
����������
�������

Citation: Yao, K.; Yang, S.; Wu, S.;

Tong, B. Landslide Susceptibility

Assessment Considering Spatial

Agglomeration and Dispersion

Characteristics: A Case Study of Bijie

City in Guizhou Province, China.

ISPRS Int. J. Geo-Inf. 2022, 11, 269.

https://doi.org/10.3390/ijgi11050269

Academic Editor: Wolfgang Kainz

Received: 14 February 2022

Accepted: 14 April 2022

Published: 19 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Landslide Susceptibility Assessment Considering Spatial
Agglomeration and Dispersion Characteristics: A Case Study of
Bijie City in Guizhou Province, China
Kezhen Yao 1,2 , Saini Yang 1,2,3,* , Shengnan Wu 4 and Bin Tong 5

1 Key Laboratory of Environmental Change and Natural Disaster, Faculty of Geographical Science,
Ministry of Education/Academy of Disaster Reduction and Emergency Management,
Ministry of Emergency Management and Ministry of Education, Beijing Normal University,
Beijing 100875, China; kezhenyao@mail.bnu.edu.cn

2 State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science,
Beijing Normal University, Beijing 100875, China

3 School of National Safety and Emergency Management, Beijing Normal University, Beijing 100875, China
4 Center of Emergency Management, Chongqing Institute of Public Administration, Chongqing 400041, China;

shengnan@imde.ac.cn
5 China Institute of Geo-Environment Monitoring, China Geology Survey, Beijing 100081, China;

tongbin@mail.cgs.gov.cn
* Correspondence: yangsaini@bnu.edu.cn

Abstract: Landslide susceptibility assessment serves as a critical scientific reference for geohazard
control, land use, and sustainable development planning. The existing research has not fully consid-
ered the potential impact of the spatial agglomeration and dispersion of landslides on assessments.
This issue may cause a systematic evaluation bias when the field investigation data are insufficient,
which is common due to limited human resources. Accordingly, this paper proposes two novel strate-
gies, including a clustering algorithm and a preprocessing method, for these two ignored features to
strengthen assessments, especially in high-susceptibility regions. Multiple machine learning models
are compared in a case study of the city of Bijie (Guizhou Province, China). Then we generate the
optimal susceptibility map and conduct two experiments to test the validity of the proposed methods.
The primary conclusions of this study are as follows: (1) random forest (RF) was superior to other
algorithms in the recognition of high-susceptibility areas and the portrayal of local spatial features;
(2) the susceptibility map incorporating spatial feature messages showed a noticeable improvement
over the spatial distribution and gradual change of susceptibility, as well as the accurate delineation
of critical hazardous areas and the interpretation of historical hazards; and (3) the spatial distribution
feature had a significant positive effect on modeling, as the accuracy increased by 5% and 10% after
including the spatial agglomeration and dispersion consideration in the RF model, respectively. The
benefit of the agglomeration is concentrated in high-susceptibility areas, and our work provides
insight to improve the assessment accuracy in these areas, which is critical to risk assessment and
prevention activities.

Keywords: landslide susceptibility; spatial agglomeration and dispersion; heterogeneity; machine
learning; random forest; OPTICS algorithm

1. Introduction

As the most common natural hazard in mountainous areas, landslides pose a serious
threat to human life and property, the ecological environment, and regional economic devel-
opment due to the difficulties brought by their complexity, group occurrence, suddenness,
and uncertainty [1–3]. Recently, a more frequently occurring tendency of geohazards in
China and an aggravation of risk in local regions has been noticed, and the national au-
thority declared it would strengthen prevention (Ministry of Natural Resources, PRC, 2021
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(http://www.gov.cn/zhengce/zhengceku/2021-03/19/content_5593875.htm (accessed on
16 April 2022)) in the context of global climate change and increased extreme precipitation
events [4,5]. It has been evidenced that 7840 geohazards occurred nationwide in 2020,
an increase of 26.8% over 2019, resulting in 139 deaths (missing), 58 injuries, and direct
economic losses of CNY 5.02 billion (http://www.mnr.gov.cn/dt/ywbb/202101/t2021011
8_2598832.html (accessed on 16 April 2022)). Landslide susceptibility assessment provides
a solid reference with its spatial perception of disaster occurrence probability [6,7]. A
refined susceptibility map is critical and valuable to reasonably deploy disaster prevention
resources and effectively mitigate the geohazard’s influence. Especially for developing
countries with limited control experience and resources, the accurate recognition of high-
susceptibility areas is urgently needed to guide hidden hazard surveys for the safety of
people and assets.

In recent decades, relevant research on landslides has developed fruitful results in
theory and modeling, which can be classified into physically or statistically based ap-
proaches according to the research perspective. Based on the mechanical analysis of slope
stability, the physical model generally incorporates the physical mechanism of disaster
occurrence and provides additional information on the hazard’s intensity, thus result-
ing in a higher prediction accuracy [8–10]. However, the intensive data requirement of
a high-resolution, sophisticated parameter calibration and simulation process makes it
suitable only for small-scale local studies, not to mention the physical condition varia-
tion of complex environments [10]. Thereby, feasible methods combined physical-based
approaches with statistical techniques have emerged [11]. In contrast, a statistical model
driven by historical data can quickly evaluate a credible result from a large spatial scale
without many constraints [12], with commonly applied methods including the information
quantity model [13], AHP [14], frequency ratio [15], weights of evidence, and the certainty
factor [16]. Nevertheless, these traditional statistical methods are weak in revealing the
complex nonlinear relationships between landslides and their influencing factors [17]. This
flaw has given rise to artificial intelligence. As it overcomes the disadvantages of subjec-
tivity in the process of index selection and weight determination, the machine learning
method has gradually become an alternative to the traditional statistics one [18] and the
commonly used methods include logistic regression (LR) [19], a support vector machine
(SVM) [20], random forest (RF) [21], and artificial neural networks (ANNs) [22]. In addi-
tion, new hybrid methods integrating the machine learning method with the statistical
method have been successfully used for landslide modeling [23]. Different conclusions
have been drawn by researchers when choosing an optimal machine learning method for
susceptibility assessment. For example, Cao et al. [18] pointed out that extreme gradient
boosting (XGBoost) performed better than RF and the SVM in the geological hazard sus-
ceptibility of Jiuzhaigou. Pourghasemi and Rahmati [24] compared 10 advanced machine
learning algorithms and found that RF worked best, and Chen et al. [25] reached the same
conclusion in Long county in Northwest China, while some studies also stated that the
SVM achieved an optimal result [26]. We believe that the marked differences in the natural
environment and hazard-forming conditions of various study areas are the key reasons for
the discrepancies in applicability of the same method. Different methods will have various
performances with the same region and data input. Meanwhile, it is necessary to identify
the most appropriate machine learning model for a specific study area [27].

In existing studies, the affecting factors usually contain the aspects of topography,
geology, meteorology, hydrology, land cover, and human activity. The spatial distribution
of landslides is usually incorporated in modeling as a sample rather than a parameter.
Actually, landslides induced by either fault activity or heavy rainfall all exhibit a clus-
tering feature, which means landslides are concentrated spatially and contribute to the
distinctive aggregation phenomenon [10,28,29]. Certainly, this aggregation is not accidental;
it is essentially formed by the compound conditions of internal environmental (such as
geologic structure) and external effects (such as rainstorms or earthquakes) [30]. Therefore,
the spatial agglomeration feature itself can reflect the degree of susceptibility and follow
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the pattern of greater aggregation with higher susceptibility. However, few studies have
utilized this feature in modeling, thereby, to some extent, wasting valuable information that
might enhance the assessment accuracy. Aiming at this problem, Wang et al. [31] proposed
the idea of considering spatial heterogeneity through extracting the clustering result of
landslides based on the agglomeration feature, and the resulting susceptibility map with a
higher quality proved its feasibility. Other works incorporating heterogeneity information
from the spatial distribution perspective had also achieved more reliable results [32,33],
whereas another typical spatial feature in many studies, dispersion, expressed by the widely
scattered pattern of hazards, interferes with the excavation of spatial heterogeneity [34].
This is because its randomness and contingency blur the relationships between the de-
pendent (landslide occurrence) and independent (driving factors) variables among the
various blocks of a study area. In return, the model accuracy will be reduced, and the
susceptibility map may be systematically biased in local areas. Unfortunately, this issue has
rarely been emphasized and handled within existing research. Kalantar et al. [35] found
that the training sample selection had an effect on the accuracy of the susceptibility models
and further emphasized the need for the investigation of random training data division.
Thus, the spatial dispersion feature of samples may be a viable entry point for addressing
this issue.

Moreover, there is a positive correlation between the spatial distribution of geohaz-
ards and the classification of susceptibility levels [36]. Based on the above analysis, we
speculate that integrating the spatial agglomeration and dispersion feature will further
polish an assessment’s effectiveness. On the other hand, much effort nowadays on sus-
ceptibility assessment has focused on computational enhancement of model algorithms
while ignoring the available information from landslide data itself. Work dedicated to the
application of spatial distribution information on this topic is still lacking. Therefore, this
paper proposes two innovative methods including clustering attribute extraction and data
preprocessing for these two characteristics, respectively. Taking Bijie in Guizhou province
in China as an example, differentiated machine learning models are combined to map
landslide susceptibility, and the assessment results are analyzed by multiple evaluation
metrics. Meanwhile, supplementary experiments are discussed to verify the feasibility
of the proposed methods and the possible systematic bias of overestimating less prone
areas and underestimating more prone areas in a previous assessment. Our work provides
insights on the accuracy and performance improvement of the susceptibility assessment
model, especially in high-susceptibility areas, so as to offer more reliable technical sup-
ports for the preliminary planning, long-term monitoring, and management decisions of
geohazards.

2. Materials and Methods
2.1. Study Area and Data

Bijie is located in the northwest of Guizhou Province, covering an area of 26,900 km2

with a permanent population of 6.71 million people. Situated at the eastern edge of the
North–South Seismic Belt of China, the terrain here is greatly undulating because of the
high altitude in the west and low altitude in the east. The surface is strongly cut and
dominated by karst topography and mountainous terrain, with many stratigraphic units
and complex lithology in the area. It has a humid subtropical monsoon climate with
abundant rainfall throughout the year, and there are 193 inland rivers longer than 10 km,
contributing to a dense river network. Meanwhile, this area is rich in mineral resources,
with 36.77 billion tons of coal reserves, ranked first in the province. The proven reserves of
iron, sulfur, and phosphorus are also abundant, but the past extensive development had
led to a relatively fragile ecological and geological environment [37]. These environmental
conditions have jointly nurtured a situation of frequent landslides. Aside from economic
development needs, the increasing human activities, including mining, urban infrastructure,
and agricultural production, would further change the natural environment, contributing
to more geohazards. For example, a high-position collapse occurred in Nayong county in
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Bijie on 28 August 2017 with 27 victims. One important factor inducing the event was the
formation of goaf by long-term coal mining. Moreover, as the frequency and intensity of
extreme precipitation have increased, being affected by global climate change, landslides
induced by rainstorms or prolonged rainfall are increasing. A representative event was the
large landslide in Dafang county in Bijie on 1 July 2016 due to continuous heavy rainfall,
resulting in 23 victims. Therefore, we used Bijie as a representative area to perform landslide
susceptibility assessment, and the relevant results can provide guidance for geohazard
prevention and mitigation projects (Figure 1). Here, the online base map of Figure 1 and
other geographic figures for spatial analysis in this paper are mapped by ArcMap (Version:
10.6; Copyright: Esri [38]).
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regional heterogeneity was incorporated into the model (Figure 2b). Secondly, we filtered 
the original data based on the fishnet grid constructed and, in the meantime, generated 

Figure 1. Overview of the study area. The landslide events in this data set are divided into 3 categories:
collapse, landslide, and debris flow. (Illustrations of the landslide in Dafang and the collapse in
Nayong are cited by Zhang et al. [39] and Zheng et al. [40], respectively).

The landslide data used in Figure 1 were obtained from “Spatial Distribution Data
of Geological Hazard Points” of the Resource and Environment Science and Data Cen-
ter (http://www.resdc.cn/data.aspx?DATAID=290 (accessed on 12 February 2022)), and
relevant studies have corroborated its reliability [41]. This data set is a collection of his-
torical inventories recorded cumulatively over several years in Guizhou, with a total of
1267 landslide events in Bijie.

2.2. Methodology

The proposed technical framework of this study is shown in Figure 2. Based on
the observation of the landslide inventory of Bijie in Figure 1, we supposed that the
typical spatial agglomeration and dispersion characteristics it presented brought implicit
susceptibility information and noise interference, respectively (Figure 2a). First, by mining

http://www.resdc.cn/data.aspx?DATAID=290
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the clustering attribute implied in agglomeration, critical information that reflected the
inter-regional heterogeneity was incorporated into the model (Figure 2b). Secondly, we
filtered the original data based on the fishnet grid constructed and, in the meantime,
generated the training set and test set (Figure 2c). Then, the clustering attribute, together
with 14 other factors, constituted the affecting factors data set (Figure 2d). Once the
data set successfully passed the collinearity analysis (Figure 2e), it would be input into
multiple machine learning models. Thirdly, through comparing the prediction accuracy
and the actual simulation effect of each model (Figure 2f), we identified the optimal method,
mapped the landslide susceptibility, and analyzed the degree of susceptibility at the city
and county levels (Figure 2g). Finally, two further experiments were designed to verify
the advantages of our proposed methods and to quantify the impact of these two spatial
features on susceptibility assessment (Figure 2h).
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2.2.1. Machine Learning Models

Four representative and classic models were considered in the comparison analyses:
LR, SVM, GBDT, and RF. LR is a common probabilistic nonlinear regression model for
the binary classification problem, and it has been widely used in landslide susceptibility
prediction [42]. The main idea of the SVM is to find a maximum-margin hyperplane which
can correctly separate two classes of data points as much as possible and render these two
classes as far as possible from the hyperplane [26]. Here, these two classes of points refer to
true hazard and non-hazard points. GBDT is an iterative decision tree algorithm using the
CART regression tree as the base classifier, and its basic idea is to build a strong classifier
with multiple weak classifiers. It can accelerate the convergence to a locally or globally
optimal solution while identifying complex nonlinear relationships [31]. Relying on the
high accuracy and strong tolerance of outliers and noise, RF is currently recognized as one
of the best machine learning models [43]. It is essentially an integrated algorithm consisting
of substantial decision trees. The final classification result is determined by winning a
majority vote or taking the mean value of the results derived from multiple differentiated
trees. Twofold randomness in the sampling and feature selection of RF makes it hard to be
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over-fitted and enhances the model stability. A detailed introduction of these models is
presented in the Supplementary Materials.

2.2.2. Accuracy Evaluation Indexes

Statistical methods and an ROC curve were adopted to evaluate the performance of
the test sets. An objective comparison cannot be inferred with solely statistical metrics, and
thus we used four indexes, including the precision, recall, accuracy, and F1 score. Here are
their definitions:

Precision = TP/(TP + FP) (1)

Recall = TP/(TP + FN) (2)

Accuracy = (TP + TN)/(TP + FP + TN + FN) (3)

F1 socre = 2 ∗ Precision ∗ Recall/(Precision + Recall) (4)

where TP (true positive) is the number of correctly classified hazard points, TN (true
negative) is the number of correctly classified non-hazard points, FP (false positive) is
the number of misclassified non-hazard points, and FN (false negative) is the number of
misclassified hazard points.

A receiver operating characteristic (ROC) curve is a curve plotted with the true positive
rate (TPR) as the vertical axis and false positive rate (FPR) as the horizontal axis at different
classification thresholds. As an intuitive evaluation method, it can give objective and
neutral advice. Another critical index is the area under the ROC curve (i.e., the AUC),
ranging from 0 to 1. A larger area under the curve usually means a superior model:

TPR = TP/(TP + FN) (5)

FPR = FP/(FP + TN) (6)

2.3. Strategies Considering the Spatial Characteristics of Landslides
2.3.1. Clustering Attribute Derived from Spatial Agglomeration

As mentioned before, spatial agglomeration can be viewed as an intuitive phenomenon
reflected by the long-term evolutionary law of landslides. An area with high agglomeration
is more prone to hazards in terms of probability. Accordingly, the unused information
it implies is valuable to susceptibility assessment. Here, we used the Ordering Points to
Identify the Clustering Structure (OPTICS) algorithm to derive this potentially valuable
information. It is a clustering algorithm for finding density-based clusters in spatial data.
As an improved version of Density-Based Spatial Clustering of Applications with Noise
(DBSCAN), it addresses the problem of detecting meaningful clusters in data of varying
densities. Another advantage is there being no need to pre-set the number of clusters due
to the automatic, ordered, and interactive cluster analysis [44].

The detailed introduction in the Supplementary Materials reveals that there are two
main input parameters in the algorithm: the search distance of the neighborhood and the
minimum number of points within it. The spatial scale of analysis is determined by the
combination of these two parameters, and under different scales, the algorithm will find
distinct clustering results. Therefore, in order to find the clustering attribute closest to
the actual one, we tested the main combinations of these two parameters and identified
the optimal one by comparing the model training accuracy of each machine learning
algorithm (Figure 3). Then, the clustering results of the hazard points were assigned to the
vector layer by using a Thiessen polygon (Figure 4) (see Supplementary Materials for the
detailed procedure).
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It is worth noting the property of the Thiessen polygons that each one of them con-
tained only one hazard point, and the distance from any position of the Thiessen polygon
to the hazard point was shorter than that of any other hazard point. This property ensured
that each polygon was characterized by the same clustering attribute with the highest proba-
bility when the clustering results of the points were assigned to polygons [31]. Furthermore,
it maintained similar hazard susceptibility within the same polygon block (composed of
polygons with the same attributes), thus ensuring homogeneity in the same block and
heterogeneity between different blocks.

Using a 10-fold cross validation training model, the test results indicated that the
combination of 6 as the minimum number of points and 5 km as the search distance
achieved the highest average accuracy of the 4 models at 76.8%, with RF being the best (up
to 78.8%) (Figure 3). In addition, there existed some noteworthy patterns:

1. The integrated algorithms such as GBDT and RF significantly outperformed the
traditional machine learning algorithms such as LR and SVM in this study.
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2. No matter which parameter was taken as the independent variable, the accuracies of
the models presented a linear trend of increasing first and then decreasing with the
increase in the variable. This pattern implies the potential clustering feature in the
spatial distribution of landslides, as we speculated. Meanwhile, the agglomeration
reflected here represents the group-occurring characteristic of landslides.

3. Demonstrated by the value and variation of the training accuracy, the models were
more sensitive to the parameter of the search distance than the minimum number
of points, which also manifested the spatial heterogeneity among different polygon
blocks in the study area.

In summary, we recognize the optimal result shown in Figure 4 (the combination of 6
as the minimum number of points and 5 km as the search distance) as the final clustering
attribute factor.

2.3.2. Training and Test Set Generated by the Fishnet Grid

The spatial dispersion areas with isolated hazard points are illustrated in Figure 1.
Sparse hazards were usually due to the inherent stability of the slope, soil, and lithology.
Limited accessibility to uninhabited areas and difficulty in sampling contributed to sparse
hazard nodes as well. Subsequently, these sparse locations may have introduced inherent
subjectivity and uncertainty to the data set, concealed the group-occurring feature, and
then induced regional assessment bias. From an algorithm perspective, isolated hazards
could not consistently reflect the relationship between the affecting factors and landslide
occurrence but diluted the relationship between the affecting factors and susceptibility;
that is to say, the dispersion feature would reduce the training accuracy by attenuating
the factor variability between the non-hazard sites and hazard sites and then making the
susceptibility spatially homogeneous. Briefly, the input of isolated points would interfere
with the machine learning and weaken the accuracy in high susceptibility areas. Moreover,
the presence of noisy points in the clustering result in Figure 4a also justifies the existence
of the interference. Therefore, in order to mitigate this negative impact, this study filtered
out isolated hazard points by constructing a fishnet grid.

The detailed method is as follows:

1. Generate the fishnet grid with a 5-km side length to filter the research area. Here,
the basis for 5 km is the optimal search distance of 5 km from the clustering in
Section 2.3.1, which most effectively reflects the inter-regional heterogeneity and
intra-regional homogeneity of susceptibility and obtained the highest accuracy;

2. For each raster cell of the fishnet, if there is only one hazard point in the cell, then this
point is excluded; otherwise, it is retained (Figure 5a).

Eventually, 1003 valid hazard points located in 288 cells were reserved after filtering.
Of them, 70% (702) were randomly divided as the training set, and the remaining 30% (301)
were used as the test set.

To ensure a balance of positive and negative samples, an equal number of non-hazard
points should be generated for training and testing. Non-hazard sample points are generally
generated by setting certain distance thresholds or constructing buffers to avoid spatial
proximity between the non-hazard and hazard points, thus ensuring that the affecting
factors of these two are differentiated [45,46]. Here, a buffer was defined based on 288 raster
cells where 1003 valid points were located, and the negative samples were randomly
generated outside this buffer (Figure 5b,c).

Based on the fishnet filter, we eliminated the negative effect of spatial dispersion. After
preprocessing, the differences among the affecting factors could be effectively reflected in
modeling while ensuring sample consistency.



ISPRS Int. J. Geo-Inf. 2022, 11, 269 9 of 22

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 5 of 13 
 

 

Eventually, 1003 valid hazard points located in 288 cells were reserved after filtering. 
Of them, 70% (702) were randomly divided as the training set, and the remaining 30% 
(301) were used as the test set. 

 
Figure 5. Data preprocessing method based on the fishnet grid and the generation of the training 
and test sets. (a) Data preprocessing method based on the fishnet grid. (b) Generating the training 
set. (c) Generating the test set. 

To ensure a balance of positive and negative samples, an equal number of non-haz-
ard points should be generated for training and testing. Non-hazard sample points are 
generally generated by setting certain distance thresholds or constructing buffers to avoid 
spatial proximity between the non-hazard and hazard points, thus ensuring that the af-
fecting factors of these two are differentiated [45,46]. Here, a buffer was defined based on 
288 raster cells where 1003 valid points were located, and the negative samples were ran-
domly generated outside this buffer (Figure 5b,c). 

Based on the fishnet filter, we eliminated the negative effect of spatial dispersion. 
After preprocessing, the differences among the affecting factors could be effectively re-
flected in modeling while ensuring sample consistency. 

3. Results 
3.1. Constructing the Affecting Factors Data Set 

Considering the induced mechanism of landslides, we selected 15 factors from the 
aspects of topography and geology, soil and hydrology, land cover, human activity, and 
historical hazards by combining existing studies (Table 1). The spatial distribution map of 
affecting factors (Figure 6) was drawn based on the WGS_1984_UTM_Zone_48N coordi-
nate system with a resolution of 90 × 90 m. The 

 
 
 
 
 
 
 

Figure 5. Data preprocessing method based on the fishnet grid and the generation of the training and
test sets. (a) Data preprocessing method based on the fishnet grid. (b) Generating the training set.
(c) Generating the test set.

3. Results
3.1. Constructing the Affecting Factors Data Set

Considering the induced mechanism of landslides, we selected 15 factors from the
aspects of topography and geology, soil and hydrology, land cover, human activity, and
historical hazards by combining existing studies (Table 1). The spatial distribution map of
affecting factors (Figure 6) was drawn based on the WGS_1984_UTM_Zone_48N coordinate
system with a resolution of 90 × 90 m. The number of grid rows and columns were 1763
and 3475, respectively, and the total number of grids was 3,389,074. A more detailed
explanation on how these factors in Table 1 influence landslide susceptibility is elaborated
on in the Supplementary Materials.

Table 1. Introduction of affecting factors *.

Dimensions Affecting Factor Original Resolution Resampling Technique Data Source

Topography

Elevation 90 m -
SRTMDEM (90 m) from Geospatial Data Cloud

(http://www.gscloud.cn/ (accessed on
16 April 2022))

Slope - -

Calculated from elevation
Aspect - -

Plan curvature - -
Profile curvature - -

Geology

Distance to the fault - -
Fault data from Seismic Active Fault Survey Data
Center (http://www.activefault-datacenter.cn/

(accessed on 16 April 2022))

Lithology Vector -
The global lithological map database GLiM

(https://doi.org/10.1594/PANGAEA.788537
(accessed on 16 April 2022)) [47]

Soil type Vector -
Resource and Environment Science and Data
Center (https://www.resdc.cn/ (accessed on

16 April 2022))

http://www.gscloud.cn/
http://www.activefault-datacenter.cn/
https://doi.org/10.1594/PANGAEA.788537
https://www.resdc.cn/
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Table 1. Cont.

Dimensions Affecting Factor Original Resolution Resampling Technique Data Source

Hydrology

Annual average
rainfall 1 km Bilinear interpolation Resource and Environment Science and

Data Center
Flow accumulation - - Calculated from elevation

Distance to the river - -
River data from OpenStreetMap

(https://www.openstreetmap.org/ (accessed on
16 April 2022))

Land cover
Land use 10 m Nearest neighbor

Finer Resolution Observation and
Monitoring-Global Land Cover

(http://data.ess.tsinghua.edu.cn/ (accessed on
16 April 2022)) [48]

NDVI 1 km Bilinear interpolation Resource and Environment Science and
Data Center

Human
activity Distance to the road - -

Road data from OpenStreetMap
(https://www.openstreetmap.org/ (accessed on

16 April 2022))

Historical
hazards Clustering attribute - - Calculated from historical hazard points

* Note: Lithology, soil type, land use, and clustering attribute are categorical variables, and the others are
continuous. Distance to the fault, river, and road are the Euclidean distance to the nearest target.
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If there was a strong collinearity among the affecting factors, the noise from the
redundant information would interfere with the model. Therefore, collinearity analysis was
essential. Common applied methods for collinearity validation include correlation analysis
and the variance inflation factor (VIF) [21,49]. The former concerns the collinearity between
two variables, while the latter focuses on the multicollinearity between one variable and
other variables. Here, we adopted the Pearson correlation coefficient for correlation analysis,
in which values greater than 0.7 are considered to have a strong pairwise collinearity,
and tolerance (TOL) and the VIF (the reciprocal of TOL) for multicollinearity analysis,
where a TOL less than 0.1 and VIF greater than 10 indicate a serious multicollinearity
problem [50,51].

The Pearson correlation requires two variables to be continuous, so the four factors of
lithology, soil type, land use, and clustering attribute were excluded from this analysis. All
values in the correlation coefficient matrix (Figure 7) were less than 0.7, while the values
for TOL ranged from 0.356 to 0.994, and the values for the VIF ranged from 1.006 to 2.807
(Table 2), illustrating there was no collinearity among the affecting factors. It is notable
the Pearson correlation coefficient is only a measure of linear correlation and sensitive
to outliers. Considering there are some coefficient values in Figure 7 close to zero, this
result may ignore other types of relationships or correlations. Thus, we supplemented
Spearman’s correlation coefficient and the distance correlation between 15 affecting factors
as well as the output variable in the Supplementary Materials. The corresponding results
also indicated no significant linear or nonlinear association among any variables. We can
presume that the factor selection was feasible.
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Table 2. Multicollinearity results of affecting factors.

Affecting Factor TOL VIF Affecting Factor TOL VIF

Elevation 0.425 2.353 Annual average rainfall 0.453 2.207
Slope 0.771 1.297 Flow accumulation 0.984 1.016

Aspect 0.994 1.006 Distance to the river 0.448 2.234
Plan curvature 0.362 2.762 NDVI 0.545 1.835

Profile curvature 0.356 2.807 Distance to the road 0.781 1.280
Distance to the fault 0.791 1.264 - - -

3.2. Evaluation of Model Prediction Accuracy

Based on the input of the affecting factors dataset and training set, models were built
and run in MATLAB (Version: 2020b; Copyright: The Math Works, Inc. [52]). Then, the
performance of each model in the test set was evaluated in terms of the statistical indexes,
ROC curve (Figure 8), and confusion matrix (Table 3).
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Table 3. The confusion matrix for each model in the test set.

Model
Number

TP FN TN FP

LR 208 93 225 76
SVM 210 91 227 74

GBDT 218 83 232 69
RF 217 84 240 61

The highest index values of RF in Figure 8a, including the training accuracy (78.8%),
test accuracy, and precision (76% and 78%, respectively), suggest that the RF model out-
performed the others both in the training and test sets. This means that the proportion of
positive and negative samples correctly predicted in the RF test results was 76%, with 78%
of the predicted hazard points being actual points. However, the recall of the RF model,
one indicator describing the proportion of correctly predicted hazard points of all actual
points, was relatively low at 72%. Higher F1 scores for the RF and GBDT models revealed
a notable conclusion that the integrated algorithms with decision tree-based classifiers
performed significantly better than traditional machine learning algorithms such as LR
and the SVM. That aside, the training and test accuracy of each model were approximate,
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representing no overfitting or underfitting. The overall prediction accuracy was quite
acceptable, as the AUC values of all four models reached above 0.77 (Figure 8b). The RF
model achieved the highest AUC value of 0.825. Meanwhile, combined with the confusion
matrix, GBDT as an integrated algorithm slightly outperformed RF in terms of hazard
point recognition. Nevertheless, it clearly underperformed on non-hazard points compared
with RF. Ultimately, the RF model was the optimal model for the prediction accuracy in
this study.

3.3. Mapping the Landslide Susceptibility

According to the models constructed above, we predicted the probability of hazard
occurrence (p) for each raster cell to draw landslide susceptibility maps for Bijie (Figure 9)
and divide the susceptibility into five levels: very low (0 ≤ p ≤ 0.1), low (0.1 < p ≤ 0.3),
moderate (0.3 < p ≤ 0.6), high (0.6 < p ≤ 0.9), and very high (0.9 < p ≤ 1). Then, the map
reliability was assessed by the quality of the presented information and the indicators in
Figure 10. Consistent with the accuracy prediction findings above, the susceptibility map
produced by a RF algorithm had a better simulation effect, as reflected by the following:

1. At the global scale, the spatial distribution and area shares of different levels of suscep-
tibility were more reasonable than those of other methods. For example, the very high
susceptibility areas were moderately distributed among the high-value areas of each
county (Figure 9d), whereas for LR and the SVM, the very high susceptibility areas
were concentrated in blocks in the northernmost areas of Bijie, southwest of Dafang,
and northeast of central Qianxi, featuring a local exaggeration which was biased from
reality, being especially overestimated in the southwest of Dafang, where there were
only six hazard points (Figure 9a,b). For GBDT, the percentage of moderately prone
areas was underrepresented, accounting for 17% (Figure 10a).

2. At the local scale, the RF map was richer in spatial details and retained a gradual
change in susceptibility from high to low in the high-value areas, which is realistic. In
contrast, the other three maps were more distinctly patchy, with coarser portrayals of
the highly and less prone areas.

3. In terms of the interpretation effect of historical hazards, the more-prone areas (includ-
ing high and very high areas, the same as those shown below) representing 25% of the
RF map area contained 75% of the historical hazard points, and the less-prone areas
(including low and very low areas, the same as those shown below) representing 47%
of the RF area contained only 12% of the hazard points (Figure 10). This strongly
proves the capability of the RF map to effectively reflect the true state of susceptibility.
However, other maps did not perform as well, such as the GBDT map with a larger
proportion of more-prone areas (31%) which explained only 67% of the historical
hazards, while the SVM map with less-prone areas (63%) over-explained 30% of
the hazards.

Considering the prediction accuracy and mapping effect above, it can be concluded
that the LR and SVM models performed similarly in this study and were inferior to the
integrated models of GBDT and RF due to the problem of large prediction bias in the more-
prone areas. GBDT, although functioning analogously with RF, tended to predict toward
the extreme end (i.e., dividing higher or lower values for raster cells), which would result
in a skewed distribution. Therefore, we eventually recognized the RF map as the ideal
landslide susceptibility situation in Bijie, which was closest to the historical distribution.
Derived from it, the overall susceptibility of the city could be attributed to the characteristics
of high in the east, low in the west, and frequent regional occurrences. The more-prone
areas on alert covered a wide range of Bijie, focusing on the central (Nayong, to the east
of Hezhang), northeastern (the intersection of Jinsha, Dafang, and Qixingguan), eastern
(north of central Qianxi and the intersection of Qianxi and Zhijin), and southwestern (south
of Weining) areas of Bijie.
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(a) Percentages of area in different susceptibility levels. (b) Percentages of hazard points located in
different susceptibility levels. The percentage of hazard points located in the very low area in the LR
map is 1%.

As disaster risk management is generally implemented at the county administrative
level, it is necessary to further analyze the susceptibility at the county level to support
decision making. Based on the numerical distribution of hazard occurrence probability in all
raster cells of each county (Figure 11a), the counties in Bijie can be ranked as three echelons
according to the susceptibility level from high to low: the first echelon (Nayong, Qianxi,
Jinsha, and Qixingguan), second echelon (Zhijin, Dafang, and Hezhang), and third echelon
(Weining). Reflected by the violin plot width (Figure 11a) and proportion of the sector area
(Figure 11b), the counties in first echelon were distinguished by a large proportion and
area of higher susceptibility, which should be given priority for monitoring and prevention.
Among them, Nayong was the most severe one because it only had a sole peak at the high
value of probability, compared with the other counties with bimodal distribution in the high
and low values (Figure 11a). The overall susceptibility of counties in the second echelon
moderately decreased, as evidenced by the mean and median being at the medium level of
occurrence probability and the sole peak at the lower value. However, the aggregation of
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the more-prone areas situated in the local areas deserve attention. For example, the very
high susceptibility area in Hezhang is still vast (Figure 11b), so these similar local blocks of
high value in the second echelon should be the focus of further investigation. With the high
elevation and wide area in the central zone, landslides rarely happened in central Weining
in the third echelon. Instead, it developed a distinctive polarization of susceptibility, and
thus the main work on future disaster prevention and mitigation planning is advised to be
devoted to some higher susceptibility areas to its southeast and northwest.
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Figure 11. Landslide susceptibility statistics at the county level in Bijie. (a) Numerical distributions of
hazard occurrence probability in all raster cells of each county. (b) Numbers of raster cells in different
susceptibility levels of each county. For (a), the two ends of the whisker line are the maximum and
minimum values of the corresponding box plot, and the width of the violin plot reflects the density
of data at that location, with a greater width representing a greater density.

In China, the landslide susceptibility map was a critical basis for prevention activ-
ities. With efforts in the 12th Five-Year Plan (2010–2015), the comprehensive treatment
of geohazards achieved such remarkable results as a reduction of 316,000 casualties, a
decrease of 67% over the 11th Five-Year Plan. A susceptibility assessment map with higher
accuracy in high susceptibility areas at the city or county level may further improve future
prevention effectiveness.

4. Discussion
4.1. Impact of the Spatial Clustering Attribute on the Models

Through the above analyses, it is clear that there exists a significant spatial clustering
of landslides in Bijie. The importance for each factor of the RF model (Figure 12a) indicates
that the clustering attribute contributed the most to the model, followed by topographic
and geological, hydrological, and human activity factors such as elevation, distance to the
river, fault, and road, and the annual average rainfall. Meanwhile, this high contribution of
the clustering attribute also accounted for the formation of the spatial distribution pattern
of high-value areas in the susceptibility map. In order to quantify the impact of the spatial
clustering characteristic on the model performance, the clustering attribute was eliminated
from the affecting factors data set and remodeled to obtain ROC curves for each model
(Figure 12b). Taking the optimal RF model as an example, we measured the actual utility of
considering spatial agglomeration by comparing the confusion matrix, accuracy indexes,
and simulated map validity (Table 4 and Figure 12c,d) before and after exclusion.
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attribute. (a) The importance of factors in the RF model before exclusion. (b) ROC curves and
AOC values of each model after exclusion. (c) The landslide susceptibility map after exclusion.
(d) Comparison of models’ simulated effects before and after exclusion (the percentage of area in the
very high level after exclusion was 0.35%, and the percentage of points in the very low level after
exclusion was 2%).

Table 4. Comparison of confusion matrices and accuracy indexes of the test set before and after
exclusion (RF).

Number Before After Index Before After

TP 217 216 Accuracy 0.76 0.71
FN 84 85 Recall 0.72 0.72
TN 240 214 Precision 0.78 0.71
FP 61 87 F1 score 0.75 0.72

After the exclusion, the training accuracy of the RF model decreased from 78.8% to
72.0%, and the accuracy, precision, and F1 score of the test set were also greatly reduced
(Table 4). Additionally, the AUC values of the four models in Figure 12b dropped signif-
icantly (RF from 0.825 to 0.793). The unfavorable changes in these metrics demonstrate
that considering the spatial agglomeration feature can effectively improve the model’s
prediction accuracy.

On the other hand, the number of TPs, FNs, and the recall value in Table 4 remained
basically unchanged before and after exclusion, while the number of TNs and FPs changed
significantly. It enlightens us that the gaining effect of the agglomeration on the model
was mainly in the more accurate discrimination of non-hazard points, as more non-hazard
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points were correctly identified. Consequently, a model simulation result that does not take
into account the agglomeration feature tends to overestimate the susceptibility of less-prone
areas and underestimate that of more-prone areas indirectly. Considering that disaster
mitigation resources are always limited, accurately delineating the high-susceptibility area
of greater concern is critical in planning. This inference is also supported by the comparison
of spatial distribution patterns of susceptibility in Figures 9d and 12c, as the less-prone
areas (representing non-hazard points correctly identified) after exclusion had very little
coverage in central Bijie, while the more- or less-prone areas before exclusion were more
reasonably distributed.

The area percentages of the more- and less-prone areas after exclusion decreased
significantly from 25% and 47% to 18% and 34%, respectively (Figure 12d), and the more-
prone area distribution ended in unacceptable spatial decentralization and homogenization
(Figure 12c). In the meantime, this inferior map had the problem of biased estimation
and inaccurate judgment of critical hazard areas, as reflected in the failure to identify
partially hazard-prone areas (such as south of Nayong and southeast of Zhijin) and the
overestimation of local less-prone areas (such as south of Dafang). Furthermore, the
exclusion of the clustering attribute remarkably reduced the interpretation of more-prone
areas to the historical hazard points by 15% (from 75% to 60%). Despite a 4% reduction
(from 12% to 8%) in the interpretation of less-prone areas to hazards, the great reduction of
13% in its area it should be taken into account. Therefore, the final simulation performance
of the model after eliminating the clustering attribute was obviously cut down.

In summary, the spatial agglomeration feature had a significant positive impact on
improving the models.

4.2. Impact of the Spatial Dispersion Characteristic on the Models

Given that the dispersion characteristic may have a negative effect on model’s predic-
tion, this paper filtered the original hazard inventory and generated the test set based on
the fishnet grid proposed. In order to verify the effectiveness of the data preprocessing
method, we took no action on the raw data and still divided the training and test sets
according to the ratio of 70% and 30% before generating the equal number of non-hazard
points without the constraint of a fishnet grid. As shown in Figure 13a, the number of
training and test set points were both 1267, and meanwhile, blue non-hazard points fell
randomly within the red fishnet grid area, while outside the grid, red hazard points which
were filtered before existed.

As expected, the prediction accuracy of each model decreased significantly according
to the ROC curve, especially evidenced by the AUC value of the RF model dropping from
0.825 to 0.716 and its training accuracy reaching only 66.3%. Simultaneously, the advantage
of the integrated algorithm was no longer obvious compared with the LR and SVM models
(Figure 13b). The four accuracy indexes all reduced dramatically by around 10% (Table 5),
which further revealed the prominent availability of a fishnet grid preprocessing scheme in
improving the model.

Similar to the drawbacks of the map in Figure 12c, there were also several problems in
the map depicted without using a fishnet grid in Figure 13c, and they are as follows:

1. There was an unreasonable allocation of area for the different susceptibility levels,
which was reflected both in the area percentage and the spatial distribution. Specifi-
cally, the area percentages of the more- and less-prone areas distinctly decreased by
6% and 13%, respectively, while that of the moderate susceptibility areas increased
steeply to 47% (Figure 13d). Combined with reality, it seems to be too aggressive to
state that nearly half the area of Bijie is moderately susceptible. Secondly, the overall
spatial distribution also suffered from the problem of overestimation in the less-prone
areas and underestimation in the more-prone areas, as shown in Figure 12c, and could
not portray the gradual change in susceptibility between neighborhoods, as shown
in Figure 9d.
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2. There was weakening of the interpretation effect on historical hazards. This mani-
fested in the sharp 11% reduction in the interpretation of the very high susceptibility
areas. Despite an 8% increase in the interpretation of the more-prone areas, there
was an unexpected decrease in the relative proportion of very high susceptibility
areas in the more-prone areas in the interpretation rate from 39% to 22%, as this
went against the nature of more hazards occurring at the very high susceptibility
level. However, the interpretation effect of the less-prone areas improved with a 10%
reduction. The reason behind this was that without preprocessing for filtering, those
isolated hazard points representing less-prone levels were fully learned by the model,
thus contributing a better interpretation for the less-prone areas but at the expense
of the overall accuracy. The loss of the interpretation rate of low susceptibility areas
actually reflected the loss of data due to the filtration of isolated points. Compared
with the improvement to the whole evaluation’s effectiveness, especially in the high
susceptibility area, the data loss was acceptable.
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TP 217 250 Accuracy 0.76 0.66
FN 84 130 Recall 0.72 0.66
TN 240 251 Precision 0.78 0.66
FP 61 129 F1 score 0.75 0.66
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Overall, the preprocessing scheme of the fishnet grid we constructed could remarkably
raise the model prediction accuracy and optimize the spatial evaluation results. Although
it may force the model to lose some of its interpretation rate in low susceptibility areas, the
overall spatial pattern of susceptibility would not be influenced and retain values close
to the actual ones. After all, high susceptibility areas always deserve more attentions.
Consequently, when applied to other regions, the filtering scale of a fishnet grid can be
adjusted according to the historical data to maximize the prediction accuracy with minimal
compromising of the interpretation rate. The experiment also proved our inference that the
dispersion would cause a biased prediction.

5. Conclusions

Facing the challenge of increased geohazard risk under urbanization and climate
change, in-depth understanding of high landslide susceptibility areas is critical to life and
asset safety. Committed to this, and taking the city of Bijie in southwestern China with seri-
ous landslides as a case, we assessed its susceptibility and discussed the possibility of using
information from the landslide data from the perspective of the often-overlooked spatial
distribution characteristics of the hazards. The main contribution of our work is that we
developed a new reinforcement strategy based on the spatial agglomeration and dispersion
features of landslides, which can rectify the possible systematic bias of overestimating low
susceptibility areas and underestimating high susceptibility areas in previous assessments,
which improves the assessment accuracy and effectiveness, especially in high susceptibility
regions. Specifically, the strategy includes clustering attribute extraction derived from the
OPTICS algorithm (for spatial agglomeration) and a data preprocessing method based on
the fishnet grid (for spatial dispersion). Further experiments demonstrated that the neglect
of these two spatial features reduced the reliability of the assessment outcome. Our detailed
findings are summarized as follows:

1. Indicator selection: Adding a spatial clustering attribute as one affecting factor can
effectively enhance the model’s ability to recognize non-hazard points and in turn
increase the model’s accuracy by nearly 5%. Most importantly, it corrects for the
formerly unnoticed systematic assessment bias. The improvements in accurate identi-
fication in higher susceptibility areas and interpretation to historical hazards will help
optimize the deployment of disaster prevention structures.

2. Data processing: When using the fishnet grid as a mask to process the original
data, the entire spatial pattern of susceptibility will not change, the training and
testing accuracies will be improved by about 10%, and the spatial division of each
susceptibility level will be more in line with the historical data, which may better
serve disaster monitoring and control in the real world.

3. Model construction: The integrated algorithms represented by the RF and GBDT
algorithms outperformed the traditional ones such as LR and the SVM. Among them,
the RF model was the best, with its accuracy of up to 76% and precision of up to 78%.
Moreover, the superiority of the RF map lies in the more accurate positioning of higher
susceptibility areas globally and the richer spatial portrayal of susceptibility locally,
which reflects the necessary spatial group-occurring, inter-regional heterogeneity, and
gradual variability characteristics of susceptibility.

4. Management suggestion: The landslide susceptibility in Bijie presented a high sus-
ceptibility in the east, low susceptibility in the west, and a regional clustering pattern,
with its central, northeastern, eastern edge, and southwestern areas having a high sus-
ceptibility level. The counties in Bijie can be divided into three echelons in descending
order of susceptibility. For the first echelon, with a wide range and large proportion of
more-prone areas, an adequate professional inspection of the geological environment
should be implemented in place as a priority before regular slope monitoring and
stabilization measures. Despite a moderate reduction in the susceptibility degree
for the second and third echelons, the regional concentrations of high-susceptibility
areas still deserve particular attention and warrant relevant authorities taking actions
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to develop adaptive development strategies for balancing human activities and the
natural environment.

For geological hazard-prone countries and regions with vast land and complicated
topographies, the resources for risk reduction are always limited. The accurate recognition
of high landslide susceptibility achieved by our strategy is instructive to the field survey for
hidden hazard areas and the investment of risk prevention measures for high susceptibility
areas with dense populations and assets. Certainly, there are still limitations to this study in
some aspects, such as the absence of consideration of time-varying factors, the uncertainty
of the global optimal solution of the search distance in the clustering algorithm, and the
lack of case validation in other regions. We will expand this study from these aspects and
refine our model through developing hybrid algorithms for higher accuracy and quality
simultaneously.
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