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Abstract: Applications of machine-learning-based approaches in the geosciences have witnessed a
substantial increase over the past few years. Here we present an approach that accounts for spatial
autocorrelation by introducing spatial features to the models. In particular, we explore two types of
spatial features, namely spatial lag and eigenvector spatial filtering (ESF). These features are used
within the widely used random forest (RF) method, and their effect is illustrated on two public
datasets of varying sizes (Meuse and California housing datasets). The least absolute shrinkage
and selection operator (LASSO) is used to determine the best subset of spatial features, and nested
cross-validation is used for hyper-parameter tuning and performance evaluation. We utilize Moran’s
I and local indicators of spatial association (LISA) to assess how spatial autocorrelation is captured at
both global and local scales. Our results show that RF models combined with either spatial lag or
ESF features yield lower errors (up to 33% different) and reduce the global spatial autocorrelation of
the residuals (up to 95% decrease in Moran’s I) compared to the RF model with no spatial features.
The local autocorrelation patterns of the residuals are weakened as well. Compared to benchmark
geographically weighted regression (GWR) models, the RF models with spatial features yielded more
accurate models with similar levels of global and local autocorrelation in the prediction residuals. This
study reveals the effectiveness of spatial features in capturing spatial autocorrelation and provides a
generic machine-learning modelling workflow for spatial prediction.

Keywords: spatial autocorrelation; spatial lag; eigenvector filtering; machine learning; nested cross-
validation; geographical prediction

1. Introduction

The volume of data generated in recent years is increasing tremendously and a large
proportion of big data is geospatial (e.g., remote-sensing imagery, GPS trajectories, weather
measurements) [1]. Geospatial big data bears the same features as normal big data, such as
big volume, high velocity, and high variety, and provides new opportunities to uncover
previously unknown insights into our world. However, one of the associated challenges
with spatial big data lies in developing new methods to handle and analyze complex
datasets where traditional approaches may fail [2].

Machine learning (ML) methods allow computers to learn from data and can extract
information and identify structures from large and high-dimensional datasets [3]. With the
advent of geospatial big data, ML has been universally employed in geoscientific research
such as land cover classification [4,5], landslide susceptibility [6], climate change studies [7],
and atmospheric dynamics [8]. One of the main uses of ML on geospatial data is spatial
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prediction in which a model is built using training samples to predict unknown values at
specific locations [9,10].

In contrast with ML methods, which are generic and can be applied to various datasets,
spatial methods specifically aim to analyze geospatial data. Spatial methods are built upon
the first law of geography, which states that “everything is related to everything else, but
near things are more related than distant things” [11–13]. Such characteristics of spatial
phenomena imply the underlying spatial dependence or spatial autocorrelation (SAC). The
presence of this spatial relationship violates the assumption of identical and independent
distribution (i.i.d.) upon which many non-spatial statistical methods are predicated. Hence,
spatial methods distinguish themselves in explicitly dealing with spatial dependence
or SAC.

Spatial autoregressive [14] and geographically weighted regression (GWR) [15] are
two commonly used spatial methods for spatial prediction. Models based on spatial
autoregressive methods can be configured differently depending on where SAC is intro-
duced [14,16]. For instance, the spatial lag model assumes SAC in the response variable and
the spatial error model specifies spatial dependencies in the error term. GWR represents a
localized linear regression method to build models that capture spatial heterogeneity by
estimating spatially varying parameters [17]. Another research field that deals with spatial
autocorrelation is geostatistics. Kriging covers a family of methods to create models that
interpolate spatially autocorrelated variables. It captures SAC by determining the spatial
covariance of samples using a variogram model. However, all these methods mentioned
above suffer from divergent drawbacks. Spatial autoregressive and GWR mainly focus
on linear relationships. Kriging usually requires assumptions about spatial distribution
(e.g., second-order stationary), which may be unrealistic in practice [18]. Additionally, it is
difficult to scale kriging and GWR for big spatial computation [19,20].

ML is generally accurate, flexible, and scalable for analyzing complex data but does
not automatically recognize spatial context. Therefore, the direct application of ML to
geospatial data without accounting for the potential spatial autocorrelation could lead to
biased outcomes [21–24].

Present research concerning the incorporation of ML and spatial analysis is still rela-
tively limited or scarce. Existing approaches could be roughly categorized in four directions:
inclusion of spatial features in original algorithms [22,25,26], hybrid models with geostatis-
tics [27–30], cluster-based methods in which cluster analysis on independent variables is
introduced as a preprocessing procedure [31], and other algorithms exclusively designed for
spatial problems such as spatial predictive clustering trees (PCTs) [32] and SpaceGAN [33].

The aforementioned four directions manifest diverse advantages and unique research
values. In this paper, we investigate the inclusion of spatial features. In ML, features are
equivalent to the notion of explanatory variables in statistics. Thus, spatial features refer to
variables that reflect geographical connectivity and spatial relations between observations,
potentially accounting for SAC [22]. Feature engineering represents a crucial process in
ML that aims to extract and formulate suitable features for the expected model. Multiple
options exist to specify spatial features: Euclidean distance fields (EDF), which include
buffer distances (distance to sampling locations) and coordinates [25], spatial lag based on
a definition of a neighborhood [26,34,35]. The major advantage of including spatial features
over exclusively spatial algorithms is that this does not require direct modification of the
original methods, thus reviving non-spatial ML in geographical contexts and maintaining
the variety of models that are already established scientifically.

The goal of this study is to explore the role of spatial features in a generic ML prediction
context. Specifically, our objectives are to (a) present a workflow for the engineering and
evaluation of spatial features, and (b) assess whether such features capture SAC and
improve prediction performance.
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2. Related Work

Research on the combination of spatial features and ML is emerging in these years.
Behrens et al. [25] introduced a spatial modeling framework with generic EDF as additional
spatial covariates. They combined EDF with other commonly used environmental covari-
ates in the case of digital soil mapping. Six ML methods were chosen to compare against a
reference obtained from regression kriging. The inclusion of EDF enables ML to infer spatial
autocorrelation when predicting at new locations without an additional step to correct
residuals using kriging. Hengl et al. [22] presented a random forest framework for spatial
prediction (RFsp) that accounts for spatial effects by using multiple distance-based features
including EDF. They evaluated the effectiveness of buffer distances on five environmental
datasets. Their results demonstrate that RFsp can produce similar predictions to ordinary
kriging and regression kriging, while RFsp does not demand strict assumptions about
distribution and stationarity. However, these authors also pointed out that it is difficult to
derive buffer distance variables for large datasets.

Apart from explicit distance-based features, studies on the incorporation of other
spatial features and ML mainly concentrate on spatial lags. Li et al. [26] proposed a geo-
intelligent deep learning approach in which spatially and temporally lagged PM2.5 terms
were combined with satellite-derived and socioeconomic indicators in a deep belief network
model. Their analysis proved that including spatial lag as a representation of geographical
relations significantly improves the accuracy of the estimations. Kiely and Bastian [34]
incorporated spatial lag features into multiple ML algorithms to predict real estate sales.
The comparison results indicated an enhanced predictive performance of spatially aware
models over non-spatial counterparts. In the work of Zhu et al. [35], the authors followed
the same technique as Li et al. [26] to include lagged features in several ML algorithms. The
modified algorithms showed great improvement in terms of accuracy when reconstructing
the surface air temperature across China.

In summary, current research confronts limitations as well as opportunities for further
research. First, buffer distance features cannot fully satisfy the requirements for all spatial
problems, especially the ones involving large amounts of data samples. Second, spatial
lag features were constructed and examined with distance-based computations but they
can also be engineered via the specification of spatial weight matrix and neighbor-based
computations. Third, eigenvector spatial filtering features have not been developed and
examined in the context of spatial ML prediction.

3. Methods

Figure 1 illustrates our modelling and analytical procedure, which is further detailed
in the following subsections. Section 3.1 describes the data on which the experiments
are based. Section 3.2 explains how spatial features are incorporated in ML. We propose
two types of features: the spatial lag features (configured via a spatial weight matrix and
neighbor-based computations) and the ESF features. In Section 3.3 we explain the training
and evaluation of the models. The scripts used to engineer the spatial features, build the
models, as well as to evaluate the results are available in a public repository (please refer to
Data Availability Statement).

3.1. Data Sources

Two public spatial datasets with different properties are used in this study to test the
usability of the proposed modelling.

3.1.1. Meuse River Dataset

Meuse is a classical spatial dataset in geostatistics that consists of samples collected
in a flood plain of the river Meuse in the Netherlands. Hengl et al. [22] used Meuse
dataset for one of the experiments where distance-based spatial features were introduced
in ML models. It is internally integrated with several R packages such as “gstat” [36] and
“sp” [37]. Furthermore, due to its publicity and availability, it has been used for other spatial
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analytical tasks such as spatial clustering [38] and spatial autoregressive models [39]. We use
153 samples for which four heavy metal concentrations were being measured. Geographical
locations are also included, together with soil and landscape variables. Details about the
data variables are described in Table 1. Interpolation of zinc concentration is usually the
main focus of this dataset. Flooding frequency and distance to the river can be considered
as covariates in regression kriging to predict zinc concentration with the assumption that
the river is the main source of zinc. Figure 2a shows the distribution of zinc concentrations.
Each category has an approximately equal number of observations that are determined by
quantiles. A higher concentration of zinc is observed along the western riverbank.
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Table 1. Variable description of Meuse River dataset.

Variable Description

x X coordinate (EPSG: 28992)
y Y coordinate (EPSG: 28992)

zinc Top soil heavy metal concentration (mg/kg)
elev Relative elevation above local river bed
om Organic matter

ffreq Flooding frequency class
soil Soil type

landuse Land use class
lime Lime class
dist Distance to river Meuse
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3.1.2. California Housing Dataset

This dataset contains 20,640 observations of California housing prices based on 1990
California census data. Each row represents a census block group or district (the small-
est geographical unit for which the U.S. Census Bureau publishes sample data). It was
originally used by Pace and Barry [40] to build spatial autoregressive models, and it is
considered a standard example dataset with spatial autocorrelation [33]. Median house
price, location of the samples, and six other explanatory variables are described in Table 2.
The price values are classified by quantiles in Figure 2b. Coastal regions usually hold higher
house prices, especially for districts around metropolitan cities such as San Francisco and
Los Angeles. Because different districts are populated with varying numbers of households,
the total number of rooms or bedrooms (original pre-processed variables) were divided by
the number of households in this study to obtain the average variable. Here the task is to
create a model that predicts housing prices.

3.2. Construction and Processing of Spatial Features
3.2.1. Spatial Lag Features

The spatial lag features capture the spatial autocorrelation of the dependent variables
(y) in surrounding areas. The spatial lag of location i is calculated as the weighted sum of
values from location i to j:

Lagi = ∑
j

wijyj (1)
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Table 2. Variable description of California housing dataset.

Variable Description

longitude WGS 84 coordinate
latitude WGS 84 coordinate

housing_median_age Median house age in the district
roomsAvg Average number of rooms per household

bedroomsAvg Average number of bedrooms per household
population Total population in the district
households Total households in the district

median_income Median income of the district
median_house_value Median house price of the district

A spatial weight matrix (wij) is necessary to construct lag features. In principle, the
construction of such a spatial weight matrix involves two procedures: definition of a
neighborhood, and calculation of spatial weights. The neighborhood determines which
locations are linked (i to j) and the weights determine the strength of links. The weights can
be either determined by binary settings or calculated through distance-based functions such
as inverse distance and kernel functions. Different specifications of the matrix represent
varying spatial structures. However, there does not exist a consensus on the choice of a
spatial weight matrix [41]. In this study, the binary setting of a k-nearest neighbor is utilized
as it provides a convenient interface to construct the spatial weight matrix by changing
the value of parameter k. K-nearest neighbor also introduces an adaptive connectivity
configuration, in which the number of neighbors is constant but the distance range between
neighbors is not. The weight matrix is row-standardized such that lag features represent
the average of surrounding values. Thus, the weight values are:

wij =

{
1/k, i f i and j are neighbors

0, otherwise
(2)

Many efforts have been invested in selecting an appropriate spatial matrix for spatial
autoregressive regression. Rather than one single matrix, different spatial weight matrices
can be used to include multiple spatial lags in one regression model aiming to capture
different types of dependence [42]. We follow a similar approach: for the Meuse dataset, an
increasing sequence of 5, 10, 15 is used for parameter k (thus creating three spatial weights
matrices) to generate the spatial lag features. As the California housing dataset covers a
larger area, 5, 10, 15, 50 nearest neighbors are employed (thus creating four spatial weights
matrices) to generate the spatial lag features. This is a data-driven approach to empirically
configure the k values and include different possibilities of the neighbors. These values as
well as the number of matrices can be changed depending on the characteristics of the data
and problem at hand.

3.2.2. Eigenvector Spatial Filtering

Eigenvector spatial filtering (ESF) is a regression technique proposed by Getis and
Griffith [43] to enhance the model results in the presence of spatial dependence. This idea is
originated from Moran’s I, in which the spatial weight matrix is used to capture the spatial
covariations.

ESF decomposition is conducted on the matrix(
I − 11T/n

)
W

(
I − 11T/n

)
(3)

where I is an n-by-n identity matrix, 1 is an n-by-1 vector of ones, and W is the spatial
weight matrix as defined by Getis and Griffith [43]. The extracted eigenvectors furnish the
underlying latent map patterns [44].
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The transformation of the spatial matrix occurs to make it positive semi-definite.
Orthogonal and uncorrelated eigenvectors are used as synthetic variables in the regression
problem to enable the model to account for spatial autocorrelation [43,45–47].

Eigen-decomposition, which is essential for ESF, is computationally intensive for large
samples. To improve computing efficiency, Murakami and Griffith [20] proposed to approx-
imate the first L (L << n) eigenvectors using the Nyström extension [48]. They employed
k-means clustering on the spatial coordinates and regarded the cluster centers as the knots
for the Nyström extension. The authors advised calculating at least 200 eigenvectors to
effectively remove positive spatial autocorrelation with small approximation errors and to
capture spatial characteristics successfully.

ESF is often used as an exploratory technique, but it can also be used to predict
values at unknown locations by using the Nyström approximation. However, this approx-
imation technique cannot deal with negative spatial dependence and is only limited to
spatial weight matrices that are based on positive semidefinite kernels such as Gaussian or
exponential kernels [20].

In this study, we adopt the common exponential kernel from Murakami and Grif-
fith [20] because these authors demonstrated its usability in large datasets. The elements of
the spatial weight matrix are calculated as:

wij = exp
(−dij

r

)
(4)

where dij is the distance between location i and j, and r is given by the maximum length in
the minimum spanning tree that connects all the samples. The exponential kernel can be
substituted with any kernel function to meet the requirements of other problems as long as
the kernel is semidefinite [20]. Due to the sample size and computational concern of eigen-
decomposition, only the first 200 eigenvectors are approximated for California housing
data. For the Meuse dataset, the exact eigenvalues are calculated without approximation.

3.3. Machine Learning and Benchmarking Models

This section explains the implementation of the machine learning (ML) models using
Random Forest (Section 3.3.1) as well as that of the benchmark model based on Geographi-
cally Weighted Regression (Section 3.3.2). The implementation includes hyperparameter
tuning and feature selection for the ML models and parameter tuning for the benchmark
model. The modelling procedures were implemented for the two data sets (Meuse and
California) and to create four kinds of models: (i) non-spatial models purely based on the
original features available for each dataset, (ii) spatial lag models, (iii) ESF models, and
(iv) benchmark models.

3.3.1. Random Forest

Random forest (RF) is used in this study for its general accuracy and successful
applications in diverse geoscientific problems [28,35,49]. RF has also been used as a
framework recently to integrate distance variables in spatial prediction [22]. During the
training phase, we tuned the number of features used in node splitting (commonly known
as “mtry “). The number of trees is kept at a moderate size of 200 trees for a balance between
computational efficiency and predictive stability.

We implemented a least absolute shrinkage and selection operator (LASSO) feature
selection approach to minimize the number of spatial features used to train the models
as well as to get a better sense of their usefulness. LASSO is a regularization method
developed by Tibshirani [50] that is widely used ML for feature selection. It sets an L1
constraint on linear regression and penalizes the coefficients by shrinking a part of them to
exactly zero. A hyper-parameter λ ≥ 0 controls the strength of L1 penalty in LASSO, which
can be tuned by cross-validation. Features with non-zero coefficients are preserved in the
final model. The largest value of lambda such that the error is within one standard error of
the minimum is often used for the selected model [51].
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Although RF can help combat the problem of the curse of dimensionality [52], numer-
ous studies use feature selection methods in combination with RF [53]. Empirical results
have shown that applying dimensionality reduction techniques with RF may yield nearly
the same predictive performance [54] or it can even increase it [55].

Furthermore, we foresee that the proposed modelling workflow could be implemented
with alternative algorithms for which dimensionality reduction may be needed when the
number of dimensions is too large for the sample size [56–58]. Except for the original
shape of the data, a high number of dimensions may also result after a feature engineering
process. For instance, ESF may introduce 200 or more additional eigenvector features. For a
dataset with a smaller size, the number of features may exceed the number of observations.
Regarding spatial lag, any number of features could be added if that is desired. The
LASSO approach retains the representative features (ESF or Spatial Lag) and excludes the
unnecessary ones, which is beneficial when applying and testing models in terms of model
interpretability, complexity, and time efficiency. Although LASSO has been chosen because
it is a common approach and it is computationally efficient, it is also a linear model. Hence,
features with non-linear relationships, which can be detected by RF, may be excluded. Its
application should be used selectively and by considering the data and the problem at hand.
Furthermore, alternative feature selection methods may be considered, such as RF mean
decrease in accuracy, RF Recursive Feature Elimination, VSURF, SVM Recursive Feature
Elimination, and Correlation-based Feature Selection [59,60].

3.3.2. Geographically Weighted Regression

To benchmark our proposed modelling approach, we use both a traditional “a-spatial”
RF and a classical spatial statistical model, namely a Geographically Weighted Regression
(GWR). GWR has been successfully used to model various geospatial application domains,
including the housing market [61], health [62], tourism [63], sharing economy [64], policy-
making [65], and crime [66].

GWR returns local parameter estimates for each relationship between dependent and
independent variables at each location and can thus produce a parameter surface across
the study region [67]. The method explores local linear relationships and is designed for
ratio covariates. Therefore, in the implementation of the GWR model for the Meuse data
we excluded the variables ffreq, soil, landuse, and lime as opposed to the RF models. For
the California models, the same set of covariates was used.

The models were implemented by the MGWR module in Python spatial analysis
library (PySAL) developed by Oshan et al. [68]. The authors suggest optimizing a model fit
criterion to select the bandwidth when there is no theoretical guide to manually specify it.
The fit criterion that we employed for the optimization of the bandwidth is the corrected
Akaike information criterion (AICc). Default settings were employed for the kernel function
(i.e., “bi-square”) and the kernel type (i.e., adaptive nearest neighbor). The bi-square kernel
function is the default behavior because it avoids a potential issue of all observations
retaining some weight and also because it indicates the distance above which the parameters
have no influence [68]. In addition, the adaptive kernel type ensures that there will be no
calibration issues in the sparsely populated regions of the study area.

3.4. Performance Evaluation

To retrieve a more objective performance evaluation of our approach, we adopted
the idea of nested cross-validation (CV). The fundamental idea of CV is to separate the
dataset into different parts: training and testing. This ensures that the information of
the test subset does not leak during the training process. The result is given by CV and
therefore represents an objective estimate of how the model will generalize on unseen
data. With nested CV the optimal hyper-parameters of inner folds are tested in an outer
fold, in an iterative and nested manner [69]. Nested CV is a suitable approach to evaluate
the generalization abilities of a model that prevents bias in estimates [70], also known as
“double cross” [71].
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Two layers of k-fold cross-validation are included in the nested CV. The outer CV
serves for estimation while the inner CV takes care of other procedures such as hyper-
parameter tuning (in our RF implementation this is the selected feature). Inner folds are
obtained by splitting the outer training folds. The hyper-parameters are determined by
inner CV, then the optimal values are used to fit a model on the outer training set. The
generalized performance reported by nested CV is the average over the outer testing folds.

The nested CV process used in this study is further summarized as follows:

(a) Split the dataset into K outer folds.
(b) For each outer fold k = 1, 2, . . . , K: outer loop for model evaluation:

1. Take fold k as outer testing set outer-test; take the remaining folds as outer
training set outer-train.

2. Split the outer-train into L inner folds.
3. For each inner fold l = 1, 2, . . . , L: inner loop for hyper-parameter tuning:

i. Take fold l as inner testing set inner-test and the remaining as inner-train.
ii. Calculate spatial features on the inner-train.
iii. Perform cross-validated LASSO on inner-train with spatial features, and

determine the lambda λ with “one-standard-error” rule; Select the spatial
features with non-zero coefficients.

iv. For each hyper-parameter candidate, fit a model on the inner-train with
the combined feature set.

v. Calculate the selected spatial features on the inner-test.
vi. Evaluate the model on inner-test with the assessment metric.

4. For each hyper-parameter candidate, average the assessment metric values
across L folds and choose the best hyper-parameter. In our experiments, the
hyperparameter that was tested was mtry.

5. Calculate spatial features on the outer-train.
6. Perform cross-validated LASSO on outer-train with spatial features, and deter-

mine the lambda λ with “one-standard-error” rule. Select the spatial features
with non-zero coefficients.

7. Train a model with the best hyper-parameter on the outer-train.
8. Calculate the selected spatial features on the outer-test.
9. Evaluate the model on outer-test with the assessment metric.

(c) Average the metric values over K folds, and report the generalized performance.

The lag features for testing samples (steps 3. V and 8) were derived from a rebuilt spa-
tial weight matrix, which describes the spatial relations between this single testing location
and all the training samples. Eigenvector features of testing samples were approximated
by Nyström extension value (steps 3. V and 8). For the LASSO procedure we employed a
10-fold CV (steps 3. III and 6).

The evaluation metric that we use (steps 3. VI and 9) is the root mean square error
(RMSE). The nested CV process was implemented in 5 outer folds (K) and 3 inner folds
(L). Thus, 5 models were tested and derived the average test error. This error indicates the
generalization ability of a model; in other words, how the final model would perform on
potential unseen data.

For the benchmark GWR models, data were split into 80% train data and 20% test data
(20% yields an equal size to an outer CV fold). Then, the RMSE of the predicted values from
the test data were calculated too. Furthermore, we calculated as training error the RMSE
when all data are fitted into a model (repeated to all model types: non-spatial, spatial lag,
ESF, and GWR). This error indicates the fitting ability of a model; in other words, how well
the model fits this specific dataset.

3.5. Spatial Autocorrelation Evaluation

When data-driven models are directly applied to spatial data without considering
spatial effects, residuals might remain spatially autocorrelated [25,48,69]. Preferably the
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SAC of residuals should be minimized or even eliminated, which would imply that the
model performs similarly in space and that there are minimal (or no) subregions with
strong patterns of over- or underestimated values. The Moran’s I metric can be used for
this purpose to detect and quantify global spatial autocorrelation in residuals. Moran’s
I varies from −1 to +1. A positive value indicates positive spatial autocorrelation and a
negative value indicates otherwise. Zero value means no spatial autocorrelation.

Furthermore, local indicators of spatial association (LISA) clusters of residuals are
utilized to examine the existence of local patterns. LISA were built from the decomposition
of Moran’s I and introduced by Anselin [72] to assess local spatial autocorrelation. Four
groups with significant local spatial autocorrelation (High-High, Low-Low, Low-High,
High-Low) can be captured by LISA. High-High (HH) and Low-Low (LL) indicate cluster-
ing of high and low values, respectively. Low-High (LH) denotes low values surrounded by
high values, and the High-Low (HL) group denotes high values surrounded by low values.

Both the global Moran’s I and LISA were tested under Monte Carlo simulation [72]
and were derived from nearest neighbor spatial weights matrices based on k = 5 nearest
neighbors. These statistics were implemented in a model that was trained using a standard
5-fold CV on the entire dataset. The CV was used to derive the optimal mtry and then
LASSO was used to select the spatial features. The final model (i.e., model fit all data) was
trained using the subset of features and the best mtry.

4. Results

Section 4.1 describes the specification of the models, such as which spatial features
were constructed and selected for the models as well as the values of the optimized
parameters. In Section 4.2, we analyze the impact of the explanatory variables and how
this varies by each model. Section 4.3 presents the performance evaluation results derived
by RMSE calculations, while Section 4.4 presents the spatial autocorrelation evaluation
results derived by Moran’s I and LISA statistics (maps depicting the distribution of models’
residuals can be found in the Supplementary Materials).

4.1. Specifications of the Models

The models and their specifications are shown in Table 3. For the GWR models, the
bandwidth was optimized at 50 m for the Meuse data and 80 m for the California data.
Although RF Meuse models are trained on different feature sets (e.g., non-spatial has only
original features or lag model has fewer features than the ESF model), the best “mtry” value
is equal to 5 for all of them. For the RF California models, the “mtry” is higher (i.e., 6) for
the spatial models and lower (i.e., 2) for the non-spatial model.

Table 3. Models and their specifications. n/a = not applicable specification for GWR models.

Models Constructed Spatial Features Selected Spatial
Features

Optimal
Mtry Bandwidth

Non-spatial model Meuse n/a n/a 5 n/a
Spatial Lag model Meuse lag_k5, lag_k10, lag_k15 lag_k5 5 n/a
ESF model Meuse ev1~ev152 ev8, ev11, ev12 5 n/a
GWR model Meuse n/a n/a n/a 50

Non-spatial model California n/a n/a 2 n/a
Spatial Lag model California lag_k5, lag_k10, lag_k15, lag_k50 lag_k5, lag_k10, lag_k15 6 n/a
ESF model California ev1-ev 200 77 features 6 n/a
GWR model California n/a n/a n/a 80

Regarding the spatial lag features of the Meuse data, they were constructed with the
number of nearest neighbors equal to 5, 10, 15, respectively, while the selected one was
the lag_k5. For the California data, lags of more k-nearest-neighbors were used and the
selected ones were these for 5, 10, and 15 neighbors.
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The Meuse dataset contains fewer than 200 observations, so the eigenvalues of the
weight matrix were not approximated but rather precisely calculated. The ESF features were
then selected by LASSO. Eigenvector features are indicated by “ev” and a number. “ev1”
represents the eigenvector corresponding to the largest eigenvalues, and likewise, the num-
bers follow. However, since the California dataset contains more than 20,000 observations,
it is impractical and unnecessary to calculate eigenvalues of the full spatial weight matrix.
Thus, 200 eigenvalues were approximated from the exponential kernel matrix. Due to
the content limits, the selected ESF features are not shown in Table 3 but were in total
77 features.

4.2. Importance of Explanatory Variables

In this section, we look at the influence that each explanatory variable (i.e., features)
has on the tested models (Table 4). For the RF models, the relative feature importance of
the final model is extracted. Relative feature importance is obtained by scaling the original
values to 0–100%. For the benchmark GWR models, different estimate parameters are
calculated in each location. To compare the impact of the covariates, we present the mean
absolute coefficient derived from the standardized coefficients at each location. Figure 3
shows the bedroomsAvg and population coefficients for the California dataset, as well as
the elevation and distance coefficients for the Meuse dataset. We see that the coefficient
values vary spatially and the patterns also are different between the covariates. This
indicates spatial heterogeneity in both datasets. Furthermore, we calculated the number of
observations (i.e., locations) for which the coefficient is significant. Following the approach
by da Silva and Fotheringham [73], significance is calculated with corrected t-tests for
testing the significance of local parameter estimates to avoid excessive false positives.

For the Meuse GWR model, the variable om (organic matter) has the highest mean
absolute standardized coefficient (i.e., 0.43) but is also insignificant for more than half of
the locations. For the Meuse RF models, distance to the river and elevation are the first and
respectively the second most influential features for all models. Interestingly, for the GWR
models, although coefficients’ values may vary across locations due to spatial heterogeneity
they are also significant everywhere. This indicates how important these two features are
for the models regardless of considering or not spatial properties (e.g., autocorrelation or
heterogeneity). Spatial autocorrelation is also important in modelling Meuse data because
the inclusion of spatial features such as lag_k5 or ev34 displaces other features (e.g., om
or ffreq) further down regarding their relative importance. Nevertheless, spatial features
appear to be less influential compared to distance and elevation.

Table 4. Impact of the explanatory variables on the models. For each model, the variables are ordered
and enlisted based on their impact (e.g., the highest relative importance is at the top and the lowest at
the bottom). R.I = relative importance, Coeff. = mean absolute value of the standardized estimated parameters,
Insig. = number of insignificant parameters.

Meuse Models

Non-Spatial Spatial Lag ESF GWR

R.I R.I R.I Coeff. Insig.

dist (100%) dist (100%) dist (100%) om (0.43) 93
elev (56%) elev (44%) elev (46%) elev (0.37) 0
om (25%) lag_k5 (33%) om (40%) dist (0.33) 0

ffreq (10%) om (32%) lime (12%)
lime (9%) lime (11%) ev34 (11%)

landuse (1%) ffreq (9%) ev8 (9%)
soil (0%) soil (1%) ffreq (7%)

landuse (0%) ev11 (4%)
landuse (3%)

soil (1%)
ev12 (0%)
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Table 4. Cont.

California Models

Non-Spatial Spatial Lag ESF GWR

R.I R.I R.I Coeff. Insig.

income (100%) lag_k5 (100%) ev1 (100%) bedroomsAvg (0.67) 254
households (22%) lag_k10 (38%) ev4 (85%) households (0.66) 104
population (16%) income (26%) ev147 (54%) roomsAvg (0.64) 2013
roomAvg (10%) lag_k15 (18%) ev10 (43%) population (0.50) 143
houseAge (8%) roomsAvg (7%) roomsAvg (42%) income (0.31) 5814

bedroomsAvg (0%) houseAge (3%) ev21 (42%) houseAge (0.12) 940
population (2%) ev8 (39%)
households (1%) ev64 (38%)

bedroomsAvg (0%) ev136 (37%)ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 12 of 22 
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Regarding the California models, the results are quite different. First, spatial features
are largely predominant in the spatial lag and ESF models, which indicates that spatial
autocorrelation is important for the house-price models. Secondly, in the GWR models,
for a large number of locations non-spatial features are not significant, which indicates a
larger diversity in “where” in the study area these explanatory variables are important (at
least compared to the Meuse data). Furthermore, in some cases, these are the features with
high-to-moderate coefficients in the models (e.g., roomsAvg and income). For instance,
income coefficient values are insignificant for 28.16% of the samples (5814 locations).
This could explain why in the non-spatial model, income is ranked first regarding its
feature importance.

4.3. Performance Evaluation—RMSE Error

In Table 5 we see the training and test errors derived from RMSE values across the
models. In both datasets, models with spatial features yielded the lowest test errors. That
is the ESF model Meuse with a test error of 171.82 and the Spatial Lag model California
with a test error of 44034.95. GWR models have the second-lowest errors. Concerning the
highest errors, for the Meuse data, the test error is the highest in the non-spatial model
(191.04), but for the California data, the ESF model has the highest error (68158.81).

Table 5. RMSE—Training and Testing Errors. For the RF models test error is the average of the RMSE
for each fold, and for the GWR models test error is the RMSE of the test data. Training error is the
RMSE of the fit for all data models.

Models

Models—Outer Folds—RMSE

Test Error

Model Fit
All Data

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Training
Error

Non-spatial model Meuse 179.54 123.25 191.55 201.07 259.77 191.04 83.59
Spatial Lag model Meuse 181.05 120.44 195.43 187.23 229.00 182.63 79.69
ESF model Meuse 149.87 109.02 182.29 176.88 241.04 171.82 75.52
GWR model Meuse n/a 177.80 134.53

Non-spatial model California 65,589.35 64,799.53 66,965.33 68,654.93 63,721.71 65,946.17 29,857.57
Spatial Lag model California 44,018.01 43,306.16 45,092.36 44,457.47 43,300.77 44,034.95 17,949.20
ESF model Meuse California 70,264.71 67,756.02 66,949.00 66,348.53 69,475.80 68,158.81 20,825.50
GWR model Meuse California n/a 49,077.10 32,415.91

The training errors show that the spatial features models fit the data better than the
non-spatial models. However, they also show how largely lower the errors are compared
to the test errors. To a certain degree this is because the training error is derived from
models (model fit all data) of larger sample size, but also because with the inclusion of
more features, RF tends to overfit the data, and thus when applied to unseen data the error
will be higher. The training errors of the GWR models are much higher than those of the
RF models. Nevertheless, they also have closer values to the values of the test errors. Thus,
when using GWR to train a model to be used for out-of-sample predictions, the evaluation
of the trained model will be more realistic than that of an RF model.

When comparing non-spatial with spatial RF models, the test error in three out of
the four comparisons (i.e., 1. spatial lag Meuse vs. non-spatial Meuse, 2. ESF Meuse vs.
non-spatial Meuse, 3. spatial lag California vs. non-spatial California, 4. ESF California
vs. non-spatial California), shows that the models with spatial features are more accurate
because the error has lower values ranging from 4% up to 33%. The exception to this is
the ESF California model with a 3% higher test error compared to the error of non-spatial
California model. Similarly, incorporating either spatial lag or ESF substantially lowers the
training error (ranging from 5% up to 40% of lower values).
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4.4. Spatial Autocorrelation Evaluation—Lobal and Local Moran’s I

Both the global and local autocorrelation of the residuals is significantly improved
in the spatial RF models and the GWR models compared to the non-spatial models. In
Table 6, we see the Moran’s I values and the number of insignificant LISA clusters of the
residuals. Maps that depict the four LISA groupings including the insignificant values are
shown in Figure 4 (for the Meuse data) and Figure 5 (for the California data). The maps
show the clustering regions of overestimated values (HH), underestimated values (LL), as
well as cluster outliers (HL and LH). The integer in parentheses refers to the number of
observations within each category.
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Table 6. Global and local spatial autocorrelation of model residuals. The p-value of the Moran’s I is
approximated under Monte Carlo simulation of 1000 times.

Models No of Insignificant LISA
Clusters of Residuals Moran’s I of Residuals

Non-spatial model Meuse 126 0.20 (0.001)
Spatial Lag model Meuse 134 0.029 (0.227)

ESF model Meuse 130 0.19 (0.001)
GWR model Meuse 139 0.08 (0.029)

Non-spatial model California 15,381 0.42 (0.001)
Spatial Lag model California 18,941 0.023 (0.999)
ESF model Meuse California 19,514 0.019 (0.999)

GWR model Meuse California 18,566 0.016 (0.0009)

Regarding the number of insignificant LISA clusters, the GWR model has the highest
number for the Meuse data (139) and the ESF model has the highest number for the
California data (19,514). In an ideal model, there would be no significant LISA clusters at
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all. This would imply at first that there are no other spatial properties that are not captured
by the models, and secondly, it could validate that the performance evaluation done by a
global statistic, such as RMSE, is robust and does not vary greatly within the study area.

Similar observations to the LISA clusters can be made for the Moran’s I values that
show statistically significant clustering patterns for both non-spatial models (i.e., 0.2 for the
Meuse data and 0.42 for the California data). The Meuse ESF model still exhibits significant
autocorrelation (i.e., 0.19), yet lower than the respective non-spatial model. The spatial lag
models have insignificant p-values, indicating that the Null hypothesis cannot be rejected
and the patterns are random. The GWR models have statistically significant autocorrelation
but much lower than the non-spatial models and very close to a random pattern (expected
I value).

These results accord with our expectation that the inclusion of spatial information is
supposed to help capture the spatial autocorrelation and increase accuracy and share a
consensus with previous related research [27,34,35,47].

5. Discussion

This study investigated the incorporation of two spatial features, i.e., spatial lag
and eigenvector spatial filtering, in ML to account for spatial autocorrelation. However,
the models that we employed (RF, Spatial-lag RF, ESF RF, and GWR) cannot explain the
behavior of our target features, and our outcomes are interpreted by association and
correlation, rather than causality. Therefore, the focus of our analysis and results is on the
predictive performance and the error reduction of the models (both globally and locally).

Rather than only one single spatial lag feature used by previous studies, multiple
spatial lag features were constructed for our experiments. Various k values of the k-nearest-
neighbor were used to indicate different possibilities of the spatial weight matrix. A
data-driven LASSO procedure was introduced to select the most informative subset of
spatial lag features. For ESF features, a classic exponential kernel was employed to create a
positive semidefinite weight matrix. The eigenvectors extracted from the weight matrix
represent varying map patterns. To reduce the number of eigenvectors, the same LASSO
procedure was adopted to select a parsimonious subset of ESF features.

The prediction errors of spatial random forest models have dropped in three out of
four experiments. Thus, in line with the findings from previous related studies [25,26,35,74],
we found that the incorporation of spatial features helps to build more accurate models
when applied to unseen data. Furthermore, GWR models have the second-lowest errors
showing their superiority as well over non-spatial random forest models. Additionally, the
training errors of the GWR models were higher than the errors of all other random forest
models but at the same time closer to the respective test errors.

When spatial features were induced in the random forest models, the global spatial
autocorrelation was successfully reduced in the residuals (up to 95% in the California
housing case). The size of high-high and low-low clusters shrunk, and the number of
non-significant LISA values has increased. GWR models gave similar results showing that
both a spatial heterogeneity-based model as well as a spatial dependency-based machine
learning model reduce spatial autocorrelation of the prediction residuals compared to
traditional (a-spatial) machine learning workflows. The decrease or elimination of the SAC
in the prediction residuals has been discussed and assumed in previous related studies, but
here we provide evidence to this claim via the results of global and local SAC statistics.

However, the effects on reducing heterogeneous local clusters (HL and LH clusters
in LISA) are marginal. How to explicitly express the outlier clusters remains unexplored
and requires further research. Furthermore, it is worth the effort for future studies to
explore whether the combination of spatial lag and ESF features would yield a better model
performance.

Both GWR models and machine learning models with spatial features improve the
predictive performance and exhibit a more robust evaluation of the errors in space. The
advantage of the models with spatial features against the GWR models is that they can
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detect non-linear relationships and also include categorical features. These favorable char-
acteristics call for further investigation of such models and perhaps examining possibilities
to include simultaneously spatial heterogeneity and spatial autocorrelation in machine
learning workflows. An opportunity to do this would be to further expand the geographical
implementation of RF, named Geographical Random Forest (GRF) [74,75], which captures
the spatial heterogeneity process, by the inclusion of spatial dependence features that
capture the spatial autocorrelation.

Our experiments involve a classic, spatial prediction scenario. That is out-of-sample
prediction at different locations within the same study area. Furthermore, this workflow
can be used to derive a model in an area a and time t-1 and use it to predict target y in
the area a and time t, when covariates in t are known and target y is unknown. These
are common prediction tasks in many application domains for which traditional ML algo-
rithms have been used such as crime [76,77], health/epidemiology [78–80], housing [81,82],
traffic [83,84], and socioeconomic indicators [85,86].

What if we want to use a fitted model to spatially extrapolate; in other words, apply the
model in a different study area? A non-spatial model may perform the same (if not better)
than a model with spatial features that were trained in a different study area or spatial
CV may be needed to evaluate model accuracy [24,87]. More research is needed to reveal
how various spatial prediction scenarios may or may not require altering the modelling
workflow and the algorithms being used. In addition, our modelling workflow does not
automatically create a continuous surface of estimated values from observation points
similar to what kriging geostatistical methods [88] or the more recent RFsp technique [22]
can do. However, with a different set of covariates (i.e., raster data), this can also be a
possible application.

When comparing the two types of spatial models (spatial lag and ESF), we cannot
conclude if one type performs better than the other regarding the Moran’s I or the LISA
clusters, but the decrease of the error was consistent only for the spatial lag models.
Furthermore, the influence of spatial features in the Meuse models is not as powerful as
that in California housing models. Meuse data have a smaller number of observations than
the California data, which may be the first possible explanation of the difference. Such
data (i.e., heavy metals in soils) are sampled with a spacing of observations which may
impact the degree of spatial autocorrelation measured. With a larger sample, the intensity
of sampling will be increased and thus spacing will decrease, resulting in an increased
degree of spatial autocorrelation [89]. Furthermore, different spatial mechanisms of zinc
concentration and housing price could be a second possible explanation for the observation.
For example, this study shows that house prices relate to an autoregressive response (i.e.,
the spatial lag) more than zinc concentration. This was evidenced by the use of a spatial
weight matrix that was constructed based on the concept of spatial proximity (i.e., nearest
neighbors). However, a study by Ejigu and Wencheko [39], which examined Meuse data
as well, showed that two locations may be close geographically but separated by other
factors and as such shall not be considered as near neighbors. The authors recommend
using a weighting matrix that combines geographic proximity and covariate information
when the distributions of the outcome variable change with values of the covariate. A third
possible explanation is that Meuse predictors are better and thus stronger in predicting the
dependent variable compared to the predictors used for the California data. Investigation
on more datasets with varying data sizes and themes would uncover a more complete
understanding of the performance of the two proposed spatial features.

Regarding the spatial weight matrix, we experimented with various k values of the
k-nearest-neighbor resulting in different spatial weight matrices for the spatial lag features.
Nevertheless, more k values can be tested. Similarly, for the construction of ESF features or
the implementation of the GWR models we employed default suggestions for the settings
that involved different spatial weight matrices (i.e., distance-based exponential kernel
function for ESF and distance-based Bi-square kernel function for GWR). Future research
may consider performing a sensitivity analysis on these settings. Additionally, a possible
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research direction would be to automatically configure the spatial weight matrices within
the model tuning phase and also include various definitions of weight matrices (e.g.,
distance band, k nearest neighbors, kernel functions, contiguity based, or proximity-based
coupled with covariate information).

Last, our experiments were conducted with random forest and we observed variations
of model performance among the two datasets. New application studies with other ML
algorithms (such as support vector machine, neural networks) are needed to understand
the robustness and efficiency of our proposed spatial ML modelling workflow.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijgi11040242/s1, Figure S1: Meuse dataset, model residuals: (a)
Non-spatial model, (b) spatial-lag model, (c) ESF model; Figure S2: California dataset, model residuals:
(a) Non-spatial model, (b) spatial-lag model, (c) ESF model.
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82. Čeh, M.; Kilibarda, M.; Lisec, A.; Bajat, B. Estimating the Performance of Random Forest versus Multiple Regression for Predicting
Prices of the Apartments. ISPRS Int. J. Geo-Inf. 2018, 7, 168. [CrossRef]

83. Acker, B.; Yuan, M. Network-based likelihood modeling of event occurrences in space and time: A case study of traffic accidents
in Dallas, Texas, USA. Cartogr. Geogr. Inf. Sci. 2018, 46, 21–38. [CrossRef]

84. Keller, S.; Gabriel, R.; Guth, J. Machine Learning Framework for the Estimation of Average Speed in Rural Road Networks with
OpenStreetMap Data. ISPRS Int. J. Geo-Inf. 2020, 9, 638. [CrossRef]

85. Dong, L.; Ratti, C.; Zheng, S. Predicting neighborhoods’ socioeconomic attributes using restaurant data. Proc. Natl. Acad. Sci.
USA 2019, 116, 15447–15452. [CrossRef]

86. Feldmeyer, D.; Meisch, C.; Sauter, H.; Birkmann, J. Using OpenStreetMap Data and Machine Learning to Generate Socio-Economic
Indicators. ISPRS Int. J. Geo-Inf. 2020, 9, 498. [CrossRef]

87. Crosby, H.; Damoulas, T.; Jarvis, S.A. Road and travel time cross-validation for urban modelling. Int. J. Geogr. Inf. Sci. 2020, 34,
98–118. [CrossRef]

88. Diggle, P.J.; Tawn, J.A.; Moyeed, R.A. Model-based geostatistics. J. R. Stat. Soc. Ser. C Appl. Stat. 1998, 47, 299–350. [CrossRef]
89. Griffith, D.A. The geographic distribution of soil lead concentration: Description and concerns. URISA J. 2002, 14, 5–14.

http://doi.org/10.1080/13658816.2020.1719495
http://doi.org/10.3390/ijgi9110645
http://doi.org/10.1155/2021/7196492
http://doi.org/10.1016/j.apgeog.2013.09.022
http://doi.org/10.3390/ijgi10110745
http://doi.org/10.3390/ijgi8080349
http://doi.org/10.3390/ijgi7050168
http://doi.org/10.1080/15230406.2018.1515037
http://doi.org/10.3390/ijgi9110638
http://doi.org/10.1073/pnas.1903064116
http://doi.org/10.3390/ijgi9090498
http://doi.org/10.1080/13658816.2019.1658876
http://doi.org/10.1111/1467-9876.00113

	Introduction 
	Related Work 
	Methods 
	Data Sources 
	Meuse River Dataset 
	California Housing Dataset 

	Construction and Processing of Spatial Features 
	Spatial Lag Features 
	Eigenvector Spatial Filtering 

	Machine Learning and Benchmarking Models 
	Random Forest 
	Geographically Weighted Regression 

	Performance Evaluation 
	Spatial Autocorrelation Evaluation 

	Results 
	Specifications of the Models 
	Importance of Explanatory Variables 
	Performance Evaluation—RMSE Error 
	Spatial Autocorrelation Evaluation—Lobal and Local Moran’s I 

	Discussion 
	References

