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Abstract: Windows, as key components of building facades, have received increasing attention in
facade parsing. Convolutional neural networks have shown promising results in window extrac-
tion. Most existing methods segment a facade into semantic categories and subsequently employ
regularization based on the structure of manmade architectures. These methods merely concern
the optimization of individual windows, without considering the spatial areas or relationships of
windows. This paper presents a novel windows instance segmentation method based on Mask
R-CNN architecture. The method features a spatial attention region proposal network and a relation
module-enhanced head network. First, an attention module is introduced in the region proposal
network to generate a spatial attention map, then the attention map is multiplied with the objectness
scores of the classification branch. Second, for the head network, relation modules are added to
model the spatial relationships between proposals. Appearance and geometric features are combined
for instance recognition. Furthermore, we constructed a new window instance segmentation dataset
with 1200 annotated images. With our dataset, the average precisions of our method on detection
and segmentation increased from 53.1% and 53.7% to 56.4% and 56.7% compared with Mask R-CNN.
A comparison with state-of-the-art methods also proves the predominance of our proposed method.

Keywords: windows; instance segmentation; spatial attention; relation module; Mask R-CNN

1. Introduction

The three-dimensional (3-D) reconstruction of buildings has become an important
research topic during the last 2 decades [1]. With a growing demand on the high Level-of-
Detail (LoD) of building models [2], the detailed geometry of buildings and the semantics
of their facade elements are both important. Windows are the most important elements
of building facades. Window detection and segmentation have attracted a wide range
of research interest in different applications, such as thermal inspections [3] and flood
risk assessments [4]. In this paper, we address the research problem of windows instance
segmentation from frontal facade images (see Figure 1). The accurate extraction of windows
is challenging owing to the complexity of buildings in real scenes [5,6]. Specifically, the
diversity of building styles usually results in a variety of window geometries. Facade
decorations that look similar to windows may cause a false detection. Glass reflections and
illumination changes also significantly impact the appearance of windows. In addition, the
damaged furnishing materials of facades increase the diversity of facade textures and the
difficulty of window recognition.

Images and point clouds are two widely used data types in window extraction. Point-
cloud-based methods are normally based on the hypothesis that the most prominent
features of facade components are planar [7]. This requirement is difficult to achieve for
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some building styles. This paper focuses on image-based approaches. In past decades,
hand-crafted based methods were dominant in facade semantic segmentation. Based on
the repetitive and symmetric structures, grammar-based methods and pattern recognition
algorithms are widely studied [8–15]. In recent years, however, deep learning methods have
been introduced and applied in various application domains [16,17]. For image-processing
applications, Convolutional Neural Networks (CNNs) show a powerful capability in image
segmentation and object detection [18–21]. Unlike traditional methods, deep learning meth-
ods can deal with facades without strict structures. A number of CNN-based approaches
have been proposed for facade segmentation [22–26] and window detection [27,28]. How-
ever, these methods only regard each window as an individual component. Although it is
well believed that the modelling of spatial locations and relations will help object detection
and segmentation, few researchers have applied this idea in window extraction.

Figure 1. Windows instance segmentation from facades.

In this paper, we propose a novel pipeline of instance segmentation for windows.
Our method is based on Mask R-CNN [21], and is integrated with a spatial attention
module and a relation module. The spatial attention and relation modules are first used in
the application of windows instance segmentation. With these attention operations, our
method can model the spatial relationships between windows. This is obviously helpful for
the extraction of manmade structures. The contributions of this paper lie in three aspects:

1. We added a spatial attention module to the Region Proposal Network (RPN) and used
channel-wise and spatial attention mechanisms to optimize the objectness scores of
the RPN;

2. We embedded the relation modules into the head network of Mask R-CNN, and
integrated appearance and geometric features for proposal recognition;

3. We standardized and concatenated different datasets and added some new images
to create a new instance segmentation dataset for a window class with 1200 anno-
tated images.

This paper is organized as follows: in the following section, some of the recent studies
on window extraction, including traditional and CNN-based methods, are presented and
some visual attention modules are introduced; Section 3 introduces our proposed method
and the main innovations in detail; Section 4 describes the proposed window instance
segmentation dataset and experiment results of the proposed method; in Section 5, we
discuss our approach and the results that are obtained; and finally, some concluding
remarks are presented in Section 6.

2. Related Work

Window extraction is one of the most important parts of facade parsing. This topic
has been actively studied for several decades. Although some studies have employed laser
scanning point clouds or photogrammetric point clouds for window extraction [29–33],
this section presents a review of image-based approaches. We divide these methods into
two categories: traditional and CNN-based methods.
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Traditional methods usually rely on prior knowledge, such as the repetitive structures
and symmetry of windows. Alegre et al. [8] constructed a Bayesian generative model from
stochastic context-free grammars to encode knowledge regarding facades. This model takes
a hierarchical structure into consideration, and uses Markov chain Monte Carlo sampling
to approximate the posterior over partitions using an image. Müller et al. [9] combined
the procedural modelling pipeline of shape grammars with image analysis to derive a
meaningful hierarchical facade subdivision. Ali et al. [10] used the multiscale Haar wavelet
representation to obtain facade tiles. These tiles are then fed into a cascaded decision
tree classifier driven by Gentle Adaboost. Reznik and Mayer [11] used Implicit Shape
Models [34] to detect and delineate windows. Then, combined with plane sweeping, the
windows in rows or columns can be detected more precisely. Simon et al. [12] proposed
a modular approach to build 3D modelling using procedural grammars. This approach
is suitable for facades with many repetitions and regularities. A pixelwise random forest
is used to find evidences when selecting grammar rules. Cohen et al. [13] applied dy-
namic programming to segment facade objects. The proposed method retrieves a parsing
approach, which considers common architectural constraints and returns a certificate for
global optimality. Jampani et al. [14] used auto-context features to connect a sequence of
boosted decision trees. Structured prior information can be learnt using a stacked gen-
eralization. Their method is simple to implement and easy to extend. Mathias et al. [15]
proposed a three-layered approach for facade parsing. These three layers represent differ-
ent levels of abstraction in facade images: segments, objects, and architectural elements.
The architectural rules of windows and doors are taken into consideration. As one limi-
tation of traditional facade parsing methods, they assume that facade images have been
orthorectified and cropped. They can therefore use much stronger architectural priors.

With the development of deep learning approaches, CNNs have achieved the state-of-
the-art results in object detection and segmentation. CNN-based methods can learn image
features from annotations. Many researchers have conducted some valuable studies on
CNN-based facade segmentation. To the best of our knowledge, Schmitz and Mayer [22]
are the first to apply deep learning on facade segmentation. They used AlexNet [35] as the
backbone, and constructed an encoder–decoder-like structure. They trained the network
using deformed patches of the images. However, they did not take advantage of the
structure in facades. Fathalla and Vogiatzis [36] integrated appearance and layout cues
in a single framework. They used a VGG-16 [37]-based Fully Convolutional Network
(FCN) [18] to obtain coarse semantic segmentation results. The results are further improved
through a probabilistic shape prior captured by trained Restricted Boltzmann Machines
(RBMs). Femiani et al. [24] proposed three network architectures to achieve multilabel
facade semantic segmentation. Each network is designed specially to solve a different type
of problem. The first network, called MultiFacSegnet, aims to assign multiple labels to each
pixel. The second network, which is called a Separable network, encourages the extraction
of rectangular objects. In addition, a Compatibility network tries to eliminate errors by
seeking segmentation across facade element types. Ma et al. [26] proposed a pyramid
Atrous Large Kernel (ALK) Network (ALKNet) for the semantic segmentation of facade
images. Their method can capture long-range dependencies among building elements by
using ALK modules in multiscale feature maps. It makes full use of the regular structures
of facades to aggregate useful nonlocal context information and is thus capable of dealing
with challenging image regions caused by occlusions, ambiguities, and other factors.

The above methods still rely on semantic segmentation, without recognizing window
instances. Liu et al. [23] proposed a DeepFacade network, which uses a symmetric regular-
izer for training a FCN. The authors used a clustering algorithm to divide the pixelwise
segmentation results into individual windows. Moreover, they proposed a symmetric loss
term to improve the results. Recently, the authors introduced a Region Proposal Network
(RPN) into their symmetric loss term [25]. The distances between the clustered windows
and the detected bounding boxes are treated as a loss metric. Li et al. [27] regard window
detection as an issue of keypoint detection and grouping. Their method detects a window
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as four keypoints, allowing it to deal with irregularly distributed windows and complex
facades under diverse conditions. Ma et al. [28] designed an improved Faster R-CNN [20]
architecture for window detection. The innovations include a window region proposal
network, a Region of Interest (RoI) feature fusion, and a context-enhancement module.
In addition, a postoptimization process is designed through the regular distribution of
windows to refine the detection results obtained by the improved deep architecture.

The aforementioned methods only consider windows as individual objects, without
integrating their spatial distribution and location relations into the end-to-end training
process. Attention mechanisms have been proved effective in many visual computing
tasks [38]. With attention modules, networks can capture long-range dependencies and
model the global context information. Hu et al. [39] proposed a Squeeze-and-Excitation (SE)
block to exploit the channel relationship of features. In addition to channel attention, Woo
et al. [40] presented a Convolutional Block Attention Module (CBAM) that also considers
spatial attention. Wang et al. [41] presented Non-Local (NL) operations for capturing
long-range dependencies. Their non-local operation computes the response at a position as
a weighted sum of the features at all positions. To overcome the heavy computation cost
of non-local operations, Cao et al. [42] designed a Global Context (GC) block, which can
obtain a better accuracy but with significantly fewer computations. Hu et al. [43] proposed
an object relation module. The module can merge appearance and geometric features to
model the relation of objects. Inspired by these attention modules, we propose a novel
instance segmentation network that integrates spatial attention and relation modules into a
Mask R-CNN.

3. Methodology
3.1. Network Architecture

Our improved Mask R-CNN is illustrated in Figure 2. It includes three parts: ResNet-
50 and a Feature Pyramid Network (FPN) as the backbone; a Region Proposal Network
(RPN) with spatial attention; and a head network with relation modules. First, as the
original Mask R-CNN, ResNet-50 [44] and a FPN [45] are used as the backbone for the
extraction of multiscale feature maps. Then, an RPN is utilized to predict the objectness
scores and object bounds at each position. Meanwhile, an attention module is used to
obtain a spatial attention map. The objectness scores and the spatial attention map are
merged using elementwise multiplication. The proposals with higher scores are fed into
the head network. In the head network, there exist two branches: a Fully Connected (FC)
head for proposal recognition (classification and bounding box regression) and a mask
head for segmentation using a small FCN. Relation modules are embedded after each
fully connected layer of the FC head. The object location relations can be learned using
this structure.

Figure 2. Pipeline of proposed method.

3.2. RPN with Spatial Attention

The RPN was first proposed by Ren et al. in the Faster R-CNN [20]. The RPN includes
two branches: classification and bounding box regression. Because we use an FPN in the
backbone, the RPN is applied on each level of the feature maps. At each position of a
feature map, there exists three anchors of different shapes. The classification subnetwork
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can predict an objectness score for each anchor. Thus, the output feature of the classification
branch includes three channels. The bounding box regression subnetwork can predict the
object bounds of the anchors. The number of output channels is 12, which corresponds to
∆x, ∆y, ∆w, and ∆h for each anchor, respectively.

Our spatial attention RPN is shown in Figure 3. An attention module is added as a new
branch. Given an input feature map F ∈ RC×H×W , our method sequentially generates a 1D
channel attention map MC ∈ RC×1×1 and a 2D spatial attention map MS ∈ R1×H×W . Then,
the 2D spatial attention map MS and the objectness scores of the classification network
are merged through an elementwise multiplication. The overall attention process can be
summarized as follows:

F′ = MC(F)⊗ F,

cls_scores = MS
(
F′
)
⊗ cls_scores,

(1)

where⊗ denotes elementwise multiplication, F indicates the input feature map, F′ indicates
the feature map after being multiplied with channel attention, and cls_scores represents
the objectness scores of the classification branch. During multiplication, the attention
values are broadcasted (copied) accordingly: channel attention values are broadcasted
along the spatial dimension; and spatial attention values are broadcasted along the channel
dimension according to the outputs of the classification subnetwork.

Figure 3. Diagram of the RPN with spatial attention.

The channel attention map MC ∈ RC×1×1 can express the interchannel relationship
of the features. The spatial information of each feature map is aggregated by global
average pooling and global max pooling operations, respectively, generating two different
spatial context descriptors: FC

avg ∈ RC×1×1 and FC
max ∈ RC×1×1. Both descriptors are then

forwarded to a shared network. The shared network is composed of Multilayer Perceptron
(MLP) with two Fully Connected layers: FC1 and FC2. After the shared network is applied
to each descriptor, the two output feature vectors are merged through an elementwise
summation to produce our channel attention map MC ∈ RC×1×1. In short, the channel
attention is computed as follows:

MC(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

= σ
(

FC2

(
ReLU

(
FC1

(
FC

avg

)))
+ FC2

(
ReLU

(
FC1

(
FC

max

))))
,

(2)

where σ denotes the sigmoid function. In addition, MLP indicates a Multilayer Perceptron,
which includes two fully connected layers and a Rectified Linear Unit (ReLU) activation
function. Here, FC1 and FC2 share the same weights for both inputs. AvgPool and MaxPool
indicate the global average pooling and global max pooling, respectively.

The spatial attention map MS ∈ R1×H×W indicates the interspatial relationship of the
features. To compute the spatial attention, we first apply average-pooling and max-pooling
operations along the channel axis and concatenate them to generate an efficient feature
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descriptor
[
FS

avg; FS
max

]
∈ R2×H×W . On the concatenated feature descriptor, we apply a

convolution layer to generate a spatial attention map MS(F) ∈ R1×H×W , which encodes
where to emphasize or suppress. In short, the spatial attention is computed as

MS(F) = σ
(

conv7×7([AvgPool(F); MaxPool(F)])
)

= σ
(

conv7×7
([

FS
avg; FS

max

]))
,

(3)

where σ denotes the sigmoid function. conv7×7 represents a convolution operation with a
filter size of 7 × 7. [·] indicates a concatenation of the feature maps. AvgPool and MaxPool
are the average and max. pooling along the channel axis.

3.3. Head Network with Relation Modules

After applying the RPN, we can obtain some proposals that include the feature maps
of the foreground objects. The feature map of each object is processed individually by the
head network. The relations between these objects are not considered or learned by the
network. However, there is no doubt that modelling relations among objects will improve
the object detection and segmentation. Hence, after our spatial attention RPN, relation
modules are embedded in the head network of the Mask R-CNN to learn the relations
between window objects.

3.3.1. Relation Module

The object relation module was proposed by Hu et al. [43] in 2018. Their approach
was inspired by a basic attention module, called Scaled Dot-Product Attention [46]. For one
object, there exists an appearance feature fA and a geometric feature fG. The appearance
feature fA indicates the clipped feature map in its bounding box. The geometric feature fG
indicates the four-dimensional object bounding box. Figure 4 shows the computation of the
relation feature. For the nth object, its appearance feature fn

A and the appearance features
of other objects fm

A are projected into subspaces through a dot product. An appearance
weight, indicating their similarities, is then computed. The geometric features fn

G and fm
G

are also embedded into a high-dimensional representation using sine and cosine functions
of different wavelengths [46]. Finally, the appearance weight, geometry weight, and fn

A are
combined together to obtain a relation feature fn

R.

Figure 4. Relation feature computation.

After a total of Nr relation features are calculated, all relation features are concatenated
together and augmented with the input appearance feature fn

A through an addition, as
shown in Equation (4).

fn
A
′ = fn

A +
[
f1

R(n), · · · , fNr
R (n)

]
, for all n, (4)
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where fn
A denotes the appearance feature of the nth object, fNr

R (n) indicates the Nrth relation
feature of the nth object, [·] represents the concatenation of the feature maps, and fn

A
′

indicates the new appearance feature after being augmented with relation modules.

3.3.2. Relation for Instance Segmentation

The relation module is lightweight and in-place. It does not require additional super-
vision and is easy to be embedded in existing networks. In this section, we embed relation
modules into the head network of the Mask R-CNN. There include two branches in the
head network. One branch uses two Fully Connected layers (2FC) to generate the final
features for the proposal classification and bounding box regression. The other branch uses
a list of convolutional layers for a binary segmentation of the objects.

Equation (5) shows the structure of the 2FC head. Given the RoI features for the nth
proposal, two FC layers with 1024 dimensions are applied. Linear layers are then used for
the instance classification scoren and bounding box regression bboxn.

RoI_Featn
FC→ 1024
FC→ 1024
LINEAR→ (scoren, bboxn)

(5)

Equation (6) shows the manner in which we embed the Relation Modules (RMs).
Because relation modules can keep the dimensions of the input and output features, they
can be used after either FC layer and repeated for an arbitrary number of times. Here, r1
and r2 indicate the repeated times of each relation module.

{RoI_Featn}N
n=1

FC→ 1024 · N {RM}r1
→ 1024 · N

FC→ 1024 · N {RM}r2
→ 1024 · N

LINEAR→ {(scoren, bboxn)}N
n=1

(6)

4. Experiments

In this section, we evaluate our approaches using window instance datasets. Our
models were implemented using PyTorch and Detectron2 [47]. The codes will be publicly
available (https://github.com/SunYW0108, accessed on 29 December 2021). For backbone
networks, we used ResNet-50 with pretrained model parameters on ImageNet classifica-
tion tasks [48]. The parameters of the first two stages were frozen, i.e., will not change
during training.

We evaluated the experiment results through visualizations and numerical perfor-
mance metrics, i.e., the mean Average Precision (mAP). In the Microsoft Common Objects
in COntext (COCO) evaluation criteria [49], the AP is averaged over 10 Intersection over
Union (IoU) values, which are 0.50–0.95 with a step size of 0.05. AP50 and AP75 represent
the APs at IoUs of 0.50 and 0.75, respectively. APS, APM, and APL are the APs for small
(area < 322), medium (322 < area < 962), and large (area > 962) objects, respectively. The
mAP is averaged over all categories. In our approach, there is no distinction between AP
and mAP because we focus on only one class, i.e., windows.

4.1. Our New Dataset

Currently, publicly available building facade datasets are mainly designed for image
semantic segmentation tasks. To prepare them for windows instance segmentation, we
extract window objects from the annotated images and encode the information of these
windows in the COCO instance segmentation format. In this study, six facade datasets,
CMP [50], eTRIMS [51], ECP [52], ICG Graz50 [53], RueMonge 2014 [54], and ParisArt-
Deco [55], were selected. These facades are from different cities around the world and are of
diverse architectural styles. The annotations of the ECP dataset are provided by Martinović

https://github.com/SunYW0108
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et al. [56], where their annotations better fit the actual ground truth based on the visual
comparison. In addition, we manually annotated 82 images taken by ourselves.

All images and annotations are standardized and concatenated together to create a
new instance segmentation dataset. The number of images in our concatenated dataset
are shown in Table 1. The images and labels of each dataset are divided into five parts
randomly, among which four are used for training and one is applied for testing. The
total number of images in our dataset is shown in the last row of the table. The number of
images for training is 959. The number of images for testing is 241.

Table 1. Number of images in our concatenated dataset.

Dataset Number of Images Training Set Testing Set

CMP base 378 302 76
CMP extended 228 182 46

eTRIMS 60 48 12
ECP 104 83 21

ICG Graz50 50 40 10
RueMonge 2014 219 175 44

ParisArtDeco 79 63 16
TUBS 82 66 16

Merged dataset 1200 959 241

4.2. Three Variants of the RPN with Attention Modules

In this section, we compare the results of three combinations using attention modules
and the RPN. The network architectures of different combinations are shown in Figure 5. In
Figure 5, AM indicates the attention module, cls represents the classification subnetwork,
reg indicates the bounding box regression sub-etwork, CA is the channel attention, SA is
the spatial attention, and ⊗ indicates the elementwise multiplication. In the first variant
(Figure 5a), the input feature is fed into three branches: an attention module, classification,
and bounding box regression. In the subnetwork of the attention module, a channel
attention map is first computed and merged with the input feature to obtain a new feature
map. A spatial attention map is then generated for multiplication with the objectness scores
of the classification branch. This architecture is labelled cls(AM)_reg. In the architecture
shown in Figure 5b, labelled as cls(AM)_reg(AM), the spatial attention map is further
merged with the output maps of the bounding box regression. In Figure 5c, the attention
module is executed on the input feature. The output feature is then used for classification
and bounding box regression. This architecture is labelled as AM_cls_reg.

Figure 5. Diagram of three variants of the RPN with attention modules: (a) cls(AM)_reg;
(b) cls(AM)_reg(AM); (c) AM_cls_reg.
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The results of three different combinations and the original Mask R-CNN are shown
in Table 2. The top scores are indicated in bold. Four rows in front of APbb denote the
APs for object detection. Similarly, four rows in front of APsegm represent the APs for
object instance segmentation. The results of Mask R-CNN are used as the baseline. As
can be seen in Table 2, our method cls(AM)_reg can achieve the best AP on both object
detection and segmentation tasks, 0.7% and 0.7% higher than the original Mask R-CNN
method, respectively. Excluding APbb

75 , APbb
L , and APsegm

L , our method has achieved the best
results for other evaluation measurements. Although cls(AM)_reg(AM) can obtain better
results than the original Mask R-CNN, its results are lower than our method. In addition,
AM_cls_reg achieves a result worse than the original Mask R-CNN. The experiment results
indicate that our spatial attention RPN, labelled cls(AM)_reg, is reasonable and effective.
The method of the following section is implemented based on this architecture.

Table 2. Comparison of results using different combinations of attention modules with the RPN
(unit: %).

Network Architecture AP AP50 AP75 APS APM APL

APbb

Mask R-CNN 53.1 83.9 61.2 39.5 59.6 61.2
cls(AM)_reg 53.8 84.4 61.0 40.0 60.4 59.4

cls(AM)_reg(AM) 53.3 84.1 60.6 39.6 59.9 59.4
AM_cls_reg 52.6 83.9 59.9 38.7 59.6 59.8

APsegm

Mask R-CNN 53.7 83.0 62.0 40.6 60.2 61.4
cls(AM)_reg 54.4 83.6 62.6 40.9 60.8 59.6

cls(AM)_reg(AM) 53.9 83.2 62.4 40.7 60.6 60.0
AM_cls_reg 53.2 83.2 60.6 39.8 60.2 59.1

4.3. Comparisons of Parameters for Relation Modules

In the head network with relation modules, there are two key parameters: the number
of relations Nr and the number of modules {r1, r2}. Hu et al. [43] conducted some tests
on these parameters. For the COCO detection datasets, their method achieves the highest
AP when the number of relations Nr equals 16. For the number of modules {r1, r2}, they
recommend r1 = 1 and r2 = 1 according to the tradeoff between the AP and computation
complexity. Hence, in our experiments, r1 = 1 and r2 = 1 are applied, and the results of
different relation number Nr are compared.

The experiment results using the spatial attention RPN and relation modules are
shown in Table 3. We also show the results using relation modules without the spatial
attention RPN, as listed in Table 4.

Table 3. Comparison of AP on different numbers of relations with the spatial attention RPN (unit: %).

Number of Relations AP AP50 AP75 APS APM APL

1 bbox 55.0 85.7 62.8 41.4 61.0 61.3
segm 55.3 84.6 63.5 41.7 61.3 61.8

2 bbox 55.2 84.9 63.3 40.5 61.7 63.8
segm 55.6 84.0 64.8 40.6 62.1 62.7

4 bbox 55.3 84.8 63.5 41.9 61.4 61.4
segm 55.7 83.9 64.9 42.4 61.8 61.3

8 bbox 55.7 85.7 63.7 42.2 61.6 62.4
segm 56.3 84.7 65.4 43.1 62.1 62.1

16 bbox 55.5 84.8 64.1 42.2 61.5 62.3
segm 55.9 84.6 64.7 42.3 61.8 62.0

32 bbox 56.4 87.0 64.7 42.4 62.4 62.1
segm 56.7 86.1 65.5 42.8 63.1 62.6

64 bbox 56.2 84.7 65.6 41.2 62.6 63.5
segm 56.2 84.6 65.9 41.5 62.6 62.3
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Table 4. Comparison of AP on different numbers of relations with the original RPN (unit: %).

Number of Relations AP AP50 AP75 APS APM APL

1 bbox 54.0 84.2 61.9 40.9 60.6 60.7
segm 54.3 84.2 62.4 41.1 60.7 60.4

2 bbox 54.8 85.6 62.5 41.2 61.0 62.4
segm 54.8 84.7 62.9 41.1 61.2 61.9

4 bbox 54.8 85.6 62.3 41.1 61.3 62.7
segm 55.2 84.8 62.8 41.6 61.6 62.3

8 bbox 56.0 85.9 64.3 42.2 62.1 63.5
segm 56.1 84.9 65.1 42.2 62.2 63.1

16 bbox 56.0 85.7 64.6 42.8 61.8 62.5
segm 56.2 84.7 65.1 43.0 62.0 62.8

32 bbox 56.2 85.6 64.5 42.8 62.2 64.6
segm 56.1 84.6 64.9 43.1 62.0 63.5

64 bbox 56.6 86.2 65.7 41.8 63.0 64.0
segm 56.6 85.3 66.3 42.3 63.1 63.6

The AP values are depicted as a line chart in Figure 6. The horizontal axis represents
the number of relations. The vertical axis represents the AP values of the different methods.
The solid lines in red and blue represent the APs of our method for object detection and
segmentation, respectively. The dash lines in red and blue indicate the APbb and APsegm

of the Mask R-CNN with relation modules, respectively. As shown in Figure 6, when
the number of relations is small (less than 8), by increasing the number of relations, the
APbb and APsegm of these two algorithms increase, although the advantages of our method
gradually decrease. When the number of relations equals 16 for our method and 32 for
the Mask R-CNN with relation modules, the APs decreases slightly. When the number
of relations equals 32, our method can achieve the highest AP results. As the number of
relationships continues to increase, the AP values of our method begin to decrease. When
the number of relations equals 64, the Mask R-CNN with relation modules obtains the
highest AP results. Considering the tradeoff between the AP and computational complexity,
Nr = 32 is used in our approach. The results of the experiments demonstrate the advantage
of the spatial attention RPN. Thus, our method can achieve higher AP results with a smaller
number of relations.

Figure 6. Comparison of AP on different numbers of relations (unit: %).

When the number of relations equals 32, APbb and APsegm of our method reach 56.4%
and 56.7%, respectively. Comparing these results with the results of the method without
relation modules in Section 4.2 (cls(AM)_reg), APbb and APsegm increase by 2.6% and 2.3%,
respectively. This proves that relation modules have learnt information between objects. In
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addition, the APbb and APsegm of our method are higher than those of the Mask R-CNN by
3.3% and 3.0%, respectively.

4.4. Qualitative Results

This section shows a qualitative comparison of the proposed method and Mask R-
CNN. We chose three facade images, as shown in Figures 7–9. Subgraph (a) shows the
ground truth of window instances. Subgraph (b) shows the results of the Mask R-CNN.
Subgraph (c) shows the results of the Mask R-CNN with a spatial attention RPN. Sub-graph
(d) shows the results of the Mask R-CNN with a spatial attention RPN and relation modules.
Different window instances are rendered in different colors. The segmentation errors are
marked by the red rectangles.

Figure 7 shows the results of error detection by the Mask R-CNN. Compared with
the ground truth, there exist some incorrectly detected windows by Mask R-CNN at the
top of the facade. After adding a spatial attention mechanism for the RPN, the number
of incorrectly detected windows diminishes to one. The improved method using relation
modules results in no detection errors. As can be seen from Figure 7d, all detection errors
are eliminated. The four windows in the lower part cannot be detected by any of the
methods used in our experiments.

Figure 8 shows the windows undetected by the Mask R-CNN under different illumina-
tion conditions. There are some undetected windows and an incorrectly detected window
at the top and ground floor of the facade using the Mask R-CNN. After applying a spatial
attention mechanism for the RPN, some undetected windows can be correctly detected,
but the incorrectly detected window still exists. Then, by adding relation modules to the
head network, all undetected windows have been detected, and the error detection has
been removed.

Figure 9 shows the results of different methods in the presence of large occlusions. As
indicated in Figure 9a, the ground truth of this facade provides a hand-annotated ground
truth for the labels behind the vegetation. In the red box of Figure 9b, only one window
instance can be detected behind the vegetation by the Mask R-CNN. After adding a spatial
attention and relation modules, the other two window instances are detected correctly.
Comparing the windows in the middle of the red rectangle detected by the three methods,
the size of the window detected by our method is more precise.

Figure 7. Window segmentation results of facade 1: (a) ground truth of window instances; (b) result
of Mask R-CNN; (c) result of Mask R-CNN with a spatial attention RPN; (d) result of Mask R-CNN
with a spatial attention RPN and relation modules.
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Figure 8. Window segmentation results of facade 2: (a) ground truth of window instances; (b) result
of Mask R-CNN; (c) result of Mask R-CNN with a spatial attention RPN; (d) result of Mask R-CNN
with a spatial attention RPN and relation modules.

Figure 9. Window segmentation results of facade 3: (a) ground truth of window instances; (b) result
of Mask R-CNN; (c) result of Mask R-CNN with a spatial attention RPN; (d) result of Mask R-CNN
with a spatial attention RPN and relation modules.

4.5. Comparisons with Other Attention-Based Methods

In this section, we make a quantitative comparison with four attention-based methods
to verify the utility of our proposed approach. The attention modules we use for com-
parison include the Convolutional Block Attention Module (CBAM) [40], Non-Local (NL)
module [41], Global Context (GC) module [42], and Relation Module (RM) [43]. The imple-
mentation details are the same as those in their original papers. For the network, called
Mask R-CNN + CBAM, the CBAM is integrated with each residual block in ResNet [44]. For
Mask R-CNN + NL, only one nonlocal module is added right before the last residual block
of res4 in ResNet. The architecture Mask R-CNN + GC denotes adding the GC module to all
residual blocks of res3, res4, and res5. In the Mask R-CNN + RM network, relation modules
are added after both fully connected layers in the head network of the Mask R-CNN.

The average precisions of our method and the other attention-based methods are
shown in Table 5. The top scores are indicated in bold. Compared with the baseline
method (Mask R-CNN), all attention-based methods can obtain better results. Meanwhile,
our method achieves a better performance than other attention-based methods except
the detection and segmentation of small windows (APbb

S and APsegm
S ) and large windows

(APbb
L and APsegm

L ). The results indicate that our method is more suitable for the instance
segmentation of objects with medium and similar sizes. Windowlike facade elements are a
perfect fit for this characteristic.
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Table 5. Average precision of our method and other attention-based approaches (unit: %).

Network Architecture AP AP50 AP75 APS APM APL

Mask R-CNN bbox 53.1 83.9 61.2 39.5 59.6 61.2
segm 53.7 83.0 62.0 40.6 60.2 61.4

Mask R-CNN + CBAM bbox 53.2 85.2 61.5 39.8 59.7 61.1
segm 54.0 85.3 61.9 41.3 60.3 60.0

Mask R-CNN + NL bbox 53.6 84.6 61.7 40.1 59.9 62.7
segm 54.1 82.9 62.4 41.1 60.4 62.1

Mask R-CNN + GC bbox 54.4 85.1 62.8 40.3 60.9 63.5
segm 54.8 84.1 63.3 41.4 61.3 63.2

Mask R-CNN + RM bbox 56.0 85.7 64.6 42.8 61.8 62.5
segm 56.2 84.7 65.1 43.0 62.0 62.8

Our method bbox 56.4 87.0 64.7 42.4 62.4 62.1
segm 56.7 86.1 65.5 42.8 63.1 62.6

4.6. Comparisons with Other Window Extraction Methods

To compare our method with other window extraction approaches [22–25,27], we
retrained and evaluated the proposed method on several datasets: eTRIMS, ECP, CMP,
Graz50, and ParisArtDeco. The pixel accuracy is used as a metric in these previous studies,
which can be calculated through Equation (7). True Positive (TP) means the pixels are
correctly recognized as windows. True Negative (TN) means the pixels are correctly
recognized as facades. False Positive (FP) means the pixels belonging to facades are
incorrectly recognized as windows. False Negative (FN) means the pixels belonging to
windows are incorrectly recognized as facades. The sum of TP and TN divided by the
number of all pixels represents the pixel accuracy. The pixel accuracy is expressed as a
percentage. Table 6 shows the pixel accuracy of the different methods. The top scores are
indicated in bold. Here, “-” indicates that the authors did not conduct experiments on the
corresponding dataset. The pixel accuracy of our method was evaluated using the window
instances with confidence thresholds > 0.5.

Pixel Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Table 6. Comparison of results of our method and other window extraction approaches on different
datasets based on the pixel accuracy (unit: %).

eTRIMS ECP CMP Graz50 ParisArtDeco

Schmitz et al. [22] 86.0 - - - -
Liu et al. [23] 90.9 93.0 89.0 87.7 94.2

Femiani et al. [24] 97.1 95.6 - - -
Liu et al. [25] 92.4 97.6 95.0 88.8 95.4
Li et al. [27] 84.0 95.0 - 90.0 -
Our method 96.5 97.2 96.5 95.2 96.1

The results in Table 6 indicate that the proposed method outperforms most of the
other approaches. Although our method does not achieve the highest accuracy on the
eTRIMS and ECP datasets, the values of the pixel accuracy only decrease by 0.6% and 0.4%
compared with the best results.

5. Discussion

Most of the current CNN-based methods only concern the optimization of individual
windows and ignore the spatial areas or relationships of windows. In this study, we
improve the Mask R-CNN architecture by integrating a spatial attention module and a
relation module, and present a novel pipeline of instance segmentation for windows. With
the help of the spatial attention, the improved RPN gains the capability of generating
proposals that cover window objects. The elimination of redundant background proposals
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will contribute to further training task in the head network. On the other hand, after
integrating the relation module into the head network, the head architecture can process a
set of window objects simultaneously through interaction between their appearance feature
and geometry. In this way, the relations of windows can be modelled during learning.
With these attention operations, our method can model the spatial relationships between
windows and achieves higher average precisions for object detection and segmentation
than those of the original Mask R-CNN [21] by 3.3% and 3.0%.

In order to evaluate our results, we made comparisons from two different perspectives.
First, as a network integrated with attention modules, our method was compared with
several attention-based methods, as shown in Section 4.5. In the original papers of these
attention modules, the authors made comparisons of their methods with Mask R-CNN [21]
on the Microsoft COCO dataset. The experiment results on our window instance segmenta-
tion dataset, given in Table 5, show a similar tendency of AP as in these original papers.
This also proves the advantage of our network architecture. Second, in the field of window
extraction, most methods use pixel accuracy as a metric to evaluate their results. As shown
in Section 4.6, the researchers trained and validated their networks on different datasets.
Then they reported the pixel accuracies for different datasets. To compare with other
window extraction methods, we evaluated our network on five datasets: eTRIMS, ECP,
CMP, Graz50, and ParisArtDeco. The pixel accuracies of our method and other methods
are shown in Table 6. Except eTRIMS and ECP, our method achieves the best results on
the other datasets. On the eTRIMS and ECP datasets, the results of our method are still
competitive. Compared with other window extraction methods that only optimize the
shape of each individual window, our method first takes spatial locations and relations of
windows into consideration. This comparison proves the effectiveness of the spatial and
relation modules. We also standardized and concatenated together six publicly available
datasets and added 82 new images to create a new publicly available standard windows
instance segmentation dataset.

Because our method focused on only one class object, one limitation is that it is
difficult to distinguish windows from balconies. We believe that the instance segmentation
of multiclass objects will improve the precision of window extraction. Further trials with
other attention modules, such as Efficient Channel Attention (ECA) module [57] and
coordinate attention [58], will also be investigated. With these new attention modules, the
improved RPN can further improve the precision of window extraction.

6. Conclusions

We proposed an end-to-end deep learning network for windows instance segmentation
using facade images. In particular, our proposed network is defined by adding spatial
attention mechanism and relation modules to the Mask R-CNN deep learning network.
First, a 2D spatial attention map is multiplied with the objectness scores of the RPN. This
operation is beneficial for the generation of proposals that are more likely to cover the
window objects. Second, relation modules are embedded after each fully connected layer in
the head network. The relation modules enhance the representation power of the geometry
relationship between window instances.

The performance of the proposed method is tested on our window instance segmenta-
tion dataset. The new dataset is created by combining six publicly available datasets and
82 new images annotated by our team. The average precisions of our method for object
detection and segmentation are 56.4% and 56.7%, which are higher than those of Mask
R-CNN by 3.3% and 3.0%. The qualitative comparison shows that, benefiting from the
representation power on spatial relationships, our method is robust to changes in texture.
We also made a quantitative comparison with other attention-based methods. The results
show that our method is more suited to extracting objects with medium and similar sizes,
such as windows. Furthermore, to compare our method with other window extraction
methods, we retrained our network on five public datasets, and used the pixel accuracy as
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the metric. The comparison results show our method achieved the best performance using
three datasets, and placed second using the other two datasets.

In future works, we intend to modify the network and expand the dataset to adapt to
the instance segmentation of multiclass objects. Facade elements, such as windows, doors,
shops, and balconies, are obviously interrelated and interacted with each other. Besides
that, more attention modules will be studied and integrated into our network to obtain
better results. In addition, the existing datasets contain only one image for each facade. The
use of multiview images and 3D features of facades will be one possible future research
effort in furthering the development of the instance segmentation approach.
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