approximation

ratio and relative error.

Definition 1. If the optimal solution to an optimization problem is c*. c is the best solution ob-

tained by an approximate algorithm. Then the approximate ratio 𝛾 of the approximate algorithm

is defined as:

Figure 1. The diagram of the p-center problem.

In metric space X, d : X× X → R is the metric function in X, which indicates the
similarity or proximity between two elements in X. S is a set in X, the proposal is to find
a set C ⊆ S of the most p centers and generate an assignment ψ : S→ C . The operator ψ
maps each element in S to one of the points in C. According to the above definition, for each
i ∈ S, d(i, ψ(i)) is present the distance between i and the cluster center ψ(i). The distance can
not only express the true distance between two points, but also the similarity or proximity
for any two elements. In many individual issues, the goal is to require d(i, ψ(i)) to be as
small as possible. The optimization objective of PC is to be minimized maxi∈Sd(i, ψ(i)).

For each point i ∈ S, we define Ui = maxj∈Ci d(i, j). Obviously, Ci ⊆ {j ∈ S | d(i, j) ≤ Ui}.
PC is an NP-hard problem, under P 6= NP, PC cannot be solved in polynomial

time [36]. Therefore, we measure the quality of p-center problems’ solutions by approxima-
tion ratio and relative error.

Definition 1. If the optimal solution to an optimization problem is c*. c is the best solution
obtained by an approximate algorithm. Then the approximate ratio γ of the approximate algorithm
is defined as:

γ = max
{

c
c∗

,
c∗

c

}
(1)

γ ≤ r(n) , where r(n) is a function only related to the scale n of the problem.

Relative error λ is defined as follows:

λ =

∣∣∣∣ c− c∗

c∗

∣∣∣∣ (2)

ISPRS Int. J. Geo-Inf. 2022, 11, 270 5 of 15

λ ≤ η(n), where η(n) is the relative error bound which is only related to the scale n of the
problem. According to the above definition, it is obviously η(n) ≤ r(n)− 1.

Obviously, the smaller the approximation ratio or relative error is, the performance of
the approximation algorithm is better.

3.2. Two Algorithms for Solving p-Center Problems

There are three algorithms for solving PC problems: exact algorithm (EA), approxi-
mate algorithm, and a heuristic algorithm. Exact algorithms are usually based on linear
programming or mixed-integer programming [37–39], and the optimal solution can be
obtained for most problems. We use an exact algorithm based on minimum domain sets
(MDS) to solve PC instances in our work. EA can get the optimal solution to the problem,
which can be used as a reference to measure the quality of the algorithm. Approximation
algorithms include the SH algorithm [36], Gon algorithm [39], and HS algorithm [40].
These algorithms have proved to have the best approximation factor in theory, but they
perform poorly on many benchmark datasets. Although the heuristic algorithm has no
strict theoretical proof and cannot guarantee rapid convergence, it has performed well on
many benchmark datasets [41].

In order to quickly analyze the effectiveness of our method, we choose a greedy
approximation algorithm, which is proven to have a 2-approximation ratio in theory [34]. It
is a fast heuristic algorithm, which is the easiest to implement. Next, we will mainly show
two algorithms for solving PC problems.

Exact Algorithm. Our exact algorithm is based on the minimum dominating set in
graph theory. This section will give the mixed linear programming form of MDS and some
definitions related to it. We first give the definition of the minimum dominating set [42].

Definition 2. Given an input graph G = (V, E), a dominating set is a subset D ∈ V such that for
every vertex v ∈ V, an edge (v, u) ∈ E with either u or v in D exists.

We show a dominating set in Figure 2 for understanding the definition. Figure 2 shows
the domain set of the graph. {v0, v2, v4} is one of the domain sets of the graph. According
to the definition of a domain set, {v1, v3, v5} is also a domain set of the graph.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 5 of 15

*

*
max ,

c c

c c


 
=  

 
 (1)

()r n  , where ()r n is a function only related to the scale n of the problem.

Relative error  is defined as follows:

*

*

c c

c


−
= (2)

()n  , where ()n is the relative error bound which is only related to the scale n of

the problem. According to the above definition, it is obviously () () 1n r n  − .

Obviously, the smaller the approximation ratio or relative error is, the performance

of the approximation algorithm is better.

3.2. Two Algorithms for Solving p-Center Problems

There are three algorithms for solving PC problems: exact algorithm (EA), approxi-

mate algorithm, and a heuristic algorithm. Exact algorithms are usually based on linear

programming or mixed-integer programming [37–39], and the optimal solution can be

obtained for most problems. We use an exact algorithm based on minimum domain sets

(MDS) to solve PC instances in our work. EA can get the optimal solution to the problem,

which can be used as a reference to measure the quality of the algorithm. Approximation

algorithms include the SH algorithm [36], Gon algorithm [39], and HS algorithm [40].

These algorithms have proved to have the best approximation factor in theory, but they

perform poorly on many benchmark datasets. Although the heuristic algorithm has no

strict theoretical proof and cannot guarantee rapid convergence, it has performed well on

many benchmark datasets [41].

In order to quickly analyze the effectiveness of our method, we choose a greedy ap-

proximation algorithm, which is proven to have a 2-approximation ratio in theory [34]. It

is a fast heuristic algorithm, which is the easiest to implement. Next, we will mainly show

two algorithms for solving PC problems.

Exact Algorithm. Our exact algorithm is based on the minimum dominating set in

graph theory. This section will give the mixed linear programming form of MDS and some

definitions related to it. We first give the definition of the minimum dominating set [42].

Definition 2. Given an input graph G = (V,E), a dominating set is a subset D V such that for

every vertex ,v V an edge (,)v u E with either u or v in D exists.

We show a dominating set in Figure 2 for understanding the definition. Figure 2

shows the domain set of the graph. { 0, 2, 4}v v v is one of the domain sets of the graph.

According to the definition of a domain set, { 1, 3, 5}v v v is also a domain set of the graph.

Figure 2. {𝑣0, 𝑣2, 𝑣4} is a domain set of the graph.
Figure 2. {v0, v2, v4} is a domain set of the graph.

Definition 3. A minimum dominating set is a set of minimum cardinality among all the dominat-
ing sets.

Figure 3 shows a minimum dominating set. Apart from the shown in Figure 3, {v2, v5}
is also a minimum dominating set of the graph. It is obvious that the MDS is not unique
and must be a subset of domain sets.

ISPRS Int. J. Geo-Inf. 2022, 11, 270 6 of 15

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 6 of 15

Definition 3. A minimum dominating set is a set of minimum cardinality among all the domi-

nating sets.

Figure 3 shows a minimum dominating set. Apart from the shown in Figure 3,

{ 2, 5}v v is also a minimum dominating set of the graph. It is obvious that the MDS is not

unique and must be a subset of domain sets.

Figure 3. {𝑣0, 𝑣3} is a minimum domain set of the graph.

The minimum dominating set is a sub-problem of the p-center problem, so the solu-

tion of the p-center problem can be converted to some MDS problems. However, MDS

requires that the graph data is a complete graph. This procedure can get the exact solution

but is time-consuming and low efficiency. The solution of MDS is to convert the MDS

problem into a mixed linear programming problem [43] and solve it with an open LP

solver. The following is the mixed linear programming formulation of MDS:

(,)

:

. . , 1

, is a binary variable

v

v G

v u

u v edges

x

Minimize b

s t v G b b

x G b





  + 

 



 (3)

Based on the MDS algorithm, the basic exact algorithm for solving PC is shown in

Algorithm 1.

Figure 3. {v0, v3} is a minimum domain set of the graph.

The minimum dominating set is a sub-problem of the p-center problem, so the solution
of the p-center problem can be converted to some MDS problems. However, MDS requires
that the graph data is a complete graph. This procedure can get the exact solution but is
time-consuming and low efficiency. The solution of MDS is to convert the MDS problem
into a mixed linear programming problem [43] and solve it with an open LP solver. The
following is the mixed linear programming formulation of MDS:

Minimize : ∑
v∈G

bv

s.t. ∀v ∈ G, bv + ∑
(u,v)∈edges

bu ≥ 1

∀x ∈ G, bx is a binary variable

(3)

Based on the MDS algorithm, the basic exact algorithm for solving PC is shown in
Algorithm 1.

Algorithm 1 An Exact Algorithm for the PC problem (EA)

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 7 of 16

Lemma 1 [22]. The time complexity of the exact algorithm is
2()O n logn .

Greedy Algorithm. The idea of the greed strategy is to select the current optimal

solution at each step. This greed algorithm ensures that it has no more than a 2-approval

approximation ratio. The detail of the algorithm is shown in Algorithm 2.

Algorithm 1 An Exact Algorithm for the PC problem (EA)

Input:

 An undirected graph 𝐺 = (𝑉, 𝐸) , a integer p

Output:

 Centers set 𝐶, distance 𝐷

1 According to 𝐺 generate a complete graph 𝐺𝐶;

2 Get an order list of 𝑛 edge weights of 𝐺𝐶 , 𝑤(𝑒1), 𝑤(𝑒2), . . . , 𝑤(𝑒𝑛), where 𝑤(𝑒𝑖) ≤

𝑤(𝑒𝑖+1), 𝑖 = 1,2,...,n-1;

3 Let high = 𝑛, low = 1;

4 While high - low > 1 do

5 1 mid = ⌈(high + low)/2⌉;

6 2 𝑟𝑚𝑎𝑥 = 𝑤(𝑒𝑚𝑖𝑑);

7 3 for i =1 to n do

8 4 if 𝑤(𝑒𝑖) > 𝑟𝑚𝑎𝑥 then

9 5 Remove 𝑒𝑖;

10 6 Get the bottleneck graph 𝐺𝑟 ;

11 7 C = minimumDominatingSet(𝐺𝑟)

12 8 if |𝐶| ≤ 𝑝 then

13 9 high = mid;

14 10 else

15 11 low = mid;

16 Return 𝐶, 𝑟𝑚𝑎𝑥.

Lemma 1 [22]. The time complexity of the exact algorithm is O(n2logn).

ISPRS Int. J. Geo-Inf. 2022, 11, 270 7 of 15

Greedy Algorithm. The idea of the greed strategy is to select the current opti-
mal solution at each step. This greed algorithm ensures that it has no more than a
2-approval approximation ratio. The detail of the algorithm is shown in Algorithm 2.

Algorithm 2 Greedy Algorithm for the PC problem (GA)

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 8 of 16

Lemma 2

[34]. The

time com-

plexity of

the greedy

algorithm

is

()O pn ,

where p is

the num-

ber of cen-

ters, n is

the num-

ber of

nodes.

3.3.

Graph Neural Network

A convolutional neural network makes all the difference in deep learning, but it can-

not handle graph structure data. Graph convolutional network (GCN) was first proposed

by Kipf and Welling [44] for a semi-supervised classification, which can effectively pro-

cess graph structure data. GCN is a spectral-based graph convolution model. We usually

use G = (V, E) to represent a graph, where V is the set of nodes in the graph, |V| is the

number of nodes, and E is the set of edges in the graph.

The convolution of a pixel in the image is to sum the weight of the pixel and adjacent

pixels, so the convolution of a node in the graph structure can be shown as the weighted

sum of the node and adjacent nodes.

We first consider the simplest convolution operation.

(1) () () ()l l lX AX+ =  (4)

In the above formula, Θ is the parameter of convolution transformation, which

needs training and optimization. A represents the adjacency matrix of the graph. 0ijA 

represent the node i and node j are adjacent. AX is to add the vectors of all neighbor nodes.

However, the formula only obtains the information of neighbor nodes and ignores its in-

formation. Therefore, A is improved by adding a unit matrix. The formula is as follows:

(1) () () ()l l lX AX+ =  (5)

NA A I= + (6)

In the process of calculation, Formula (5) will add all neighbor vectors of the node.

After multi-layer convolution, the value of the vector is extraordinarily large. Therefore,

matrix A needs to be normalized. D denotes the degree matrix of the graph and the degree

indicates the number of neighbors of each node. The normalization of A can be achieved

Algorithm 2 Greedy Algorithm for the PC problem (GA)

Input:

 An undirected graph 𝐺 = (𝑉, 𝐸) , a integer p

Output:

 Centers set 𝐶, distance 𝐷

1 Get the 𝑛 vertices of 𝐺;

2 Random generate a starting index from ‖𝑛‖ and put in 𝐶;

3 While |𝐶| < 𝑝 do

4 1 for i =1 to n do

5 2 if 𝑣𝑖 ∈ 𝐶 then

6 3 Continue.

7 4 Calculator the distance 𝑑(𝑣𝑖 , 𝐶)

8 5 𝑑𝑚𝑖𝑛 = min
𝑐∈𝐶

𝑑(𝑣𝑖 , 𝐶)

9 6 if 𝑑𝑚𝑖𝑛 > 𝑑𝑚𝑎𝑥 then

10 7 𝑑𝑚𝑎𝑥 = 𝑑𝑚𝑖𝑛 , 𝑐𝑏𝑒𝑠𝑡 = 𝑣𝑖

11 8 Append 𝑑𝑚𝑎𝑥 to deltas

12 9 Append 𝑐𝑏𝑒𝑠𝑡 to 𝐶

13 Return 𝐶, 𝑚𝑖𝑛(𝑑𝑒𝑙𝑡𝑎𝑠).

Lemma 2 [34]. The time complexity of the greedy algorithm is O(pn), where p is the number of
centers, n is the number of nodes.

3.3. Graph Neural Network

A convolutional neural network makes all the difference in deep learning, but it cannot
handle graph structure data. Graph convolutional network (GCN) was first proposed by
Kipf and Welling [44] for a semi-supervised classification, which can effectively process
graph structure data. GCN is a spectral-based graph convolution model. We usually use G
= (V, E) to represent a graph, where V is the set of nodes in the graph, |V| is the number of
nodes, and E is the set of edges in the graph.

The convolution of a pixel in the image is to sum the weight of the pixel and adjacent
pixels, so the convolution of a node in the graph structure can be shown as the weighted
sum of the node and adjacent nodes.

We first consider the simplest convolution operation.

X(l+1) = σ(AX(l)Θ(l)) (4)

In the above formula, Θ is the parameter of convolution transformation, which needs
training and optimization. A represents the adjacency matrix of the graph. Aij 6= 0
represent the node i and node j are adjacent. AX is to add the vectors of all neighbor nodes.
However, the formula only obtains the information of neighbor nodes and ignores its
information. Therefore, A is improved by adding a unit matrix. The formula is as follows:

X(l+1) = σ(ÃX(l)Θ(l)) (5)

Ã = A + IN (6)

ISPRS Int. J. Geo-Inf. 2022, 11, 270 8 of 15

In the process of calculation, Formula (5) will add all neighbor vectors of the node.
After multi-layer convolution, the value of the vector is extraordinarily large. Therefore,
matrix A needs to be normalized. D denotes the degree matrix of the graph and the degree
indicates the number of neighbors of each node. The normalization of A can be achieved
by multiplying the inverse of the degree matrix D−1. To ensure that the normalized matrix
is still symmetric, the symmetric normalization formula is as follows:

A = D−
1
2 AD−

1
2 (7)

After the above derivation, the core formula of GCN is as follows:

X(l+1) = σ(D̃−1/2 ÃD̃−1/2X(l)Θ(l)) (8)

where D̃ is the degree of Ã, X ∈ RN×C, Θ ∈ RC×F. N, C, F represent the number of nodes,
the number of channels, and the number of convolution kernels, respectively.

The computational complexity of GCN is O(|E|). It has a linear relationship with the
number of edges E. When the graph is sparse, the complexity is much lower than O(n2).
The algorithm only considers the first-order information of the neighborhood. Stacking
multiple layers can effectively increase the receptive field. In the experiment, it is not that
the more layers of GCN we use, the better the training effect. We only use two layers of
GCN to solve our problems.

The superiority of GCN:

• GCN can extract features from graph data. It can perform node classification, graph
classification, edge prediction, and graph embedding on the graph data, which tradi-
tional CNN cannot process.

• The computational complexity of GCN is low. In our problem, the training speed is
fast. Compared with graph attention networks, Graphsage, and other graph neural
networks, the solution is faster and the model is more effective.

4. Methodology

As deep learning gives a good performance on many tasks, many researchers try to
use deep learning to solve combinatorial optimization problems. In previous studies, the
main idea must be based on a sufficiently large training set to get a robustness model which
can effectively deal with the problems in test sets. Therefore, even if the training time
is very long, it can effectively solve many problems as long as the trained model is well
enough. Our work presents a new idea that combines the traditional algorithms with GCN
to solve PC problems. The main workflow of our approach is shown in Figure 4.

Our method does not need to rely on large datasets. We train the model directly. The
idea is straightforward, but it can effectively improve the solution of PC problems and can
be extended to analogous COPs.

4.1. Solution Method

For the graph G = (V, E) corresponding to any PC problems, we use two basic algo-
rithms to seek the solution to the problems. The detail of the algorithms is in Section 3. In
our approach, we first use a greedy algorithm to work out the center points in the graph.
Then a clustering algorithm is proposed to calculate the category of each node which
is according to the center points. Next, G, features, and the clustering results are input
parameters into GCN to obtain new clusters. Finally, based on the guidance of new clusters,
each category’s center point and maximum distance are computed, and the solution to the
original problem is obtained.

ISPRS Int. J. Geo-Inf. 2022, 11, 270 9 of 15

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 9 of 15

the more layers of GCN we use, the better the training effect. We only use two layers of

GCN to solve our problems.

The superiority of GCN:

• GCN can extract features from graph data. It can perform node classification, graph

classification, edge prediction, and graph embedding on the graph data, which tra-

ditional CNN cannot process.

• The computational complexity of GCN is low. In our problem, the training speed is

fast. Compared with graph attention networks, Graphsage, and other graph neural

networks, the solution is faster and the model is more effective.

4. Methodology

As deep learning gives a good performance on many tasks, many researchers try to

use deep learning to solve combinatorial optimization problems. In previous studies, the

main idea must be based on a sufficiently large training set to get a robustness model

which can effectively deal with the problems in test sets. Therefore, even if the training

time is very long, it can effectively solve many problems as long as the trained model is

well enough. Our work presents a new idea that combines the traditional algorithms with

GCN to solve PC problems. The main workflow of our approach is shown in Figure 4.

(a) (b)

Figure 4. (a) The process of our approach to solving PC problems. (b) The greedy algorithm and

exact algorithm.

Our method does not need to rely on large datasets. We train the model directly. The

idea is straightforward, but it can effectively improve the solution of PC problems and can

be extended to analogous COPs.

4.1. Solution Method

For the graph G = (V, E) corresponding to any PC problems, we use two basic algo-

rithms to seek the solution to the problems. The detail of the algorithms is in Section 3. In

our approach, we first use a greedy algorithm to work out the center points in the graph.

Then a clustering algorithm is proposed to calculate the category of each node which is

according to the center points. Next, G, features, and the clustering results are input pa-

rameters into GCN to obtain new clusters. Finally, based on the guidance of new clusters,

each category’s center point and maximum distance are computed, and the solution to the

original problem is obtained.

Figure 4. (a) The process of our approach to solving PC problems. (b) The greedy algorithm and
exact algorithm.

We most notably train the GCN directly rather than the GCN model in advance.
Therefore, this part of the training time needs to be calculated into the solution of the whole
problem.

Cluster Algorithm. We need a clustering algorithm to calculate the category of each
node which is according to the center point. We only need to cycle all vertices once, calculate
the distance from each node to each center point and take the nearest center point as the
label of the current vertex. The algorithm is shown in Algorithm 3. It is obvious that the
time complexity of our cluster algorithm is O(pn), p is the number of centers, n is the
number of nodes.

Algorithm 3 Clusters Algorithm (CA)

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 10 of 16

Figure 4. (a) The process of our approach to solving PC problems. (b) The greedy algorithm and

exact algorithm.

Our method does not need to rely on large datasets. We train the model directly. The

idea is straightforward, but it can effectively improve the solution of PC problems and can

be extended to analogous COPs.

4.1. Solution Method

For the graph G = (V, E) corresponding to any PC problems, we use two basic algo-

rithms to seek the solution to the problems. The detail of the algorithms is in Section 3. In

our approach, we first use a greedy algorithm to work out the center points in the graph.

Then a clustering algorithm is proposed to calculate the category of each node which is

according to the center points. Next, G, features, and the clustering results are input pa-

rameters into GCN to obtain new clusters. Finally, based on the guidance of new clusters,

each category’s center point and maximum distance are computed, and the solution to the

original problem is obtained.

We most notably train the GCN directly rather than the GCN model in advance.

Therefore, this part of the training time needs to be calculated into the solution of the

whole problem.

Cluster Algorithm. We need a clustering algorithm to calculate the category of each

node which is according to the center point. We only need to cycle all vertices once, cal-

culate the distance from each node to each center point and take the nearest center point

as the label of the current vertex. The algorithm is shown in Algorithm 3. It is obvious that

the time complexity of our cluster algorithm is ()O pn , p is the number of centers, n is the

number of nodes.

4.2. Feasibility Analysis of Algorithm

The exact algorithm can give the optimal solution to the problem, but the efficiency

is low. The greedy algorithm has high efficiency, but the accuracy of the solution is not

enough. We propose a simple and effective method to solve the p-center problem. The

solution efficiency is better than the accurate algorithm, the solution accuracy is better

than the greedy algorithm, and a balance is achieved between efficiency and accuracy.

Algorithm 3 Clusters Algorithm (CA)

Input:

 An undirected graph 𝐺 = (𝑉, 𝐸) , a list 𝑐 = {𝑐𝑗}𝑗=1
𝑝

Output:

 𝐶 = {𝐶𝑘}𝑘=1
𝑝

1 for center = 1 to p do

2 Clusters = {center: []}

3 for i =1 to n do

4 1 if 𝑣𝑖 ∈ 𝑐 then

5 2 continue.

6 3 for j =1 to p do

7 4 𝑑𝑗 = 𝑑(𝑣𝑖 , 𝑐𝑗)

8 5 𝑘 = 𝑎𝑟𝑔 min
𝑗

𝑑𝑗

9 6 Append 𝑣𝑖 to 𝐶𝑘

10 Return 𝐶.

4.2. Feasibility Analysis of Algorithm

The exact algorithm can give the optimal solution to the problem, but the efficiency
is low. The greedy algorithm has high efficiency, but the accuracy of the solution is not
enough. We propose a simple and effective method to solve the p-center problem. The
solution efficiency is better than the accurate algorithm, the solution accuracy is better than
the greedy algorithm, and a balance is achieved between efficiency and accuracy.

ISPRS Int. J. Geo-Inf. 2022, 11, 270 10 of 15

Lemma 3. The time complexity of our approach is O(pn) + O(|E|) , where p is the number of
centers, n is the number of nodes, |E| is the number of edges.

Proof of Lemma 3. Our algorithm is based on a greedy algorithm and a clustering algo-
rithm. In Lemma 2, the time complexity of the greedy algorithm is O(pn). According to
Algorithm 3, the time complexity of the clustering algorithm is also O(pn). GCN has O(|E|)
computational complexity in one layer. Our model has two layers of GCN (Algorithm 4).
The time complexity of our algorithm is O(pn) + O(|E|) .�

Algorithm 4 GCN with Greedy Algorithm

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 11 of 16

Lemma 3. The time complexity of our approach is () (| |)O pn O E+ , where p is the number of

centers, n is the number of nodes, |E| is the number of edges.

Proof of Lemma 3. Our algorithm is based on a greedy algorithm and a clustering algo-

rithm. In Lemma 2, the time complexity of the greedy algorithm is ()O pn . According to

Algorithm 3, the time complexity of the clustering algorithm is also ()O pn . GCN has

()| |O E computational complexity in one layer. Our model has two layers of GCN (Al-

gorithm 4). The time complexity of our algorithm is () (| |)O pn O E+ .□

5. Experiments

The GCN can effectively process graph structure data since the backup of solid the-

oretical results. However, the training of neural networks is a black-box model. Many

phenomena in training have no sufficient theoretical guarantees. Following Lemmas 1 and

2, it is evident that the time complexity of our algorithm is superior to EA. In this section,

we used many experiments to verify that the solution accuracy of our approach was better

than GA.

5.1. Implementation

Data Generation. We generated many Erdos–Renyi (ER) graphs as instances for the

p-center problems. ER graphs can represent a lot of practical problems in reality. Since PC

is an NP-hard problem and the solution time increases rapidly with the scale of the prob-

lem, we first compared the running time of the two algorithms in Section 3 under different

scale problems. Figure 5 is a curve line chart of the running time of the two algorithms

varying with the number of nodes. Considering the time cost, we mainly conducted ex-

periments on instances with several nodes ranging from 100 to 200. One hundred in-

stances were generated using the ER random graph for each type of problem and solved

by three methods, respectively. The solution time and accuracy of the three algorithms

were compared. The final results were expressed by the mean and standard deviation of

100 groups of experiments.

Algorithm 4 GCN with Greedy Algorithm

Input:

 An undirected graph 𝐺 = (𝑉, 𝐸) , a integer p, features f

Output:

 Centers set 𝑐, distance 𝐷

1 c1 = GreedyAlgorithm(G, p)

2 C1 = ClusteringAlgorithm(G, c1)

3 C = GCN(G, f, C1)

4 for i=1 to p do

5 1 Calculate the center 𝑐𝑖 in 𝐶𝑖

6 2 𝑑𝑖 = 𝑑(𝑐𝑖 , 𝐶𝑖)

7 𝐷 = max
𝑖

𝑑𝑖

8 Return c, D.

5. Experiments

The GCN can effectively process graph structure data since the backup of solid the-
oretical results. However, the training of neural networks is a black-box model. Many
phenomena in training have no sufficient theoretical guarantees. Following Lemmas 1 and
2, it is evident that the time complexity of our algorithm is superior to EA. In this section,
we used many experiments to verify that the solution accuracy of our approach was better
than GA.

5.1. Implementation

Data Generation. We generated many Erdos–Renyi (ER) graphs as instances for the
p-center problems. ER graphs can represent a lot of practical problems in reality. Since
PC is an NP-hard problem and the solution time increases rapidly with the scale of the
problem, we first compared the running time of the two algorithms in Section 3 under
different scale problems. Figure 5 is a curve line chart of the running time of the two
algorithms varying with the number of nodes. Considering the time cost, we mainly
conducted experiments on instances with several nodes ranging from 100 to 200. One
hundred instances were generated using the ER random graph for each type of problem
and solved by three methods, respectively. The solution time and accuracy of the three
algorithms were compared. The final results were expressed by the mean and standard
deviation of 100 groups of experiments.

ISPRS Int. J. Geo-Inf. 2022, 11, 270 11 of 15

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 11 of 15

5. Experiments

The GCN can effectively process graph structure data since the backup of solid the-

oretical results. However, the training of neural networks is a black-box model. Many

phenomena in training have no sufficient theoretical guarantees. Following Lemmas 1 and

2, it is evident that the time complexity of our algorithm is superior to EA. In this section,

we used many experiments to verify that the solution accuracy of our approach was better

than GA.

5.1. Implementation

Data Generation. We generated many Erdos–Renyi (ER) graphs as instances for the

p-center problems. ER graphs can represent a lot of practical problems in reality. Since PC

is an NP-hard problem and the solution time increases rapidly with the scale of the prob-

lem, we first compared the running time of the two algorithms in Section 3 under different

scale problems. Figure 5 is a curve line chart of the running time of the two algorithms

varying with the number of nodes. Considering the time cost, we mainly conducted ex-

periments on instances with several nodes ranging from 100 to 200. One hundred in-

stances were generated using the ER random graph for each type of problem and solved

by three methods, respectively. The solution time and accuracy of the three algorithms

were compared. The final results were expressed by the mean and standard deviation of

100 groups of experiments.

Figure 5. Exact vs greedy algorithm runtime comparisons (prob = 0.4).

Algorithm Procedure. We first used two basic algorithms to solve each problem and

then combined GCN and GA to find the problem’s solution. The procedure of the experi-

mental is as follows:

(1) Generated a PC instance with ER random graph;

(2) Solved the instance with EA;

Output:

 Centers set 𝑐, distance 𝐷

1 c1 = GreedyAlgorithm(G, p)

2 C1 = ClusteringAlgorithm(G, c1)

3 C = GCN(G, f, C1)

4 for i=1 to p do

5 1 Calculate the center 𝑐𝑖 in 𝐶𝑖

6 2 𝑑𝑖 = 𝑑(𝑐𝑖 , 𝐶𝑖)

7 𝐷 = max
𝑖

𝑑𝑖

8 Return c, D.

Figure 5. Exact vs greedy algorithm runtime comparisons (prob = 0.4).

Algorithm Procedure. We first used two basic algorithms to solve each problem
and then combined GCN and GA to find the problem’s solution. The procedure of the
experimental is as follows:

(1) Generated a PC instance with ER random graph;
(2) Solved the instance with EA;
(3) Solved the instance with GA;
(4) According to the solution of GA, each node was classified by CA;
(5) Using GCN to get the new clusters;
(6) New clusters obtained the solution to the original problem.

5.2. Results on p-Center Problems

The approximation ratio is positively correlated with the relative error. Both are used
to measure the proximity between the approximate solution and the optimal solution. The
smaller the approximation ratio is, the closer the approximate solution is to the optimal
solution, indicating that the quality of the solution is better. For the cases of p = 3 and
p = 5, we considered three cases of n = 100, 150, and 200, respectively. Table 1 shows the
result of p = 3, when n = 100, 150, and 200. It can be seen that our results have achieved
lower solution time than EA and better solution accuracy than GA for three scale problems.
Table 2 shows the result of p = 5, when n = 100, 150, and 200. It can be seen that our results
have achieved lower solution time than EA and better solution accuracy than GA expected
for n = 100, 150, and 200.

Table 1. The results on p = 3, when n = 100, 150, and 200.

n = 100, p = 3

Model Runtime Appro_ratio Re_error

GA 1.35 ± 0.09 1.51 0.51
EA 22.64 ± 0.84 1 0

GCN (ours) 10.56 ± 2.32 1.36 0.36

n = 150, p = 3

Model Runtime Appro_ratio Re_error

GA 4.55 ± 0.31 1.45 0.45
EA 114.24 ± 2.81 1 0

GCN (ours) 41.68 ± 1.33 1.25 0.25

n = 200, p = 3

Model Runtime Appro_ratio Re_error

GA 10.81 ± 0.87 1.44 0.44
EA 355.86 ± 7.96 1 0

GCN (ours) 46.69 ± 2.30 1.27 0.27

ISPRS Int. J. Geo-Inf. 2022, 11, 270 12 of 15

Table 2. The results on p = 5, when n = 100, 150, and 200.

n = 100, p = 5

Model Runtime Appro_ratio Re_error

GA 4.66 ± 0.22 1.56 0.56
EA 22.83 ± 0.77 1 0

GCN (ours) 11.26 ± 0.54 1.67 0.67

n = 150, p = 5

Model Runtime Appro_ratio Re_error

GA 16.08 ± 0.69 1.57 0.57
EA 114.27 ± 2.67 1 0

GCN (ours) 53.32 ± 1.92 1.52 0.51

n = 200, p = 5

Model Runtime Appro_ratio Re_error

GA 37.86 ± 1.81 1.54 0.54
EA 358.61 ± 7.95 1 0

GCN (ours) 114.47 ± 3.04 1.46 0.46

Result Analysis. Our method combines a heuristic algorithm and GCN, which realizes
that the solution efficiency is better than the accurate algorithm on a scale of 100–200, and
its accuracy is superior to the greedy algorithm. We expected that a general framework
suitable for a specific form of a particular problem could be obtained from training in
previous related work. However, learning a general model is a great challenge because
of the particularity of graph data. The fundamental reason is that there are no consistent
characteristics of different graph structure data of the same problem which cannot be
trained well. For example, two ER graphs with 100 nodes were randomly generated and
recorded as graphs A and B. Since nodes were randomly generated, there may be a node
c, which exists in both A and B and belongs to different categories, so it is not feasible to
classify node c with GCN.

Therefore, we proposed a new method—training directly. We do not need to generate
a unified model but only need to train their own GCN model for each graph. We used
GCN to learn the classification results directly and then computed the center point and
the minimum distance according to the classification results. Experiments showed that the
training time of the GCN network increases very slowly with the increase of the number
of nodes. Only 20–30 s after 10,000 iterations in GCN is relatively small compared with
the solution time of the exact algorithm in large-scale problems. It indicates that training
directly is feasible and can effectively guide PC problems.

6. Conclusions

In summary, we first implement two basic algorithms: an exact algorithm based
on a minimum domain set and a greedy approximate algorithm. Then, we propose a
new method to solve p-center problems combined with a graph convolutional network.
Our method achieves that the solution accuracy is better than the greedy algorithm and
the solution efficiency is superior to the exact algorithm. The time complexity of our
algorithm is analyzed theoretically, and a better solution, which is compared with the
greedy algorithm, is achieved on a large number of PC instances generated by ER graph.
GCN is used as a classifier for specific instances and the output is directly used to solve
the origin problems, which is different from previous works. Experiments show that our
approach is practical and can better deal with PC problems.

A trade-off approach is proposed to deal with PC problems in our study. Although
the experiments are restricted by the solution time, the results also show that our approach
is effective. This study proposed our algorithm based on an exact algorithm and a greedy
algorithm. We achieved a trade-off between the solution time and the quality of the solution.

ISPRS Int. J. Geo-Inf. 2022, 11, 270 13 of 15

Our study can easily combine with other heuristic algorithms, such as simulated annealing,
ant colony algorithm, and genetic algorithm. Our idea can extend to spatial optimization
problems. However, the specific solution details need to be further explored.

In future work, we will continue to study in following three aspects:

• Combine with other approximate or heuristic algorithms: in our study, we only rely on
two basic algorithms to assist the solving, which can be replaced with other algorithms.

• Experiment on realistic datasets: Our study use an ER graph to simulate a real-world
dataset. It is necessary and significant to apply the approach to real data.

• Transform to other homologous problems: The paradigm can be transferred to other
COPs. We will explore the effectiveness of our approach on p-median problems,
location set covering problems, and maximal coverage location problems.

Author Contributions: Conceptualization, Shaohua Wang and Haojian Liang; methodology, Shaohua
Wang and Haojian Liang; software, Haojian Liang; validation, Haojian Liang, Huilai Li and Yang
Zhong.; formal analysis, Haojian Liang, Huilai Li and Huichun Ye; investigation, Huilai Li and Yang
Zhong; resources, Yang Zhong; data curation, Haojian Liang; writing—original draft preparation,
Haojian Liang and Shaohua Wang; writing—review and editing, Haojian Liang, Shaohua Wang,
Huilai Li, Huichun Ye and Yang Zhong; visualization, Haojian Liang; supervision, Shaohua Wang;
project administration, Shaohua Wang; funding acquisition, Huichun Ye and Shaohua Wang. All
authors have read and agreed to the published version of the manuscript.

Funding: Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences
(Grant No. XDA28100500), the Hundred Talents Program Youth Project (Category B) of the Chinese
Academy of Sciences (E2Z10501), and the Youth Innovation Promotion Association CAS (2021119).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Zhang, M.; Le, L.; Fang, J.; Ai, X.; Yao, W.; Wen, J. Stochastic unit commitment with air conditioning loads participating in reserve

service. IET Renew. Power Gener. 2019, 13, 2977–2985. [CrossRef]
2. Liu, K.; Gao, S.; Qiu, P.; Liu, X.; Yan, B.; Lu, F. Road2vec: Measuring traffic interactions in urban road system from massive travel

routes. ISPRS Int. J. Geo-Inf. 2017, 6, 321. [CrossRef]
3. Zhang, Y.; Cheng, T.; Ren, Y.; Xie, K. A novel residual graph convolution deep learning model for short-term network-based

traffic forecasting. Int. J. Geogr. Inf. Sci. 2020, 34, 969–995. [CrossRef]
4. Sun, C.-H.; Cheng, C.-Y.; Wang, C.-H.; Hsiao, P.-H. Dynamic floating stations model for emergency medical services with a

consideration of traffic data. ISPRS Int. J. Geo-Inf. 2020, 9, 336. [CrossRef]
5. Gui, Z.; Sun, Y.; Yang, L.; Peng, D.; Li, F.; Wu, H.; Guo, C.; Guo, W.; Gong, J. Lsi-lstm: An attention-aware lstm for real-time

driving destination prediction by considering location semantics and location importance of trajectory points. Neurocomputing
2021, 440, 72–88. [CrossRef]

6. Wang, S.; Gao, S.; Feng, X.; Murray, A.T.; Zeng, Y. A context-based geoprocessing framework for optimizing meetup location of
multiple moving objects along road networks. Int. J. Geogr. Inf. Sci. 2018, 32, 1368–1390. [CrossRef]

7. Zhou, L.; Wang, S.; Xu, Z. A multi-factor spatial optimization approach for emergency medical facilities in beijing. ISPRS Int. J.
Geo-Inf. 2020, 9, 361. [CrossRef]

8. Zhu, Y.; Du, Q.; Tian, F.; Ren, F.; Liang, S.; Chen, Y. Location optimization using a hierarchical location-allocation model for
trauma centers in shenzhen, china. ISPRS Int. J. Geo-Inf. 2016, 5, 190. [CrossRef]

9. Han, B.; Hu, M.; Zheng, J.; Tang, T. Site selection of fire stations in large cities based on actual spatiotemporal demands: A case
study of nanjing city. ISPRS Int. J. Geo-Inf. 2021, 10, 542. [CrossRef]

10. Gan, W.; Ai, X.; Fang, J.; Yan, M.; Yao, W.; Zuo, W.; Wen, J. Security constrained co-planning of transmission expansion and energy
storage. Appl. Energy 2019, 239, 383–394. [CrossRef]

11. Gao, P.; Wang, H.; Cushman, S.A.; Cheng, C.; Song, C.; Ye, S. Sustainable land-use optimization using nsga-ii: Theoretical and
experimental comparisons of improved algorithms. Landsc. Ecol. 2021, 36, 1877–1892. [CrossRef]

http://doi.org/10.1049/iet-rpg.2019.0360
http://doi.org/10.3390/ijgi6110321
http://doi.org/10.1080/13658816.2019.1697879
http://doi.org/10.3390/ijgi9050336
http://doi.org/10.1016/j.neucom.2021.01.067
http://doi.org/10.1080/13658816.2018.1431838
http://doi.org/10.3390/ijgi9060361
http://doi.org/10.3390/ijgi5100190
http://doi.org/10.3390/ijgi10080542
http://doi.org/10.1016/j.apenergy.2019.01.192
http://doi.org/10.1007/s10980-020-01051-3

ISPRS Int. J. Geo-Inf. 2022, 11, 270 14 of 15

12. Church, R.L.; Wang, S. Solving the p-median problem on regular and lattice networks. Comput. Oper. Res. 2020, 123, 105057.
[CrossRef]

13. Feng, X.; Wang, S.; Murray, A.T.; Cao, Y.; Gao, S. Multi-objective trajectory optimization in planning for sequential activities
across space and through time. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 945–963. [CrossRef]

14. Liu, X.; Li, P.; Meng, F.; Zhou, H.; Zhong, H.; Zhou, J.; Mou, L.; Song, S. Simulated annealing for optimization of graphs and
sequences. Neurocomputing 2021, 465, 310–324. [CrossRef]

15. Ding, Q.; Hu, X.; Sun, L.; Wang, Y. An improved ant colony optimization and its application to vehicle routing problem with time
windows. Neurocomputing 2012, 98, 101–107. [CrossRef]

16. Bello, I.; Pham, H.; Le, Q.V.; Norouzi, M.; Bengio, S. Neural combinatorial optimization with reinforcement learning. arXiv 2016,
arXiv:1611.09940.

17. Khalil, E.; Dai, H.; Zhang, Y.; Dilkina, B.; Song, L. Learning combinatorial optimization algorithms over graphs. Adv. Neural Inf.
Processing Syst. 2017, 30, 6351–6361.

18. Donti, P.; Amos, B.; Kolter, J.Z. Task-based end-to-end model learning in stochastic optimization. Adv. Neural Inf. Processing Syst.
2017, 30, 5490–5500.

19. Wilder, B.; Dilkina, B.; Tambe, M. Melding the data-decisions pipeline: Decision-focused learning for combinatorial optimization.
In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; pp. 1658–1665.

20. Yang, L.; Cao, X.; He, D.; Wang, C.; Wang, X.; Zhang, W. Modularity Based Community Detection with Deep Learning. In
Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, New York, NY, USA, 9–15 July 2016; pp.
2252–2258.

21. Amos, B.; Kolter, J.Z. Optnet: Differentiable optimization as a layer in neural networks. In Proceedings of the 34th International
Conference on Machine Learning, Sydney, NSW, Australia, 6–11 August 2017; pp. 136–145.

22. Robič, B.; Mihelič, J. Solving the k-center problem efficiently with a dominating set algorithm. J. Comput. Inf. Technol. 2005, 13,
225–234.

23. Rana, R.; Garg, D. The analytical study of k-center problem solving techniques. Int. J. Inf. Technol. Knowl. Manag. 2008, 1, 527–535.
24. Li, Z.; Chen, Q.; Koltun, V. Combinatorial optimization with graph convolutional networks and guided tree search. Adv. Neural

Inf. Processing Syst. 2018, 31, 539.
25. Drori, I.; Kharkar, A.; Sickinger, W.R.; Kates, B.; Ma, Q.; Ge, S.; Dolev, E.; Dietrich, B.; Williamson, D.P.; Udell, M. Learning to solve

combinatorial optimization problems on real-world graphs in linear time. In Proceedings of the 2020 19th IEEE International
Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 14–17 December 2020; pp. 19–24.

26. Vinyals, O.; Fortunato, M.; Jaitly, N. Pointer networks. Adv. Neural Inf. Processing Syst. 2015, 28, 2692–2700.
27. Gu, S.; Hao, T.; Yao, H. A pointer network based deep learning algorithm for unconstrained binary quadratic programming

problem. Neurocomputing 2020, 390, 1–11. [CrossRef]
28. Zhang, M.; Chen, Y. Link prediction based on graph neural networks. Adv. Neural Inf. Processing Syst. 2018, 31, 5171–5181.
29. Kool, W.; Van Hoof, H.; Welling, M. Attention, learn to solve routing problems! arXiv 2018, arXiv:1803.08475.
30. Tian, F.; Gao, B.; Cui, Q.; Chen, E.; Liu, T.-Y. Learning deep representations for graph clustering. In Proceedings of the AAAI

Conference on Artificial Intelligence, Québec, QC, Canada, 27–31 July 2014.
31. Xie, J.; Girshick, R.; Farhadi, A. Unsupervised deep embedding for clustering analysis. In Proceedings of the 33rd International

Conference on International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; p. 487.
32. Guo, X.; Gao, L.; Liu, X.; Yin, J. Improved deep embedded clustering with local structure preservation. In Proceedings of the 26th

International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 1753–1759.
33. Wilder, B.; Ewing, E.; Dilkina, B.; Tambe, M. End to end learning and optimization on graphs. Adv. Neural Inf. Processing Syst.

2019, 32, 4674–4685.
34. Garcia-Diaz, J.; Menchaca-Mendez, R.; Menchaca-Mendez, R.; Hernández, S.P.; Pérez-Sansalvador, J.C.; Lakouari, N. Approxi-

mation algorithms for the vertex k-center problem: Survey and experimental evaluation. IEEE Access 2019, 7, 109228–109245.
[CrossRef]

35. Chakrabarti, D.; Dickerson, J.P.; Esmaeili, S.A.; Srinivasan, A.; Tsepenekas, L. A new notion of individually fair clustering: $\alpha
$-equitable $ k $-center. arXiv 2021, arXiv:2106.05423.

36. Plesník, J. A heuristic for the p-center problems in graphs. Discret. Appl. Math. 1987, 17, 263–268. [CrossRef]
37. Daskin, M.S. A new approach to solving the vertex p-center problem to optimality: Algorithm and computational results.

Commun. Oper. Res. Soc. Jpn. 2000, 45, 428–436.
38. Özsoy, F.A.; Pınar, M.Ç. An exact algorithm for the capacitated vertex p-center problem. Comput. Oper. Res. 2006, 33, 1420–1436.

[CrossRef]
39. Dyer, M.E.; Frieze, A.M. A simple heuristic for the p-centre problem. Oper. Res. Lett. 1985, 3, 285–288. [CrossRef]
40. Hochbaum, D.S.; Shmoys, D.B. A best possible heuristic for the k-center problem. Math. Oper. Res. 1985, 10, 180–184. [CrossRef]
41. Mladenović, N.; Labbé, M.; Hansen, P. Solving the p-center problem with tabu search and variable neighborhood search. Netw.

Int. J. 2003, 42, 48–64. [CrossRef]
42. Grandoni, F. A note on the complexity of minimum dominating set. J. Discret. Algorithms 2006, 4, 209–214. [CrossRef]

http://doi.org/10.1016/j.cor.2020.105057
http://doi.org/10.1177/2399808320913300
http://doi.org/10.1016/j.neucom.2021.09.003
http://doi.org/10.1016/j.neucom.2011.09.040
http://doi.org/10.1016/j.neucom.2019.06.111
http://doi.org/10.1109/ACCESS.2019.2933875
http://doi.org/10.1016/0166-218X(87)90029-1
http://doi.org/10.1016/j.cor.2004.09.035
http://doi.org/10.1016/0167-6377(85)90002-1
http://doi.org/10.1287/moor.10.2.180
http://doi.org/10.1002/net.10081
http://doi.org/10.1016/j.jda.2005.03.002

ISPRS Int. J. Geo-Inf. 2022, 11, 270 15 of 15

43. Fan, N.; Watson, J.-P. Solving the connected dominating set problem and power dominating set problem by integer programming.
In International Conference on Combinatorial Optimization and Applications; Springer: Berlin/Heidelberg, Germany, 2012; pp. 371–383.

44. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.

	Introduction
	Related Work
	Preliminary
	The Definition of the p-Center Problem
	Two Algorithms for Solving p-Center Problems
	Graph Neural Network

	Methodology
	Solution Method
	Feasibility Analysis of Algorithm

	Experiments
	Implementation
	Results on p-Center Problems

	Conclusions
	References

