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Abstract: This paper proposes an efficient approach for the plane segmentation of indoor and corridor
scenes. Specifically, the proposed method first uses voxels to pre-segment the scene and establishes
the topological relationship between neighboring voxels. The voxel normal vectors are projected onto
the surface of a Gaussian sphere based on the corresponding directions to achieve fast plane grouping
using a variant of the K-means approach. To improve the segmentation integration, we propose
releasing the points from the specified voxels and establishing second-order relationships between
different primitives. We then introduce a global energy-optimization strategy that considers the unity
and pairwise potentials while including high-order sequences to improve the over-segmentation
problem. Three benchmark methods are introduced to evaluate the properties of the proposed
approach by using the ISPRS benchmark datasets and self-collected in-house. The results of our
experiments and the comparisons indicate that the proposed method can return reliable segmentation
with precision over 72% even with the low-cost sensor, and provide the best performances in terms
of the precision and recall rate compared to the benchmark methods.

Keywords: indoor scenes; normal directions; plane segmentation; point clouds

1. Introduction

The reconstruction of 3D indoor scenes, e.g., indoor navigation, construction comple-
tion acceptance, and interior design, has received increasing attention. As the physical
geometry of buildings often differs from its original plan, reconstructing a real 3D model
for building interiors is a common need. Considering that indoor environments contain
several planar structures, 3D plane segmentation remains a suitable choice for 3D-scene
reconstruction [1,2]. In artificial buildings, planar structures regularly adapt to one of the
following relationships: parallelism, orthogonality, coplanarity, and angular equality. Ap-
propriate use of these geometric characteristics can significantly improve the accuracy and
robustness of indoor 3D plane segmentation; however, few methods have introduced prior
information to constrain the adjustments. Traditional plane-extraction methods (e.g., region
growing (RG) [3], Hough transform (HT) [4]) do not take advantage of these geometric
characteristics but rely heavily on the point-cloud quality. Although the random-sample
consensus (RANSAC) [5] allows us to introduce such structural information, it is very
sensitive to the parameters that are set. Thus, high-noise sensors, such as low-cost RGB-D
sensors [6,7], that are popular for indoor applications are not suitable for classic approaches.

This paper develops a fast and robust approach oriented toward indoor 3D plane
segmentation. Unlike traditional strategies, our approach reconstructs surfaces with the
saliency of normal directions. There are two main steps in the proposed method. First, we
perform spatial segmentation based on the saliency analysis of the normal directions. The
spatial structures are then quickly cut into finite planes. Second, we drive the high-order
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energy model to optimize the segmentation based on the multi-level topologic relationships.
This step improves the robustness and reduces the risk of over-segmentation.

Three major contributions of the proposed method are described as follows:
(1) The method introduces the countable of main normal directions in an enclosed

space favor to rapidly cluster surfaces.
(2) The method develops multi-level topological relationships with three primitives

from different stages and designs a high-order cost–energy model for indoor cases to
optimize the segmentation and improve the accuracy and robustness.

(3) The obtained precise 3D model sundries in houses are automatically removed to the
greatest extent; thus, our method generates a precise indoor 3D model for construction sites.

2. Related Works

Point-cloud segmentation has been studied and explored for decades. Research can
be roughly divided into four categories: model fitting, RG, feature clustering, and global
energy-optimization methods. This section briefly reviews works immediately related to
plane segmentation.

Model-Fitting-Based Methods. The RANSAC [5] and HT [4] are common fitting-
based methods [8] that use known geometric primitive shapes (sphere, cone, plane, and
cylinder) to segment point-cloud data. Point clouds with the same mathematical represen-
tations are grouped as the same object. Researchers recently improved the performance
of RANSAC in terms of robustness and efficiency. For example, Li et al. [9] proposed an
improved RANSAC method based on normal-distribution transformation cells to avoid
spurious planes (over-segmentation) for plane segmentation. Hamid-Lakzaeian [10] pro-
posed the Gridded-RANSAC method, which uses grid concepts to organize inherently
unorganized datasets to speed up the segmentation. Lina et al. [11] proposed to use nor-
mal vectors to accelerate RANSAC to extract planes from point clouds. To accelerate the
calculation speed and further increase the reliability of the HT algorithm, Tian et al. [12]
proposed a novel method to segment planar features from unorganized point clouds based
on a 2D HT and octree.

Although the RANSAC and HT have been widely used in segmentation tasks, these
approaches have inherent shortcomings. First, they are both sensitive to the parameter
selection for segment-based modeling. Although many studies have focused on various
point-cloud densities, it is still difficult to attain a real self-adaption method. Moreover,
RANSAC is suitable for point-cloud data with small data volumes and less surface geomet-
ric information; otherwise, the algorithm performance is poor [13]. The key shortcomings
of the HT method are the time and/or space complexities, which limit its applicability.
Many authors [14] compared the HT and RANSAC and showed that the HT is less efficient
in computational time when fit to large datasets. Compared with RANSAC and HT, the
proposed approach does not require setting many parameters, indicating it is not sensitive
to the parameter choice.

Region-Growing-Based Methods. RG-based methods usually select a seed and gen-
erate the seed surface. This surface is then used as the starting region, and the similarities of
each point in the neighborhood are compared to the seed surface in order to group discrete
point clouds around each seed surface. These continually expand outward until finally
achieving complete segmentation. Depending on the algorithm principle, this method
must acquire adjacent points and calculate the associated characteristic information, which
leads to low computational efficiencies. Anh-VuVo et al. [13] used the RG algorithm to
roughly segment the octree-based voxelized representation of the input point cloud to
accelerate the calculations. However, restricting the handing process using specific growth
rules cannot readily meet the attributes of all the primitives contained in the data; there-
fore, improvements to the efficiency are not obvious. In addition, the results from the
RG are affected by the initial seed-surface selection, while an improper selection readily
causes significant segmentation errors. Many scholars have focused on improving the
accuracy of this approach. For example, Luo et al. [15] proposed a super-voxel-based point-
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cloud-segmentation algorithm that improves the inaccurate boundaries and unsmooth
segmentation in existing methods. One of the differences between the proposed method
and the RG method is that it does not need to judge normals individually, which overcomes
the efficiency bottleneck.

Feature-Clustering-Based Methods. Feature-clustering-based methods primarily use
the geometric-structure features or spatial-distribution features of point clouds to cluster
them and obtain segmentations. Holz et al. [16] realized the real-time plane segmentation
of point clouds using the surface normal vector, which can perceive salient target objects
in point-cloud scenes in real-time. Wu et al. [17] proposed a smooth-Euclidean-clustering
segmentation approach based on the traditional Euclidean-clustering algorithm. This
prevents over- or under-segmentation by adding the constraint of a smoothing threshold.
Feature-clustering-based methods are flexible in terms of feature selection. Specific fea-
tures can be selected based on differences between point clouds, which gives it a high
accuracy. However, this method has certain requirements for neighborhood definitions and
is sensitive to noise [18]. In addition, it is highly dependent on features, indicating that the
quality of feature selection significantly impacts the final segmentation effect. However,
the greater dimensionality of a feature yields a lower calculation efficiency. In contrast,
our approach introduces a predetermined parameter based on prior knowledge for a more
efficient and robust approach. Currently, with deep-learning methods being widely intro-
duced to handle point clouds, many researchers have proposed to use neural networks to
segment point clouds [19] and further implement 3D reconstruction [20]. One benefit of
the high-order feature learning is that the network always has a good adaptability. Many
networks can handle imperfect data, e.g., noise [21], and some of them have the potential
to repair the shapes, e.g., the GANs [22]. However, most neural networks benefit from a
large number of labeling samples; namely, the samples heavily constrain the performances
of learning-based methods.

Global Energy-Optimization-Based Methods. Global energy-optimization-based
methods formulate plane segmentation as an energy-optimization problem. Pham et al. [23]
expressed plane-extraction tasks as a global energy function that forces the extracted planes
to be orthogonal or parallel to each other in order to robustly find underlying planes in a
scene. Dong et al. [24] linked all voxels and established rules between them to calculate
the overall energy. They then used graph theory to apply the graph cut and attain the
minimum energy state. Lin et al. [2] applied L0 gradient minimization to plane fitting in
order to contain a high proportion of noise and outliers. Compared with other methods,
energy optimization can better handle data with high noise levels [25]; however, this
method requires significant calculations when performing plane segmentation and most
require initial segmentation results [25]. Thus, the proposed approach establishes the
relationships for the primitives, makes the rules, and optimizes the interaction to influence
the segmentation results.

3. Methodology
3.1. Motivation

As human-made buildings have strong structural constraints, a typical constraint
is the Manhattan world model [26], which is among the popular hypothetical models to
segment and reconstruct indoor spaces. The Manhattan world model states that all surfaces
in the world are aligned with three dominant directions, typically corresponding to the
X-, Y-, and Z-axes; that is, the world is piecewise axis-aligned and planar. Remarkably,
the original Manhattan world model is not suited to complex structures, so the constraint
has developed into the multi-Manhattan world model. The lack of angular constraints
is the primary shortcoming of the Manhattan and multi-Manhattan world models. Thus,
Monszpart et al. [26] introduced angular constraints and derived the general Manhattan
world model, and Lin et al. [27] proposed a directional constraint model based on the
directions of normal vectors. Inspired by these constraint models and combined with
the characteristics of indoor scenes (directions of normal vectors can be exhausted), we
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propose segmenting point clouds into countable clusters based on the saliency analysis of
the directions. We define a saliency direction as gathering at least more than 5% of points
in a sample cluster. To introduce the proposed approach, we first give the overall workflow
of our method in Figure 1.

ISPRS Int. J. Geo-Inf. 2022, 11, 247 4 of 23 
 

 

world model, and Lin et al. [27] proposed a directional constraint model based on the 

directions of normal vectors. Inspired by these constraint models and combined with the 

characteristics of indoor scenes (directions of normal vectors can be exhausted), we pro-

pose segmenting point clouds into countable clusters based on the saliency analysis of the 

directions. We define a saliency direction as gathering at least more than 5% of points in 

a sample cluster. To introduce the proposed approach, we first give the overall workflow 

of our method in Figure 1. 

 

Figure 1. Overall workflow of the proposed method. 

3.2. Super-Voxel-Based Segmentation and Topological Relationships 

Whether indoor laser scanning, image dense matching, or SLAM, existing indoor 

point-cloud-acquisition methods can obtain dense and highly redundant point-cloud 

data, which makes data processing time-consuming. Therefore, we first segment point 

clouds using super voxels, i.e., contain the properties in a voxel, in order to accelerate the 

following processes. Our experiments employed the voxel-based-segmentation method 

described by Lin et al. [22]. We set the resolution of the voxel to 𝜎 = 0.2 m to maintain 

more details of the objects in indoor scenes. This also guarantees that points in the same 

voxel have as similar properties as possible. A resolution setting that is too small, e.g., 

centimeter level, creates significantly fragmented information. One of the main ad-

vantages of Lin’s method is that the voxels can limit crossing object boundaries. Remark-

ably, this effect significantly improves the normal directions of voxels that are close to 

boundaries. The normal vector n⃗ 𝑣 of voxel v is calculated from the normal vector of the 

point set S𝑣 (i.e., the point i∈ Sv and the corresponding normal vector is normali) con-

tained in v as, 

n⃗ 𝑣 =
1

𝑛
∑𝑛𝑜𝑟𝑚𝑎𝑙𝑖
𝑖∈𝑛

. (1) 

Based on super-voxel segmentation, we establish the topological relationship be-

tween voxels that support subsequent instances and global optimization. The topological 

relationship between voxels is represented by ρ𝑣. We form a linked topological relation-

ship between two voxels based on their adjacency. Figure 2 shows the voxels along two 

different types of walls with partially linking topological relationships. For example, the 

No. 6 voxel in the left graph has the ρ𝑣 = {⑥|①,②,③,⑤,⑦,⑧,⑨} relationships. The 

Figure 1. Overall workflow of the proposed method.

3.2. Super-Voxel-Based Segmentation and Topological Relationships

Whether indoor laser scanning, image dense matching, or SLAM, existing indoor
point-cloud-acquisition methods can obtain dense and highly redundant point-cloud data,
which makes data processing time-consuming. Therefore, we first segment point clouds
using super voxels, i.e., contain the properties in a voxel, in order to accelerate the following
processes. Our experiments employed the voxel-based-segmentation method described
by Lin et al. [22]. We set the resolution of the voxel to σ = 0.2 m to maintain more details
of the objects in indoor scenes. This also guarantees that points in the same voxel have as
similar properties as possible. A resolution setting that is too small, e.g., centimeter level,
creates significantly fragmented information. One of the main advantages of Lin’s method
is that the voxels can limit crossing object boundaries. Remarkably, this effect significantly
improves the normal directions of voxels that are close to boundaries. The normal vector
→
n v of voxel v is calculated from the normal vector of the point set Sv (i.e., the point i ∈ Sv
and the corresponding normal vector is normali) contained in v as,

→
n v =

1
n ∑

i∈n
normali. (1)

Based on super-voxel segmentation, we establish the topological relationship between
voxels that support subsequent instances and global optimization. The topological rela-
tionship between voxels is represented by ρv. We form a linked topological relationship
between two voxels based on their adjacency. Figure 2 shows the voxels along two different
types of walls with partially linking topological relationships. For example, the No. 6

voxel in the left graph has the
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3.3. Directional Saliency Analysis in Indoor Environments

The normal vector Nv of voxel v can be projected onto the Gaussian half sphere for
statistics. Intuitively, the normal vector has a significant aggregation effect, and each cluster
reflects a salient direction, as seen in Figure 3a. Statistical strategies can readily remove
outliers on the Gaussian half-sphere, which are represented as hollow dots in the figure.
To improve the description and understanding, a voxel v that is judged to be an outlier is
denoted as v′.
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Figure 3. The K-means-clustering process on the Gaussian half-sphere: (a) deleted outliers de-
noted as the hollow symbols; (b) original K-means-clustering results; and (c) clustering results after
adjustments.

We deem that the number of normal directions in indoor scenes is limited. Thus, we
employ a clustering approach to increase this number and further segment the space. We
use the mini-batch K-means [28] approach to divide the normal direction sets, which are a
convex dataset, into K classes. The bias between a point to the clustering center primarily
results from the random errors in the observations. Thus, these biases ε in terms of one
clustering center present a normal distribution N with the standard deviation σ0 as,

E(ε) = 0, ε ∼ N
(

0, σ2
0

)
. (3)

This property can benefit from K-means methods to attain perfect results. To start the
K-means process, we approximately set K = 30 and then iterate a reasonable constant K̂.
The threshold K is generated from the cognitions and experiences of indoor scenes [2].

Figure 3b displays the processed results of the K-means clustering on the Gaussian
half-sphere (note: the different colors in Figure 3b,c represent different clusters). The normal
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direction of the two super voxels on opposite planes appear as
→
n 1 = −(→n 2) because we set

the viewpoint in the room. Therefore, we further reduced the number of normal directions,
as seen in Figure 3c. Figure 4 illustrates segmentation in an indoor space using the saliency
normal directions. Some mistakes are seen in the segmentation, such as the green points
on the door, which should be red. The dividing line of the two clusters is unclear; thus,
the results from the K-means are not always optimal. However, we can eliminate nearly
all these errors in subsequent global optimization strategies. To facilitate subsequent
processing (regularization and reconstruction), we performed instance segmentation using
the voxel-based topological relationships, as seen in Figure 5.
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instantiation.

Two special cases should be considered in the instance segmentation that easily cause
under-segmentation issues. This includes (I) two parallel planes being very close to each
other and (II) a lack of discrimination in the differences between two normal directions.
Figure 6a shows the first situation, where the pseudo-connection relationship between
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voxels is caused when either the distance d between two planes is less than the given
threshold εd (=2.5 times point density in our cases) or there are noise points between the
two planes. The second issue is displayed in Figure 6c, where the angular difference
of two normal directions is not significant in the K-means processing. To address these
problems, we further fit planes for each cluster with a more stringent planeness, fd < 0.5εd.
Figure 6b,d show two related examples before and after processing. The validation process
is performed in parallel as each of the w trials (handles one of the clusters) is independent
of the others, which gives a straightforward processing increase. Our implementation used
the OpenMP application programming interface to distribute separate trials and check
different threads.
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parallel planes; (c,d) lack of discrimination between planes.

3.4. Global Energy Optimization

There are substantial noise points in point clouds. Although strategies for voxel-
based and saliency normal directions can improve the robustness of data processing,
some voxels inevitably contain corners and boundary points that significantly reduce the
accuracy of normal estimations [29]. This section handles such outliers as the global energy-
optimization problem. The ground-truth segmentation was defined as the optimal energy
state, i.e., E = 0. We then defined different rules to judge and penalize the relationships
between primitives. We finally introduced the graph cut [30] to calculate the optimal
segmentation results.
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3.4.1. Outlier Voxels

There are many outlier voxels in real datasets, which are shown as the hollow dots
in Figure 3a. We can distinguish these outliers into two categories. One is that a voxel’s
normal direction is significantly different from those of their neighbors and the other is
“ghost” voxels. For segmentation purposes, we need to repair the first type of outliers and
prune the second type. As the first type of outliers are caused by noise and corner edges,
there are many useful points in such voxels that do not need to be directly removed.

3.4.2. Relationship between Different Primitives

We established a graph to connect all the primitives based on the topologic relation-
ships [31]. The voxel acts as the main primitive, and the associated primitive-relationship
network was described in the previous section. Therefore, this section enriches and com-
pletes the relationship network by introducing other primitive types (plane and point
primitives). We first established the connections between voxels and their corresponding
plane, released the points from the first type of outlier voxel, and constructed the point-
to-point and point-to-voxel links. Figure 7 shows a schematic diagram of the multi-level
relationships for the primitives. Edges that connect two primitives not only represent the
topologic relationships but also express interactions between primitives. Such forces have
both magnitude and directionality, which reasonably suggests that the effects are closely
related to the primitive type. Compared with the voxel primitive, the plane primitive has
more deterministic properties; however, the point primitive is the opposite.
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3.4.3. Energy Function Formulation

We treat the segmentation-optimization problem as labeling optimization with a
global energy function [24] in order to balance the geometric errors, spatial consistency,
and high-order potentials. Thus, we establish the energy function as,
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E(V, P, L) =

data cost︷ ︸︸ ︷
∑

vi∈V;lk∈L
D1(vi, lk) + ∑

pm∈P;lw∈L
D2(pm, lw)

+

smooth cost︷ ︸︸ ︷
∑

vi,j∈V;eij∈e;lk ,lg∈L
S1
(
vi,j, lk, lg

)
+ ∑

pm,n∈P;emn∈e;lw ,lh∈L
S2(pm,n, lw, lh) + ∑

vi,j∈V;eij∈e;lk ,lg∈L
S3(pm, vi, lw, lk)

+

label cost︷ ︸︸ ︷
µ·|NL −Nc|

(4)

where D1 and D2 represent the data-cost measure as the sum of geometric errors from
the voxel and point primitives, respectively; S1, S2, and S3 are the smooth-cost terms
that penalize the label inconsistency between connected primitives (voxel–voxel, point–
point, and point–voxel); and µ·|NL −Nc| represents the high-order potentials related to
the number of labels NL, which is the so-called label cost. The data-cost term D1(vi, lk)
represents the potentials of voxel vi, with the label lk. According to the principle of the
proposed method, vi belongs to the plane labeled as lk; otherwise, it is removed or released.
We calculate the potentials for D1 with a Gaussian kernel function as,

D1(vi, lk) =

 ln

(
α· exp

(
Mdis(p, l)2

2·σ2

))
, l = lk

2σ, l 6= lk

, (5)

where Mdis(p, lk) represents the mean distance between points (p ∈ vi) to the corresponding
plane lk, σ is the fitting threshold for a plane, and α is a regulating parameter to improve
the effects of the voxel primitives in the first turn. The D2(pm, lw) is related to the unary
potentials of point pm with the initial label lw. We then further define D2 as,

D2(pm, lw) =
{

1, lw 6= 1
0, lw = 1

, (6)

where the lw of 1 and 0 indicates that it belongs or does not belong to the plane, respectively.
The program penalizes the isolated point and encourages integrating it into neighboring
planes.

The smooth-cost term is designed to promote spatial consistency. The S1
(
vi,j, lk, lg

)
represents the pairwise potentials from vi and vj. Thus, the program penalizes edges that
link two different labels. We can then calculate S1, S2, and S3 as,

S1
(
vi,j, lk, lg

)
=

 1−
ang

(→
n vi ,

→
n vj

)
90

, lk 6= lg

0, lk = lg

, (7)

S2(pm,n, lw, lh) =
{

1, lw 6= lh
0, lw = lh

, (8)

S3(pm, vi, lw, lk) =

 1− dis(pm, lk)
2σ

, lw 6= lk
0, lw = lk

. (9)

The punishment strategies include strong prior knowledge. Thus, if the neighboring
units have different labels of S1 and S3, the punishments become more severe, and the
geometric errors are reduced. Moreover, we set a mandatory rule that the label lw for a
point pm can transform to the label lk, which belongs to voxel vi, but the reverse is not
allowed. The voxel primitive has more certain information than the point primitive due to
its increased reliability. The S2 acts as the Potts model [32] to penalize different labels with
the cost of 1.
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The label-cost term penalizes the number of labels. The ideal case is that in a particular
range, the object types are limited, and fewer types are preferred, which is valid for our
work. However, distinct from other strategies, we did not expect the number of labels
to approach zero but instead to remain equal to a constant Nc, which is the number of
clusters from the K-means processing. As the number of normal directions in an indoor
environment is limited, the extreme case of energy optimization is that we only have Nc
labels. Figure 8 shows part of the segmentation results before and after energy optimization,
which illustrates the over-segmentation problem.
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Figure 8. An example of the effectiveness of energy optimization.

To begin energy optimization, all primitives have initial labels based on their primitive
types after the instance segmentation of planes. Based on graph theory [32], these vertices
(i.e., primitives) do not exist in isolation but interact through edges (linking topological
relationships). That is, for each vertex, its label has several possibilities that depend on
both its own properties and on adjacent primitives. We calculated the energy cost for each
possible combination (including primitives), the linking relationships, and the range of
the label cost. We subsequently used the graph-cut approach [31] to acquire the optimal
combination. The goal was to determine a strategy that ensures the entire energy tends to
be minimized.

4. Experiments and Analysis
4.1. Dataset Description

Four datasets of indoor scenes were used to experimentally verify the effectiveness
of the proposed approach. Explicit information about these four datasets is summarized
in Table 1. The TUB1 and TUB2 are from the standard indoor-modeling benchmark
dataset provided by the International Society of Photogrammetry and Remote Sensing
(ISPRS) [33]. The TUB1 point cloud was captured in one of the buildings of the Technische
Universität Braunschweig, Germany, using the Viametris iMS3D system. The TUB2 point
cloud was captured in the same building using the Zeb-Revo sensor. These datasets
include several rooms and public corridor spaces, as seen in Figures 9 and 10. Thus, they
contain various topological wall structures. Although many sundries (tripods, chairs,
tables, and bookshelves) exist in the scenes, they are not the major objects in the mode
of the entire floor structure. The Laboratory and Office datasets were collected with a
Faro3D terrestrial laser scanner (TLS) and an RGB-D low-cost mobile sensor, respectively,
as seen in Figures 11 and 12. As these datasets focused on room interiors, there are many
furnishings. The Laboratory dataset contains only pair-registered point-cloud sets captured
from different locations; thus, there are several holes in the point clouds due to occlusion.
We note that the incomplete spatial structure raises challenges for plane segmentation. In
addition, the abundance of furniture increases the risk of over-segmentation. Figure 12
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shows that the Office dataset has the most complex environment in the tests. Apart from
the large furniture (tables and chairs), there are many small objects (books, screens, cups,
etc.). Due to low-cost sensors, the associated low-quality point clouds provide the proposed
method with more rigorous challenges.

Table 1. Basic information on the datasets in our experiments.

Data Scene Range
(m2)

Pts
(Million)

Saliency
Directions Number of Planes Sensor

TUB1 40 × 15 34 6 148 Viametris iMS3D
TUB2 30 × 20 14 3 145 Zeb-Revo
Lab 15 × 10 7 4 86 Faro3D TLS

Office 5 × 4 1.2 6 87 RGB-D
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4.2. Evaluation Metrics

We used four metrics to evaluate the performances of the proposed approach: plane
precision (PP), plane recall (PR), under-segmentation rate (USR), and over-segmentation
rate (OSR). The PP is defined as the ratio of the number of correctly segmented planes
to the total number of segmented planes, and plane recall (PR) is defined as the ratio of
the number of correctly segmented planes to the total number of planes in the ground
truth [18] as,

PP =
NC
NS

, (10)

PR =
NC
NG

, (11)
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where Nc is the number of planes correctly segmented, and NS and NG are the total number
of planes in the segmentation and ground truth, respectively. A correctly segmented plane
is defined as overlapping the corresponding reference plane in the ground truth by at least
80% [25]. In addition, we exploited the USR and OSR to appraise the degrees of incorrect
segmentation, which are calculated as,

USR =
NU
NS

, (12)

OSR =
No

NG
, (13)

where NU is the number of detected planes that overlap more than one plane of the ground
truth, and No represents the number of planes in the ground truth that overlap multiple
detected planes. We manually generated the ground truth for each dataset to perform
qualitative and quantitative comparisons and assessments. It was noted that the ground
truth was the plane with the main wall structure and slightly larger furniture, which mainly
affected the division of space utilization.

4.3. Experimental Results and Qualitative Analysis

Figures 13–16 display the plane-segmentation results for all datasets and the associated
qualitative comparisons. The results of the proposed method are given in subfigures (a), the
ground truths for each dataset are shown in subfigures (b), and the qualitative comparisons
for each dataset are in subfigures (c). The proposed method obtained ideal segmentation
results as subfigures (a) for all tests are similar to subfigures (b) in terms of segmentation
accuracy. From subfigures (c), the plane segmentation tasks were more than 80% successful.
Table 2 gives the quantitative performances of the proposed method for all tests. The
plane-segmentation precision was greater than 87% and the F-1 score was over 0.84 in the
first three datasets. For the Office dataset, the precision and F-1 score decreased to 72.7%
and 0.73, respectively, due to the complex environment and inadequate point-cloud quality.
For the incorrect segmentations, the proposed strategy significantly reduced the risk of over-
segmentation. Although the under-segmentation rates were not significant, they contributed
to the reduced over-segmentation rates and improved the overall consistency rates.
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Table 2. Performances of the proposed method in the tests.

Data Precision (%) Recall (%) F1-Score USR (%) OSR (%) Runtime (s)

TUB1 91.5 91.5 0.92 3.3 1.3 53
TUB2 88.0 85.7 0.87 5.3 3.3 114
Lab 87.8 81.1 0.84 8.2 0.0 6

Office 72.7 73.6 0.73 6.8 3.5 14

To perform specific qualitative analyses, we show the main differences between the
segmentation results of this paper and the ground truth. The yellow, red, blue, green,
and purple regions represent the correctly segmented plane (CP), undetected plane (UP),
spurious planes (SPs), under-segmented plane (USP), and over-segmented plane (OSP),
respectively. The USPs occur in all tests; however, the problems from OSPs are only obvious
in TUB2. The most significant OSP in TUB2 shows that such mistakes are caused by
continuous, large-area bending planes. As these already have plane primitive information
that is too strong, it is difficult to change the labels during energy optimization. The most
significant USP problem is in the Office dataset, as seen in Figure 16c. This is heavily related
to the low-quality data, which produces a layering problem on the walls and suggests they
should be separated into two parts in the ground truth (see Figure 16b with green and
yellow walls). For UP issues, our method almost entirely avoids such problems, except for
point-could densities that are too sparse on diminutive planes, as seen in Figure 14. The
incorrect segmentations as related to SPs are negligible because the normal directions are
not salient on the Gaussian sphere and can be deleted almost entirely during processing.
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4.4. Quantitative Comparison and Evaluation

To further evaluate the performance of the proposed method, we compared it with
state-of-the-art approaches. We selected three advanced methods as benchmarks for plane
segmentation, including the Global-L0 (G-L0), efficient RANSAC, and RG, as applied
to the four datasets. The G-L0 is a recently proposed plane-fitting approach that has
excellent performances in terms of speed and robustness. The efficient RANSAC and RG
are both commonly used plane-detection methods. As a fair comparison, the tests did not
reproduce the three benchmark functions internally but were from the original works and
a well-known third library. Specifically, we implemented the G-L0 using programs from
Lin et al. [2], and the other two were from the library module in CGAL [5,34]. Moreover, we
adopted a reasonable parameter setting to achieve optimal performances. Table 3 compares
these methods in terms of precision, recall, USR, OSR, and runtime. The proposed method
obtained the best precision and recall results over all the tested datasets. The RG and G-L0
performed well in terms of precision and recall, but the G-L0 was better. However, the RG
was more sensitive to noise than the other methods. The precision rate dropped sharply to
24.3% in the Office dataset due to the low-quality point cloud. Although other approaches
(including ours) are also affected by noise, this was not as significant. The results for the
RANSAC were not as good in terms of precision; however, it exhibited excellent robustness.
The RG obtained the best USR performance; however, the cost was the worst due to its
OSR performance. As the G-L0 and our method were both processed using global energy
optimization, the OSR was not the key problem. Table 3 further displays the CPU runtime
with the proposed method performing best. Due to its algorithmic principles, the RG was
the most time-consuming method.

Table 3. Comparison of the various algorithm performances in the four considered datasets.

Data Method Precision (%) Recall (%) F1-Score USR (%) OSR (%) Runtime (s)

TUB1

Proposed method 91.5 91.5 0.92 3.3 1.3 53
RG 63.3 86.93 0.73 0.0 11.8 196

RANSAC 61.8 73.86 0.67 7.1 3.9 90
Global-L0 68.2 88.24 0.77 3.5 2.0 101

TUB2

Proposed method 88.0 85.7 0.87 5.3 3.3 114
RG 67.7 74.7 0.71 1.2 11.0 450

RANSAC 45.2 46.1 0.46 17.8 3.9 214
Global-L0 81.4 68.2 0.74 10.9 1.3 550

Lab

Proposed method 87.8 81.1 0.84 8.2 0.0 6
RG 72.6 72.6 0.73 3.8 7.6 16

RANSAC 57.5 39.6 0.47 28.8 2.8 11
Global-L0 85.7 73.6 0.79 11.0 0.0 7

Office

Proposed method 72.7 73.6 0.73 6.8 3.5 14
RG 24.3 49.4 0.33 0.6 37.9 41

RANSAC 51.2 25.3 0.34 32.6 4.6 23
Global-L0 54.7 66.7 0.60 6.6 8.1 19

We display the segmentation results from the above four approaches and differences
with the corresponding ground truth as a more in-depth analysis over the performance
of the proposed method. We also used the UP, SP, USP, and OSP to describe incorrect
segmentations, as seen in Figures 17–20. The left columns of (a), (c), (e), and (g) represent
the segmentation results from the proposed method, RG, RANSAC, and G-L0, respectively.
The proposed method outperformed the benchmark methods, particularly as it attempted
to completely avoid the UP problem, which has the risk of information loss. As a benefit
of the global optimization strategy, the OSP was not a major problem in the G-L0 or the
proposed methods. The USP was one of the most significant problems in the proposed,
RANSAC, and G-L0 methods; nevertheless, the proposed method dramatically improved
the indoor plane-segmentation performance in terms of efficiency and consistency.



ISPRS Int. J. Geo-Inf. 2022, 11, 247 17 of 23

ISPRS Int. J. Geo-Inf. 2022, 11, 247 17 of 23 
 

 

 

 

 

 

Figure 17. Comparison of plane-segmentation results for the TUB1 dataset: (a,b) proposed method 

and the main differences from ground truth, (c,d) RG and the main differences from ground truth, 

(e,f) efficient RANSAC and the main differences from ground truth, and (g,h) G-L0 and the main 
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Figure 17. Comparison of plane-segmentation results for the TUB1 dataset: (a,b) proposed method
and the main differences from ground truth, (c,d) RG and the main differences from ground truth,
(e,f) efficient RANSAC and the main differences from ground truth, and (g,h) G-L0 and the main
differences from ground truth.
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Figure 18. Comparison of plane-segmentation results for the TUB2 dataset: (a,b) proposed method 

and the main differences from ground truth, (c,d) RG and the main differences from ground truth, 

(e,f) efficient RANSAC and the main differences from ground truth, and (g,h) G-L0 and the main 

differences from ground truth. 

Figure 18. Comparison of plane-segmentation results for the TUB2 dataset: (a,b) proposed method
and the main differences from ground truth, (c,d) RG and the main differences from ground truth,
(e,f) efficient RANSAC and the main differences from ground truth, and (g,h) G-L0 and the main
differences from ground truth.
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Figure 19. Comparison of plane-segmentation results of the Lab dataset: (a,b) proposed method and 

the main differences from ground truth, (c,d) RG and the main differences from ground truth, (e,f) 

efficient RANSAC and the main differences from ground truth, and (g,h) G-L0 and the main differ-
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Figure 19. Comparison of plane-segmentation results of the Lab dataset: (a,b) proposed method
and the main differences from ground truth, (c,d) RG and the main differences from ground truth,
(e,f) efficient RANSAC and the main differences from ground truth, and (g,h) G-L0 and the main
differences from ground truth.
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Figure 20. Comparison of the plane-segmentation results of the Office dataset: (a,b) proposed 

method and the main differences from ground truth, (c,d) RG and the main differences from ground 

truth, (e,f) efficient RANSAC and the main differences from ground truth, and (g,h) G-L0 and the 

main differences from ground truth. 

Figure 20. Comparison of the plane-segmentation results of the Office dataset: (a,b) proposed method
and the main differences from ground truth, (c,d) RG and the main differences from ground truth,
(e,f) efficient RANSAC and the main differences from ground truth, and (g,h) G-L0 and the main
differences from ground truth.
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4.5. Discussion

The qualitative and quantitative analyses indicate that the proposed method is feasible
in terms of accuracy, robustness, and efficiency. We further analyzed the advantages and
limitations of the proposed method to demonstrate the potential from top-view perspectives.
One advantage is that the super-voxel-based-segmentation results significantly accelerate
the processing because the minimum handling unit changes from a point to a voxel.
Considering voxels can limit the crossing of object boundaries, more accurate normal
directions are obtained from the voxel structures. One of the most attractive steps is to
provide a predetermined threshold, which is based on the countable salient directions in
an indoor scene. First, this predetermined threshold can enhance the clustering results and
avoid discrete bunches. One of the significant manifestations of this advantage is that few
SP problems occur in our tests.

Next, we treat the segmentation optimization problem in the global energy space
and introduce the graph-cut approach to balance the different factors and determine the
optimal combination. Remarkably, as the energy optimization punishes differences, the
OSP problems can be mostly addressed in the tests. Our framework further introduces
three kinds of relationships to link the three types of primitives and create rules for their
interactions. These operations allow the segmentations to maintain a reasonable consistency
and avoid excessive merging between primitives.

The comprehensive performance of the proposed method is better than the three
benchmark methods and has the following two limitations. First, as the approach is
related to salient directions, insignificant direction-change rates make it difficult to segment
regular edges and create accurate planes (see Figure 21). Second, though the predetermined
number of salient directions of an indoor scene can produce many advantages, some small
objectives will be lost. Therefore, the parameters that are related to the salient directions
should be fully considered.
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Figure 21. Example limitation for the proposed method where the normal directions have a moderate
rate of change.

5. Conclusions

This paper proposes an automated framework to segment point clouds collected in
indoor environments. The two pillars of the presented approach are (I) limited normal
directions to promote fast plane clustering and (II) three kinds of primitives with different
levels with topologic relationships to support global optimization processing. These two
approaches help improve the global consistency and accelerate the calculations. Unlike
traditional plane-segmentation methods, we neither need to confirm a mathematic model
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to fit data nor grow points individually. Thus, the proposed method is not only beneficial
in speed but also effectively avoids calculation traps from local minima. Next, to best guar-
antee the correctness and integrity, multiple relationships are introduced with specifically
defined interactions between various primitives in order to improve the consistency.

Comprehensive experiments were performed to evaluate the proposed method. The
results show that the method is suitable to handle plane segmentation in indoor scenes.
The comparisons indicate that in such environments, the proposed method is outstanding
relative to benchmark methods. Nevertheless, there are still limitations. Thus, future
investigations should address the issues to further improve the consistency of the results.
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