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Abstract: This article describes an original methodology for integrating global SIR-like epidemic 

models with spatial interaction models, which enables the forecasting of COVID-19 dynamics in 

Poland through time and space. Mobility level, estimated by the regional population density and 

distances among inhabitants, was the determining variable in the spatial interaction model. The 

spatiotemporal diffusion model, which allows the temporal prediction of case counts and the 

possibility of determining their spatial distribution, made it possible to forecast the dynamics of the 

COVID-19 pandemic at a regional level in Poland. This model was used to predict incidence in 380 

counties in Poland, which represents a much more detailed modeling than NUTS 3 according to the 

widely used geocoding standard Nomenclature of Territorial Units for Statistics. The research 

covered the entire territory of Poland in seven weeks of early 2021, just before the start of vaccination 

in Poland. The results were verified using official epidemiological data collected by sanitary and 

epidemiological stations. As the conducted analyses show, the application of the approach 

proposed in the article, integrating epidemiological models with spatial interaction models, 

especially unconstrained gravity models and destination (attraction) constrained models, leads to 

obtaining almost 90% of the coefficient of determination, which reflects the quality of the model’s 

fit with the spatiotemporal distribution of the validation data. 
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1. Introduction 

COVID-19 is an infectious disease caused by the newly discovered coronavirus, 

SARS-CoV-2. The virus was first discovered in Wuhan,  China, and has quickly spread all 

around the world, infecting populations in most countries. The spread of COVID-19 is 

inherently a spatial process; therefore, attempts to combat its spread would benefit from 

modeling spatial interactions. This article expands on a previous study using gravity 

models to model the spatial development of the COVID-19 pandemic in Poland [1]. The 

present study describes the parameterization method of epidemiological models, and the 

development of spatial interaction models to simulate the pandemic development and 

determine the spatial (and temporal) distribution of the number of cases in Poland. 

Reference data on the number of cases in individual powiats (county-level administrative 

districts) provided by sanitary and epidemiological stations have confirmed the reliability 
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of the prediction. However, the complexity of factors influencing the dissemination of  

SARS-CoV-2  poses a challenge, as it is extremely difficult to understand the relationships 

between individual variables and the outcomes being measured. Despite similarities to 

past respiratory viral illnesses such as SARS and MERS, as well as to annual seasonal 

influenza, COVID-19 has specific characteristics including heightened transmissibility 

[2,3]. It should also be noted that international traffic and tourism strongly increased the 

spread of the disease, globally, when compared with the viral diseases mentioned above. 

The relatively high infectivity and long incubation period, and the long viral shedding 

period, have contributed to a high number of transmissions, many of which have occurred 

through human-to-human contact with individuals showing no or mild symptoms [4–6]. 

These features of COVID-19 make it more difficult to model its spread simultaneously in 

different spatial locations than to calculate the number of cases for the whole country. 

Classical approaches to mathematical modeling of the spread of diseases, from the 

Kermack-McKendrick epidemic (compartmental) model to newer network models, as 

well as the family of stochastic models [7], assume mixing across the entire population 

without  considering its diversity, variegation, and substratification. On the other hand, 

the literature on epidemic research presents numerous methods and models concerning 

morbidity and the spatial aspects of diseases. Frequentist approaches use cellular 

automata and multiagent simulations ([multi-]agent-based modeling), which 

appropriately reflect direct contacts among people. However, these approaches involve 

modeling each individual and are limited by computational burden. It is clear that 

concentrating on spatially distributed subpopulations may allow for more accurate 

modeling than perfect mixing models, while incurring a lower computational burden 

than, for instance, multiagent models. 

Wilson [8] originally formulated a group of spatial interaction models in the context 

of urban and regional systems, but also proved their suitability as models of epidemics in 

complex spatial systems with mutual interactions [9]. The family of gravity models also 

became used in infectious disease epidemiology [10–12]. 

Whereas the gravity model concerns a pair of points, Stewart [13] introduced the 

notion of potential that encompasses the influence of all other points on a particular point 

[14]. The potential is a measure of the influence of the population size, referred to 

elsewhere in the paper as the mass m, located at some point (e.g., in the middle of a certain 

city/region) within a distance d from this point. The notion of population potential was 

used as a measure of the number of contacts between people [15], additionally taking into 

account the ‘first law of geography’ [16]. This approach is also used to model infectious 

diseases and epidemics [17]. Wilson [9] introduced the concept of the probability of such 

contacts into spatial interaction modeling, taking into account the spatial dimension 

(distance or its functional measure, e.g., time). This approach also uses the entropy 

measure, which is used to assess the quality of the model fit. In recent literature, several 

spatiotemporal models have been proposed for COVID-19. In most of them [18–20], 

interactions between countries are related to fluxes of people moving between locations. 

This leads to asymmetries that cannot be directly explained with the physical distance 

between two places. One such successful approach for modeling COVID-19 has been the 

SIDARTHE model [21]. 

Construed spatial global, national, and regional models of the pandemic have aimed 

to identify and monitor spatial and temporal patterns and trends, and further, to reach a 

better understanding of the relationship between different potential variables 

(environmental, socioeconomic, demographic, etc.), among other goals. Geographical 

information systems (GIS) play a pivotal role in understanding the spatial clustering, 

transmission trend, and mapping the spread of infectious diseases. Different GIS 

techniques have been fundamental to decision-making by authorities during the COVID-

19 pandemic. They may also contribute significantly to organizational security in the post-

pandemic period. A range of GIS models and applications for tracking the COVID-19 



ISPRS Int. J. Geo-Inf. 2022, 11, 195 3 of 21 
 

 

epidemic and factors influencing the spread of COVID-19 have been developed to date 

[22–27]. 

Despite similarities to other respiratory virus outbreaks, COVID-19 stands out in 

terms of its global scale and high infection rate. A comparison between the SARS outbreak 

in 2003 in China, caused by a similar coronavirus, and COVID-19, highlighted that 

COVID-19 is far more transmissible, spreading from a single city to the entire country in 

just 30 days [28]. The causes of this difference are thought to be manifold and may include 

social and demographic factors, local government containment strategies, and differences 

in the dynamics of transmission between these two coronaviruses [29]. There have been 

many attempts to build multivariate regression models to explain the number of cases in 

each county in ongoing studies. Population density, road network density, industrial and 

residential buildings, have been among the independent variables studied in such models. 

Typically, three groups of risk factors that shape the volume, intensity and spatial 

dispersion of diseases are taken into account when creating models: individual risk, 

natural environment (climatic) risk, and social and demographic risk. However, there is 

no convincing evidence regarding the rank-order of which factors are most important. 

The aim of this study was to construct a model of the geographic dissemination of 

COVID-19 in Poland based on spatial interaction models. We put forward the research 

hypothesis that it is possible to achieve a good-quality model, assuming a single 

independent variable: the mass of the population in administrative units. This approach 

allows for synergies between the models, enabling the time forecast of case counts (e.g., 

the classical SIR epidemiological model) and models of spatial interactions. The combined 

application of these approaches enables a reliable prediction of the number of infected 

people in administrative divisions. Our model is intended as a support tool that includes 

a geographic spread to the conceptualization of disease spread. It could be used as an a 

priori tool for estimating the spatial locations of infection outbreaks, as well as a way of 

evaluating future infection rates. An important advantage of the constructed model is its 

spatial aspect; i.e., it enables the evaluation of the potential spatial differentiation of the 

infected number of people within the set of observed spatial units (for instance, counties 

in Poland), which is especially important in the case of COVID-19 and similar diseases.  

This approach provides useful insights simulating spatial networks in a flexible way, 

reducing the burden of individual simulations and predictions for each individual–level 

observation. While it represents a simplification of the spatial spread of the infection of 

pandemics, it nevertheless provides the possibility to extend into metapopulation models 

and spatial numerical simulations of epidemics in complex networks [30,31]. In this way, 

models can include distances. All types of pre-existing mathematical models can be 

expanded to be solved, maximized, or estimated using the adopted spatial analysis 

approach, reducing the uncertainty of empirical data [32]. 

2. Methods 

2.1. SIR and SIR-F Models 

Well-known deterministic compartment susceptible–infected–recovered [33] 

epidemic models based on viral transmission (in this case SARS-CoV-2) within a 

population (N) have been used since the beginning of the 20th century, and are described 

using a set of ODE (ordinary differential) equations: 

��

��
= −���,

��

��
= ��� − ��,

��

��
= �� (1)

S+I+R=N  for all t (2)

where S, I, and R are the numbers of susceptible, infected, and recovered individuals, 

respectively; N is the size of the population; � is the contact rate capturing the ‘interaction 

frequency’, the rate of flow from susceptible to infected; � is the recovery rate, the rate of 

flow from infected to recovered or dead; and t denotes time [34]. There are several 
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variations of models derived from the basic SIR model. In this paper, we apply the SIR-F 

model, which partitions the R (recovered) population into recovered and failed (deceased) 

subpopulations. 

2.2. Gravity Model 

The general formula of population gravity between two certain points is described 

as Tij = f (Oi,Dj, dij), where Tij is the volume of interactions (contacts), Oi is the flow 

emanating from the origin i and representing the push factor (e.g., emissiveness), Dj is the 

flow terminating at the destination point j and representing the pull factor (e.g., 

attraction), and dij is the distance between i and j representing the spatial separation (e.g., 

the Euclidean or road distance, time or cost function). Given one county, summing the 

individual gravity volumes over all columns or rows gives the population potential for 

the origin or destination, respectively (Table 1, O: origins of contacts, D: destination of 

contacts). 

Table 1. Spatial interaction models (summary). 

O\D Reg. 1 … Reg. n ∑O O\D Reg. 1 … Reg. n ∑O O\D Reg. 1 … Reg. n ∑O O\D Reg.1 … 
Reg. 

n 
∑O 

Reg. 1 … … …  Reg. 1 … … … ∑O1 Reg. 1 … … …  Reg. 1 … … … ∑O1 

… … … …  … … … … … … … … …  … … … … … 

Reg. n … … …  Reg. n … … … ∑On Reg. n … … …  Reg. n … … … ∑On 

∑D    ∑∑ ∑D    ∑∑ ∑D ∑D1 … ∑Dn ∑∑ ∑D ∑D1 … ∑Dn ∑∑ 

I. Unconstrained gravity 
II. Production (origin) 

constrained 

III. Destination (attraction) 

constrained 
IV. Doubly constrained 

Additional parameters, such as the distance decay function (dijβ, where β is the 

exponent) between the origin (A) and destination (B), serve to optimize gravity models. 

Considering these parameters and the entropy-maximizing framework allows one to 

arrive at the following formulas defining the influence of independent variables on 

“emissiveness” (V) and attractiveness (W) (Equation (2I–IV) [35]): 

Unconstrained gravity model: 

��� = ��
�

��
�/���

�
 (2.I) 

Production (origin) constrained model: 

��� = ������
�/���

�
 , where �� = 1/(∑� ��

�/���
�

) (2.II)

Destination (attraction) constrained model: 

��� = ������
�

/���
�

 , where �� = 1/(∑� ��
�

/���
�

) (2.III)

Doubly constrained model: 

��� = ��������/���
�

 , where �� = 1/(∑� ����/���
�

) and �� = 1/(∑� ����/���
�

) (2.IV)

The formula must be calibrated based on the interplay coefficients resulting from the 

gravity concept. For each pair of counties i and j, we determined the interplay coefficient 

Iij as follows: 

��� =
����

���
�  ∀�, �: � ≠ �  (3)

��� =
��

�

��
�  ∀�  (4)

While Equation (3) is the typical gravity equation assuming two counties located at 

distance dij, in Equation (4), we assumed that the interplay coefficient Iii is the number of 
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inhabitants divided by the square of the radius of a circle with an area equal to the area of 

the county. 

Spatial interaction model fit statistics utilize a replacement of the coefficient of 

determination (pseudo R2) based on the likelihood function and its counterpart and an 

adjusted coefficient of determination (adjusted pseudo R2), which can be interpreted 

similarly—a maximum value close to 1 denotes better model fit [36]. Model complexity is 

assessed using the Akaike [37] information criterion (AIC), derived for information 

theory. Lower AIC values indicate better model fit as an evaluation of the volume of 

information lost [37]. The typically utilized statistical parameter is the standardized root-

mean-square error (SRMSE) of the observed and simulated volume of interactions (in this 

case, infections). A higher value of SRMSE indicates decreased model assessment (starting 

from zero as the best fit). The SpInt library utilizes the Sorensen similarity index (SSI) in a 

similar way to the SRMSE. The values of the SSI can reach a maximum of one, denoting 

perfect model fit, while values close to zero are the worst [35]. 

To automate the calculation process, an authorial Python script was developed, 

which enabled all calculations to be performed for 380 counties in Poland. 

The open-source PySal SpInt Python library [38] and official registered COVID-19 

data were used within the framework of the proposed approach to trace the COVID-19 

pandemic at the county level in Poland [39]. 

The operationalization allows for any spatial resolution and temporal resolution, as 

well as demographic stratification. 

2.3. The Adopted Methodology 

Classic epidemic models, such as SIR, SIR-F, and SEIR, enable the reliable forecasting 

of the number of susceptible individuals, infected individuals, and recovered individuals, 

at specific time intervals and predetermined model parameters (the key parameter is the 

basic reproductive rate). However, the assumptions and limitations of SIR-type epidemic 

models are well known [40]. While they enable the reliable estimation of temporal 

changes, SIR-type models do not allow for the analysis of the spatial distribution of the 

number of cases, deaths, or severe cases. 

The COVID-19 pandemic outbreak can be studied using methods of spatial diffusion, 

as well as potential models (spatial interaction modelling) and visualizing using 

geographic information systems software, due to the following statistical characteristics 

to be analyzed: population, metapopulation models, spatial distances, and interactions 

(contacts) [41–44]. The inventor of spatial interaction modeling (A.Wilson) also 

introduced, as independent variables, the probability of contacts and spatial dimension 

(distance or its functional measure) [45]. 

The spatial interaction model that we apply may be regarded as an analogy to 

Newton’s theory of gravitational interaction. In the “gravitational” approach, two 

administrative units interact directly, proportional to the product of their “masses”, and 

inversely proportional to the square of their “distances.” However, the concepts of “mass” 

and “distance” are abstract and require clarification in the context of epidemic models. In 

general, the distance can be interpreted as a road distance or time distance that considers 

various methods of transportation (car, bus, train) and different road qualities or speed 

limits on roads or tracks. For the purpose of this work, we assume that the “distance” 

between counties is defined by the length of the segment connecting the centroids (centers 

of gravity) of counties in Poland. Similarly, there are many ways to interpret the concept 

of the “mass” of individual administrative units. We tested several measures of “mass”, 

including population density, relative population size, and economic attractiveness 

expressed as the number of jobs or the budget of individual administrative units. 

However, it has become apparent that the population volume of a county is the variable 

resulting in the highest coefficient of determination for the quality of the holistic model, 

explaining the spatiotemporal distribution of the number of COVID-19 cases in individual 

counties. 
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Based on the gravity concept, we determined the interplay coefficient of each pair of 

counties as the product of their population numbers divided by the square of the distance 

between them. The data used encompassed 380 counties and their populations according 

to the Statistical Yearbook issued by Statistics Poland, which results in 72,390 (triangular 

matrix with diagonal) distances between the centroids of individual populations and 

corresponding interplay coefficients. The collection and initial processing of data, 

including the calculation of interplay coefficients, was implemented using Python in the 

ArcGIS environment. 

Then, analogous to the notion of contingency tables in statistics, we estimated the 

table of probabilities of new cases occurring in county j, due to interactions with county i 

for elements in row i and column j of the table. In general, such a table is unknown, and 

the aim of model calibration is to recreate the contingency table based on available 

statistics. Depending on the available historical data used for model calibration, two 

possible cases can be considered: (1) only the total number of cases in the country is 

available and (2) the number of cases in each county is known. These two cases correspond 

to special cases of spatial interaction models, a so-called unconstrained gravity model and 

a production (destination) attraction model, respectively. We considered both cases in 

calibrating two models, again based on the statistical data gathered by sanitary and 

epidemiological stations in 380 counties. We applied the calibration framework SpInt in 

the PySal python library. 

First, we verified the hypothesis that the population size in each county is a proper 

explanatory variable. For this purpose, we calibrated the destination-constrained model 

that utilizes detailed data for each county. Since such detailed data may not be known, in 

the next step, we calibrated an unconstrained model that involves only a cumulative 

number of cases. 

We applied the SIR-F epidemic model to forecast the course of the epidemic at the 

country level. The SIR-F model was calibrated and tested on the basis of data gathered by 

sanitary and epidemiological stations, and published on government websites [30]. The 

calibration of the SIR-F and spatial interaction models was performed for data from the 

11th week of 2020 to the 6th week of 2021, inclusively. Then, we applied the resulting 

models to obtain the temporal and spatial prediction of the number of susceptible 

individuals, infected individuals, and recovered individuals in the 6th and 7th weeks of 

2021. 

3. Data, Experiments and Results 

3.1. Data 

The sources of the number of registered infections, recoveries and deaths are three 

sets of data collected by the Polish Ministry of Health. The cumulative numbers of 

infections (stacked) by county in Poland from weeks 11 to 41 of 2020 are presented on the 

chart and maps (Figures 1–3; map classification using geometrical interval). 
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Figure 1. Stacked, cumulative number of infections by county in Poland per week (from March 2020 

to July 2021; Study Period from weeks 11 to 41 of 2020); data source: Ministry of Health, Poland 

(counties are identified by statistical numbers, four-digit TERYT strings). 

These figures provide some spatial trends of COVID-19 diffusion during the 

observed time. Social events such as presidential elections, holidays for students and 

children, etc., could locally influence the rate of infections in different counties. Moreover, 

the study period used in this research was marked by major changes in intervention 

measures and testing strategies. Data analysis reveals changes in the number of cases over 

time and spatial trends, illustrating the government’s policy on introducing restrictions 

and limitations. Data showing the government’s measures are available on the Ministry 

of Health’s website and Twitter [46]. 

Figure 3 shows changes in the epidemic in Poland in weeks 48–52 (the so-called 

second wave). The concentration of the number of cases in large cities (capitals of 

voivodeships and powiats) is visible; thus, the spatial differentiation of the development 

of the COVID-19 pandemic in Poland is evident. 

Figure 2 presents the starting time (March 2020) and first (Spring) wave of the 

COVID-19 pandemic in Poland. Starting from patient 0 in Poland (the county Słubice, 

Western Poland, near German–Polish border), the pandemic spread to the most densely 

populated areas of Silesia and Lesser Poland (Małopolska), as well as in the largest cities 

and almost all counties with border crossings. During the summer holiday months, the 

pandemic slowed down modestly (see Figure 1), and people generally understated the 

hazard of the virus and were more mobile, behaving as they usually would during 

summer, i.e., visiting the north of Poland, its lake districts, and the beaches on the Baltic 

Sea. Figure 3 presents the situation during the second wave (Autumn 2020). All urbanized 

regions and suburban areas of cities were foci of pandemic outbreaks and, moreover, 

Northern areas of Poland, although less populated, but wetter and cooler, are also touched 

by the spread of COVID-19. Other social and political phenomena (anti- and pro-abortion 

demonstrations) also likely influenced the disease dynamics in Poland’s largest cities in 

October and November 2020, despite the official “DDM” policies (distance, disinfection, 

masks).  
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Figure 2. Total number of infections by county in Poland (from weeks 11 to 42 of 2020); our study 

was based on data from the Ministry of Health, Poland. 

Modeling pandemic spread required the collection of spatial data (administrative 

divisions of the country) and demographic data, characterizing the population and the 

level of population mobility. These data were obtained from the Head Office of Geodesy 

and Cartography [47] and Statistics Poland [48]. Both standard GIS tools (ArcGIS Pro, 

QGIS) and dedicated programming libraries developed in Python were used for data 

analysis. 

 

Figure 3. Total number of infections by county in Poland (from weeks 48 to 52 of 2020); our study 

was based on data from the Ministry of Health, Poland. 
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3.2. SIR-F model Calibration 

Using COVID-19 data from Poland in subsequent weeks, which were made available 

on government websites and in the CovsirPhy library [49,50], the values of the parameters 

of the SIR-F epidemiological model were estimated [51]. Information on the number of 

COVID-19 cases in Poland at the national level is presented in Figure 4. 

 

 

Figure 4. Poland, COVID-19: Cases over time with monotonically increasing complemented 

recovered data (as of 7 February 2021; results: CovsirPhy Python Application). 

It should be noted that data concerning the infected population involve only a 

fraction of the whole infected population, and only the registered fraction of the tested 

population is disclosed statistically. According to an officially published daily report (as 

of 7 February 2021), a total of 204,007 people were actually infected (1,550,255 since 4 

March 2020), 1,307,161 recovered, and 39,087 failed (died, Figure 5). 

Example simulation results obtained from the calibrated SIR-F model are presented 

in Figures 5 and 6.  
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Figure 5. Poland, COVID-19: Simulation of cases over time (as of 13 February 2021; results: 

CovsirPhy Python Application). 

Figure 5 demonstrates that actual and projected values of the SIR-F model from week 

40 onward are almost fitted (in logarithmic scale). In fact, there was a complete 

reorganization of acquisition and sharing of the COVID-19 data from the beginning of 

October 2020. The data before 40 weeks are burdened with uncertainty, and contain gaps. 

 

Figure 6. Poland COVID-19: reproduction number over time (as of 13 February 2021; results: 

CovsirPhy Python Application). 

3.3. Model Calibration–Spatial Interaction 

The general spatial interaction models used in this article were calibrated by 

determining parameters based on the analysis of data made available by district (powiat) 

sanitary and epidemiological stations. The conducted analyses have shown a reliable (in 

a statistical sense) correlation between the number of inhabitants of individual powiats 

and the number of cases. 
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The spatial interaction models were calibrated using the generalized linear model, 

obtaining the logarithmic Poisson model. The authors compared the results with reference 

data, i.e., the number of cases in individual weeks in individual powiats in Poland. With 

this approach, it was possible to assess the reliability of the regression model parameters. 

The authors followed a similar procedure for the unconstrained gravity (Table 1, model I 

in Table 2) and destination (Table 1, attraction model III in Table 2) models, using the 

population statistics as the explanatory variables for a sequence of randomly chosen 

weeks in 2020. 

Table 2. Spatial interaction model fit statistics (* spatial verification; ** spatial prediction). 

Model Unconstrained Gravity Model (I) Destination (Attraction) Constrained Model (III) 

Week No. 

2020/2021 
Pseudo R2 

adj. 

pseudo R2 
AIC SRMSE SSI Pseudo R2 

Adj. 

Pseudo  

R2 

AIC SRMSE SSI 

15[2020] 0.208 0. 208 557,871.6 2.69 0.25 0.74 0.74 182,944.1 1.067 0.37 

20 0.197 0.197 1.72× 106 2.14 0.31 0.82 0.82 3.89× 105 0.74 0.47 

25 0.162 0.162 4.59× 106 4.13 0.196 0.90 0.90 5.34× 105 1.38 0.34 

28 0.162 0.162 4.795× 106 3.50 0.22 0.899 0.899 5.75× 105 1.22 0.38 

30 0.164 0.164 3.15× 106 3.66 0.25 0.88 0.88 4.44× 105 1.28 0.42 

33 0.235 0.235 2.55× 106 2.57 0.32 0.86 0.86 4.80× 105 0.99 0.51 

35 0.34 0.34 3.13× 106 2.04 0.42 0.87 0.87 6.31× 105 0.86 0.60 

36 0.44 0.44 5.17× 106 1.63 0.44 0.89 0.89 9.72× 105 0.81 0.63 

40 0.50 0.50 3.41× 106 2.08 0.45 0.89 0.89 7.31× 105 1.28 0.62 

48 0.78 0.78 240,549.3 23.93 0.001 0.85 0.85 167,863 19.12 0.001 

49 0.77 0.77 2.25× 105 24.69 0.001 0.845 0.844 1.55× 105 19.79 0.002 

50 0.78 0.78 205,945.5 26.42 0.001 0.849 0.848 140,473.2 20.68 0.001 

51 0.77 0.77 193,757.6 27.53 0.001 0.849 0.849 130,010.9 21.87 0.001 

52 0.77 0.77 91,125.6 29.32 0.001 0.851 0.849 59,741.23 22.68 0.001 

1 [2021] 0.772 0.772 178,070.68 28.05 0.001 0.85 0.85 118,350.50 22.97 0.002 

2 0.77 0.77 194,127.08 27.60 0.001 0.85 0.85 129,449.48 22.53 0.002 

3 0.767 0.767 147,442.42 27.19 0.001 0.849 0.848 96,156.31 21.10 0.001 

4 0.772 0.771 115,513.18 26.98 0.001 0.847 0.845 78,254.32 21.39 0.001 

5 0.776 0.776 107,080.50 26.92 0.001 0.848 0.847 73,356.91 21.15 0.002 

6 * 0.778 0.778 103,959.48 27.32 0.001 0.848 0.847 71,851.31 21.05 0.001 

7 * 0.774 0.774 112,247.09 28.04 0.001 0.847 0.846 76,803.60 21.47 0.001 

7 **           

Charts  

/sparkline/ 

for certain 

weeks 

 

 
adj. determination 

coefficient  

 
AIC 

 
SRMSE 

  
adj. determination 

coefficient 

 
AIC 

 
SRMSE 

 

3.4. Model Verification 

A verification of the destination-constrained spatial interaction models was 

performed for the 6th and 7th weeks of 2021 (1–7 February) using the acquired empirical 

aggregated data of COVID-19 infections by county. The general formula of the 

destination-constrained model (III) for 6th and 7th weeks of 2021 (Equation (3a,b)): 

��� = ���(−9.64087617 + 0.62338838 �� �� (��)  − 0.12427341 − (−0.11015654) �� (���)) (3a)

��� = ���(−9.71866096 + 0.63624388 �� �� (��)  − 0.12195776 − (−0.1101434) �� (���)) (3b)
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where Tij is the modeled number of infections in count j due to interaction with county i, 

Vi is the population of county i, and dij is the distance between county i and j; for the county 

itself, the distance taken into account was the radius of a circle of equal area to the county 

area. 

The coefficient of determination R2 equaled 0.85, meaning that the developed model 

explains 85% of the variance of the phenomenon and the actual number of cases. Based 

on the resultant model, the authors developed a map of the residuals of regression (Figure 

7a–d indicating a proportion of the number of cases not explained by the model. Table 2 

provides data on the quality of the model’s fit. The determined parameter β = -0.11 shows 

that, in a given powiat, the average increase in the incidence will amount to 10.4%, with a 

population increase per unit of distance (per 1 km). 

  

  

 
Figure 7a 
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Figure 7d 

Figure 7. Destination-constrained model: COVID-19 infections in Poland by county; sixth week of 

2021—map of the modeled values (a) and residuals ((b), modeled—real value); seventh week of 

2021—map of modeled values (c) and residuals (d). 

The results (Figure 7a) indicate that the developed model underestimates the actual 

number of infections. However, the obtained statistical data indicate the similar reliability 

estimates of unconstrained gravity and destination-constrained spatial interaction 

models. 

These models fit the statistics for different time intervals, to prove that the outbreak 

of the COVID-19 pandemic targeted the most populated areas over time. These values are 

more reliable than the data concerning one-week intervals (Table 3). 

Table 3. Spatial interaction model fit statistics (for different time intervals in the early stages of the 

outbreak). 

Model Unconstrained Gravity Model Destination (Attraction) Constrained Model 

Week No. 

2020 

Pseudo 

R2 

Adj. 

Pseudo R2 
AIC SRMSE SSI 

Pseudo 

R2 

Adj. Pseudo 

R2 
AIC SRMSE SSI 

10–22/sum/ 0.122 0.122 1.75 × 107 2.203 0.391 0.609 0.609 7.777 × 106 2.018 0.573 

10–42/sum/ 0.484 0.484 3.23 ×107 1.607 0.576 0.947 0.947 3.33 × 106 0.822 0.777 

1–7 [2021]  

/sum/ 
0. 779 0. 779 925,496.67 27.18 0.001 0.851 0.851 624,561.11 21.49 0.002 

1–7 [2021]  

sum * 
0.781 0.781 915,074.37 25.19 0.001 0.864 0.864 569,191.85 18.24 0.002 

* modeling using the population and commuters for counties as explanatory variables. 
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3.5. Simulation 

Our model can be combined with the SIR-F model for spatial predictions. The 

approach is to forecast the total number of cases and then disaggregate the total number 

of cases to obtain the spatial distribution. This leads us to the new concept of combining 

the classic epidemic models with spatial interaction models proposed and developed by 

O’Kelly [47] and Oshan [35]. The authors used the results of the predictive simulation 

obtained by applying the SIR-F model to the territory of Poland to estimate the number of 

infections in individual powiats. Due to the unknown spatial differentiation of infections 

within powiats, the authors used the unconstrained gravity model for this analysis The 

total numbers of simulated (absolute) susceptible, infected, failed, and recovered cases in 

Poland from the SIR-F model are presented in Table 4. The simulation of the SIR-F model 

was performed on 7 February 2021; the estimation of the unconstrained gravity model 

was completed at the end of the week. 

Table 4. Simulation of the SIR-F model in the sixth week of 2021. 

Date 
Confirmed 

Cases 

Fatal  

Cases 

Infected  

Cases 

Recovered  

Cases 

Diff.  

Confirmed 

Diff.  

Fatal 

Diff.  

Infected 

Diff.  

Recovered 

8 February 2021 1,553,164 39,478 203,234 1,310,452 6060 274 225 6011 

9 February 2021 1,558,463 39,754 202,915 1,315,794 6051 274 227 6004 

10 February 2021 1,563,753 40,030 202,595 1,321,128 6044 273 226 5997 

11 February 2021 1,569,035 40,305 202,276 1,326,454 6036 273 228 5991 

12 February 2021 1,574,307 40,580 201,956 1,331,771 6029 273 228 5984 

13 February 2021 1,579,571 40,855 201,636 1,337,080 6020 272 229 5977 

14 February 2021 1,603,175 41,034 203,706 1,358,435 6013 272 230 5971 

Total     42,206 1909 1598 41,895 

The unconstrained gravity models took different forms for the first weeks (sixth and 

seventh weeks of 2021, Equations 5 and 6) and for the seven weeks ahead (Equation 7). 

The modeling results are presented in the maps (Figure 8a–d). 

��� = ���(−9.64087617 + 0.62260227 �� (��) +  0.62260227 �� �� � ��� − (−0.11015654) �� �� ����� ) (5)

��� = ���(−9.71866096 + 0.62811812 �� (��) +  0.62811812 �� �� � ���  − (−0.1101434) �� �� ����� ) (6)

��� = ���(−6.87909269 + 0.60225244 �� (��) +  0.60225244 �� �� � ��� − (−0.11531647) �� �� ����� ) (7)

where Tij is the modeled number of infections, Vi is the population of county i, Wj is the 

population of county j, and dij is the distance between counties i and j; for the county itself, 

the distance taken into account was the radius of a circle of area equal to the county area. 
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(a) Modeled infected cases—seven weeks of 2021; 

aggregated unconstrained gravity model 

 

(b) Residuals of infected cases—seven weeks of 

2021; aggregated unconstrained gravity model 

 

(c) Simulation of infected cases based on seven weeks 

of 2021; unconstrained gravity model calibrated using 

SIR-F models. 

 

(d) Simulation of infected cases—seventh week of 2021; 

aggregated unconstrained gravity model calibrated 

using SIR-F models 

 

Figure 8. Simulation of COVID-19-infected cases in Poland; (a) model of infected cases—seven 

weeks of 2021; aggregated unconstrained gravity model; (b) Residuals of infected cases—seven 

weeks of 2021; aggregated unconstrained gravity model; (c) Simulation of infected cases based on 

seven weeks of 2021; aggregated unconstrained gravity model calibrated using SIR-F models; (d) 

Simulation of infected cases—seventh week of 2021; aggregated unconstrained gravity model 

calibrated using SIR-F models. 

4. Discussion 

The article aimed to develop a spatial interaction model using the “gravitational” 

approach, and test whether it adequately estimates the COVID-19 pandemic spread in 

Poland. The gravity model assumed the population size of individual powiats and their 

mutual distance as explanatory variables. The model that we developed has the advantage 

of combining the epidemic SIR model with the model of spatial interactions. Classical 

epidemic models such as SIR models provide a reliable estimate of changes over time, but 

do not allow for the spatial analysis of morbidity, death, or severe cases. 
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The results indicate that the unconstrained gravity model enables the prediction of 

the actual number of infections, as confirmed by the analysis carried out for the seventh 

week of 2021. The values obtained in the prediction are much higher than the official 

reports provided by district sanitary and epidemiological stations. This suggests that the 

actual number of cases is several times (even ten times) higher than the number of 

officially reported cases. The Interdisciplinary Center for Mathematical and 

Computational Modeling of the University of Warsaw (ICM UW) has obtained similar 

results [52]. 

Thus, the model presented in this study was calibrated in proportion to the estimated 

values obtained using the SIR-F model with proven reliability, while maintaining the 

spatial differentiation provided by the unconstrained gravity model. 

Of note, the expected total number of infections in Poland was 42,206 cases (Table 4, 

Figure 8d) in the seventh week of 2020. The model calibrated using official data from the 

Ministry of Health was less reliable (Equation 7, Figure 8a,b), as it assumed that the 

epidemiological situation in Poland in the analyzed period was not changing rapidly. 

There are at least two ways to verify the prediction of the number of infections in 

individual powiats. The SIR or SIR-F models were used at both the national and the 

district (powiat) levels, and the results were verified using a destination-constrained 

spatial interaction model at the district level, and an unconstrained gravity model at the 

national level. The promising results of this combined approach permit the hypothesis 

that the number of cured cases and the number of vaccinated cases should be considered 

additional variables in further studies. Taking these values into account would make it 

possible to reduce the study population susceptible to infection by the number of partially 

or permanently immunized. It is also possible to consider other social and demographic 

variables, such as age groups, employment status, and the occupational mobility of 

residents, among others. Including occupational mobility may be particularly crucial as it 

indicates the number of work-related contacts between individual administrative units. It 

would also be useful to consider more extended time series and to assess the credibility 

of the official epidemiological data provided by district sanitary and epidemiological 

stations to improve the prediction’s quality and credibility. One limitation of this study is 

that the model does not include pre-existing health problems, such as cardiovascular 

disease or diabetes, both of which are linked to COVID-19 infections, and in particular, to 

the worst outcomes. Incorporating such risk factors into COVID-19 research could be 

beneficial [53,54]. 

Moreover, the implementation of our model allows the assessment of the actual 

number of infections, and therefore, it can be used to predict future COVID-19 infection 

volumes, which provides good forecasts of an overview of future pandemic conditions 

[55,56]. In particular, the model can be used by central and local government 

administration to plan and manage efficient activities to counter the spread of COVID-19 

infections. It can help with decision-making and public health resource allocation by 

evaluating and visualizing spatial data on infection outbreaks. 

5. Conclusions 

Our study has shown that spatial interaction models are an adequate tool for 

modeling the spatial-temporal diffusion of the COVID-19 pandemic in Poland, and for 

determining the number of infections. The results can also be compared with research 

conducted in other countries. Moreover, numerical simulations have shown that, to 

determine the degree of mutual influence among administrative districts in terms of 

pandemic spread, data on the number of inhabitants and the distances between these units 

are sufficient. The model developed on the basis of these assumptions explains almost 

90% of the temporal and spatial variability of the phenomenon. 

The data set of COVID-19 infections used included the first year of the pandemic in 

Poland (12 months, i.e., from March 2020 to February 2021), and there was no additional 

information differentiating variants of SARS-CoV-2 virus infections. The modeling was 
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aimed only at the confirmation of the simple heuristic empirical evidence of the 

association between the potential (maximized, simulated) number of possible contacts 

and the revealed number of infections. To our knowledge, this was the first systematic 

approach aimed only at finding the spatial regularities of the COVID-19 pandemic in 

Poland. The confirmation of tested spatial trends will make it possible to introduce 

additional dependent (mortality or recoveries) and independent variables (e.g., mean 

radiative temperatures, MRT). It seems that, the shorter the period of the simulation, the 

greater the fit of dependent variables simulated. On the other hand, as mentioned above, 

some variables, such as MRT, reveal their impact during longer simulations, and there is 

no significance for the spatial heterogeneity of infections for short-time simulations in 

Poland (in fact, MRT is a confounding variable in these short periods). 

Our model includes a spatial component, which allowed for the assessment of the 

potential spatial differentiation of the infected number of persons within a set of observed 

spatial units (for example, counties in Poland), which is essential in the case of COVID-19 

surveillance. Hence, our model could help to assess the spatial locations of infection 

outbreaks, and determine the regularity of the spatial and temporal evolution of the 

pandemic. Therefore, the model we lay out here could be valuable to policymakers who 

need the geographic predictions of disease spread to make policy decisions. For example, 

the knowledge may provide a basis for implementing restrictions limited to specific 

geographic areas, based on the forecasts made with the model. 

In future work, the authors aim to include the vaccination policy model as well as 

data on the occupational mobility of residents during the pandemic. 
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