
 

 
 

 

 
ISPRS Int. J. Geo-Inf. 2022, 11, 95. https://doi.org/10.3390/ijgi11020095 www.mdpi.com/journal/ijgi 

Article 

VINS-dimc: A Visual-Inertial Navigation System for Dynamic 

Environment Integrating Multiple Constraints 

Dong Fu 1,2, Hao Xia 1,*, Yujie Liu 1,2 and Yanyou Qiao 1 

1 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;  

fudong@aircas.ac.cn (D.F.); liuyujie21@mails.ucas.ac.cn (Y.L.); qiaoyy@aircas.ac.cn (Y.Q.) 
2 University of Chinese Academy of Sciences, Beijing 100049, China 

* Correspondence: xiahao@aircas.ac.cn 

Abstract: Most visual–inertial navigation systems (VINSs) suffer from moving objects and achieve 

poor positioning accuracy in dynamic environments. Therefore, to improve the positioning accu-

racy of VINS in dynamic environments, a monocular visual–inertial navigation system, VINS-dimc, 

is proposed. This system integrates various constraints on the elimination of dynamic feature points, 

which helps to improve the positioning accuracy of VINSs in dynamic environments. First, the mo-

tion model, computed from the inertial measurement unit (IMU) data, is subjected to epipolar con-

straint and flow vector bound (FVB) constraint to eliminate feature matching that deviates signifi-

cantly from the motion model. This algorithm then combines multiple feature point matching con-

straints that avoid the lack of single constraints and make the system more robust and universal. 

Finally, VINS-dimc was proposed, which can adapt to a dynamic environment. Experiments show 

that the proposed algorithm could accurately eliminate the dynamic feature points on moving ob-

jects while preserving the static feature points. It is a great help for the positioning accuracy and 

robustness of VINSs, whether they are from self-collected data or public datasets. 

Keywords: dynamic environment; feature point matching; flow vector bound; visual-inertial  

navigation systems 

 

1. Introduction 

Visual simultaneous localization and mapping (SLAM), which uses image data from 

cameras, is one of the most important topics in computer vision [1,2]. This technology has 

important applications in robotics [3,4], autopiloting [5,6], and augmented reality [7,8]. 

When SLAM technology integrates an inertial measurement unit (IMU) and cameras, 

it is called a visual–inertial navigation system (VINS). The best known VINS is VINS-

mono [9], which was proposed by Qin et al. This system achieves accurate positioning of 

a device by observing visual feature points and pre-integrated IMU measurements. It can 

also compute and calibrate extrinsic and temporal offsets between the camera and IMU 

online. OKVIS [10] uses the concept of “keyframes” that partially marginalize old states 

to keep computational costs low, and ensure real-time operation. ROVIO [11] directly uses 

the pixel intensity errors of the images, and it can achieve accurate tracking performance 

with great robustness. A novel VINS based on an extended Kalman filter was proposed, 

named MSCKF [12]. The measurement model can express the geometric constraints, 

which is useful for system localization. An open platform named OpenVINS was pro-

posed by Geneva et al. [13]. It uses some technologies, such as a sliding window Kalman 

filter, consistent First-Estimates Jacobian treatments and SLAM landmarks. 

However, most VINSs are focused static environments [14]. In a front-end visual 

odometer module, the system extracts the feature points on visual images. Then, the sys-

tem matches the feature points of two adjacent frames. Then, the position and attitude of 

the camera and the position of the feature points in the real world are determined by a 
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local bundle adjustment of the visual and IMU data in the sliding window. The residual 

of the bundle adjustment optimization which should be minimized can be formulated as 

follows [15]: 

� = ∑  �
��� ∑  �

��� ��,�(��,� − �(��, ��))� + ��, (1)

where R is the sum of the residuals, m is the number of images, and n is the number of 

feature points. If the 3D key point �� can be observed in the image k, the value of ��,� is 

set to 1; otherwise, it is set to 0. Here, ��,�  represents the two-dimensional (2D) coordinates 

in image k of 3D point �� . Moreover, π represents the projection of a 3D key point onto 

an image based on the position, pose, and intrinsic parameters of the cameras. Moreover, 

��  is the position and pose of the device corresponding to the kth image frame, �� is the 

3D coordinates of the ith feature point, and �� is the residual of the IMU data in this short 

time period. 

This scheme assumes that VINS is in an environment where all objects are static. 

However, in a real environment, there are often many dynamic objects, so this assumption 

is often untenable. Figure 1a shows a situation where the feature point is stationary. At 

this point, the motion ���� of the camera is determined by solving Equation (1). Figure 

1b shows a situation where the feature point �� is stationary, whereas the feature point 

���� is moving in a dynamic environment. As a result of the movement of the point ����, 

its coordinates on the image also change from ����,��� to ����,���
�. Let vector ����,�  be 

the displacement of the dynamic feature point ����,� on a 2D image k+1. The dynamic 

information in the environment causes the corresponding pixels to shift, so that the value 

of ����,� is not zero, which affects the robustness and accuracy of VINS. 

  

(a) (b) 

Figure 1. Schematic diagrams of (a) static environments and (b) dynamic environments feature 

point matching. (a) Shows a situation in where the feature point is stationary, (b) shows a situation 

where the feature point �� is stationary, whereas the feature point ���� is moving. �� and ���� 

represent the center of the camera at two points in time. ��,��� is the motion of the camera during 

the period from time point k to time point k + 1. The rectangles represent the imaging plane of the 

camera. ��,� represents the imaging of the i-th feature point at time point k. 

In summary, to improve the robustness and accuracy of VINSs in dynamic environ-

ments, it is necessary to filter feature point matching. It should eliminate the feature points 

in motion, and use static feature points to compute the position and attitude of the device. 

To solve the dynamic problem in VINSs, researchers have proposed various methods to 

improve the system. 
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Some conventional methods are described below. Shimamura et al. [16] proposed a 

vSLAM method that includes an initialization method, camera poses, and an outlier rejec-

tion method for moving objects. In addition, they constructed an angular histogram based 

on the outlier flows, approximated the obtained angular histogram, and through estima-

tion of the parameters for Gaussian mixtures. To adaptively model dynamic environ-

ments, Tan et al. [17] proposed an update method and an online keyframe representation. 

They projected the feature points from the keyframe images to the current frame image. 

Then, they could detect the dynamic features by comparing the appearance and structure. 

Moreover, an adaptive random sample consensus (RANSAC) algorithm has been pro-

posed to efficiently remove the mismatched feature points. Rünz et al. [18] used a multiple 

model-fitting approach, where each dynamic object can move independently, and the ob-

ject could still be tracked effectively. They enabled a robot to maintain 3D models of every 

objects and improve them over time through fusion. In [19], Sun et al. proposed a novel 

moving features removal approach using an RGBD camera. They integrated it into the 

SLAM system. The moving features removal approach acts as a preprocessing stage to 

filter out the feature points that correspond to dynamic objects. Moreover, Alcantarilla et 

al. [20] introduced the concept of dense scene flow for SLAM, so that moving objects can 

be detected. Lee et al. [21] proposed a solution to the dynamic problem by using a pose 

graph. According to the grouping rules, the nodes of the graph are grouped based on the 

noise covariance, and the constraints are truncated. Li et al. [22] proposed a sparse visual 

SLAM based on a motion probability propagation model for dynamic keypoint elimina-

tion. Their approach combines geometric information and semantic segmentation infor-

mation to track keypoints. In [23], Nam et al. propose a robust tightly-coupled VINS that 

uses the multi-stage outlier removal method. It uses the multi-stage outlier removal 

method to deal with the influence of moving objects based on the feedback information of 

the estimated states. However, most of these methods have assumed that there is more 

static information than dynamic information in a scene, so the model generated by static 

feature matching can be used to eliminate dynamic feature point matching. However, in 

practice, there is a significant amount of dynamic information, so this assumption does 

not hold. Furthermore, most methods for eliminating feature point matching on moving 

objects use only one constraint for moving objects. A single constraint often fails, making 

it difficult to correctly handle all types of feature point matching. 

Researchers have proposed numerous solutions based on deep learning methods. A 

method for moving object dense segmentation under dynamic scenarios was proposed by 

Wang et al. [24]. They combined dense dynamic object segmentation with dense visual 

SLAM and proposed effective measures. In this way, SLAM can estimate the attitudes of 

cameras. A novel method for detecting objects and multi-view objects SLAM was pre-

sented by Yang et al. [25]. Their method is effective in both dynamic and static environ-

ments. They also generated high-quality cuboid proposals. The method used multi-view 

bundle adjustment, so that the SLAM system can jointly optimize the attitudes of cameras, 

objects, and feature points. Bescos et al. [26] integrated the moving object detection 

method and background inpainting capabilities into SLAM. The SLAM system can oper-

ate in multiple modes in dynamic scenarios. The system can also detect moving objects by 

geometric constraint on multiple views, deep learning, or both. Yu et al. [27] proposed a 

visual SLAM based on semantic segmentation information, suitable for dynamic environ-

ments. The method combines semantic segmentation information and uses a motion con-

sistency-checking method to reduce the influence of moving objects. This improves the 

accuracy of SLAM in a dynamic environment. A semantic SLAM framework was pro-

posed by Brasch et al. [28]. It combines feature-based and direct approaches to improve 

the robustness and accuracy of SLAM under many challenging environments, such as a 

dynamic environment. The proposed method uses the semantic information extracted 

from images. In addition, Jiao et al. [29] proposed a SLAM framework that employs a deep 

learning method for object detection, and closely links the target recognition results with 

the geometric information of the feature points in the visual SLAM system. Therefore, the 
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extracted visual feature points are associated with dynamic probability. A novel dynamic 

SLAM, combined with a deep learning method to perform semantic segmentation, was 

proposed by Zhang et al. [30]. Two consistency-checking strategies were used to filter out 

the feature points located on moving objects. Thus, point and line features were used to-

gether to calculate the pose of cameras. However, the generalization of deep learning is 

not good, especially for the SLAM problem. Although it performs well with the training 

dataset, it does not perform well with the test dataset, resulting in low robustness of the 

system. Moreover, a deep learning method requires extremely high accuracy of the train-

ing dataset, especially for object detection and semantic segmentation; however, it is quite 

difficult to accurately determine the motion state of the object based on the object category. 

To improve the visual–inertial navigation system, this study improved on our previ-

ous work [31] by using a variety of constraint combinations to improve the accuracy of 

feature matching. In our previous study, we determined the validity of IMU data and 

used epipolar geometric constraints to eliminate abnormal feature point matching that 

deviated from the epipolar line. Based on this, the fundamental matrix, calculated from 

the IMU data and flow vector bound (FVB) constraints, were used to remove the dynamic 

feature point offset along the epipolar direction. The sliding window model was used to 

filter out feature point matches between the current frame image and the image before 

several frames, to reduce the interference from dynamic feature points. Furthermore, a 

grid-based motion statistics (GMS) constraint was used, and spatial consistency between 

feature points was used to refine feature point matching. Finally, the algorithm was inte-

grated with VINS-mono and VINS-dimc to achieve better robustness and accuracy in dy-

namic environments. In summary, the contributions of this study can be described as fol-

lows. 

1. FVB constraints were combined with IMU data. The motion model and epipolar were 

calculated using IMU data, and the dynamic feature point offset along the epipolar 

was eliminated using the FVB constraints. 

2. This method combined multiple constraints and used epipolar, FVB, GMS, and 

sliding window constraints, to compensate for the shortcomings of a single constraint 

and help VINS achieve more accurate feature matching. 

3. The proposed algorithm was integrated with VINS-mono, and VINS-dimc is 

proposed. We have conducted experiments with VINS-dimc. 

The rest of the paper is organized as follows. First, in Section 2, the basic principle of 

VINS and the dynamic information feature point elimination algorithm based on multiple 

constraints are presented. Then, Section 3 presents the experimental scheme used in this 

study, the experimental procedure, and the results. Finally, Section 4 provides some dis-

cussion and concluding remarks. 

2. Materials and Methods 

2.1. Overview 

To improve the positioning accuracy of VINS in a dynamic environment, we propose 

a dynamic feature point elimination algorithm. It is integrated into VINS-mono, and a 

VINS-dimc with excellent performance in a dynamic environment is proposed. The 

flowchart of VINS-dimc is shown in Figure 2. 
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Figure 2. Flowchart of VINS-dimc using our proposed algorithm. 

During the initialization stage, the system creates a local map through the structure 

from the movement. The initialization parameters of the system can be determined by 

aligning the IMU data with the visual data. The graph optimization method, based on 

bundle adjustment, is an important state estimation algorithm for the tight fusion of cam-



ISPRS Int. J. Geo-Inf. 2022, 11, 95 6 of 19 
 

 

era IMU data. The optimal solution is obtained by globally optimizing all the measure-

ments [32,33]. The improvement in this study was in the feature point matching stage. 

Combining with the IMU data, we used a multi constraint dynamic feature point elimina-

tion algorithm to refine the feature point matching. The positioning accuracy of the system 

was improved by improving the accuracy of feature point matching. 

2.2. IMU Data Validity Discrimination and Epipolar Constraint 

The content of this part is similar to that of our previous study, so we will only briefly 

introduce it here. For further details, please refer to our earlier work. 

Based on the position and attitude changes measured by IMU, the fundamental ma-

trix of the camera motion can be obtained using the following formulas: 

�����

� = �����

� ∧
· �����

�  (2)

�����

� = ��� · �����

� · ��� (3)

where E is the essential matrix, �∧ is the antisymmetric matrix of translation t, F is the 

fundamental matrix, and K is the intrinsic parameter of the camera. 

The feature point on the previous frame image determines the epipolar line: �� = ��. 

The distance between feature point matching and the fundamental matrix is calculated 

[34]. 

� =
�����,�

� ���,��

�‖�‖� + ‖�‖�
, � = 1, 2, 3, … , � (4)

where 

���,� = [�, �, �]� (5)

If the distance is less than threshold a, the feature matching will be consistent with 

the fundamental matrix; otherwise, it will be inconsistent. The value of ��,�  is set to 0, 

when the ith feature point of the image frame is consistent; otherwise, it is set to 1, that is, 

��,� = �
1， ��,� ≥ �

0， ��,� < �
 (6)

If the effective feature matches is not less than threshold b, the IMU data will be con-

sidered to be valid; otherwise, it is invalid. The value of �� is set to 0 when the the IMU 

data is invalid; otherwise, it is set to 1, that is, 

�� =

⎩
⎪
⎨

⎪
⎧0， � ��,�

�

���

< �

1，� ��,�

�

���

≥ �

. (7)

If �� = 1, the fundamental matrix is accurate. The validity of feature point matching 

is determined by the distance between the matching and the fundamental matrix. If it is 

larger than the threshold c, it means that the feature matching differs from the motion 

model computed using the IMU data. This feature point matching is probably wrong or 

is on a dynamic object. Therefore, it is removed from the feature point matching set. 

2.3. Multi Constraint Fusion Strategy 

2.3.1. FVB Constraint 

Epipolar constraints have shortcomings when the dynamic feature points move 

along the epipolar line as shown in Figure 3. Although point � moves to point ��, point 
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�� is still on the epipolar line because point � and point �� are in the same plane as the 

camera centers �� and ����. In this case, the distance between the points and the epipolar 

line does not change. Therefore, the epipolar constraints are not valid. 

 

Figure 3. Schematic representation of the failure of epipolar constraints. �� and ���� are the center 

of the camera, point � moves to point ��, � and �� are epipolar lines. Two parallelograms repre-

sent the imaging plane of the camera. � and �� are the points in the image. The four points �, ��, 

�� and ���� are coplanar. 

To compensate for this situation, we introduced the FVB constraint. Let us assume 

that the translation of the camera is �. Let � and �� be the corresponding pixels of the 

point � and �� in the front and rear images, respectively. � is the depth of the feature 

point in the scene. Then, the 3D coordinate of point � is �����, and its coordinate in the 

image in the second image can be obtained using the following formulas: 

�� = �[�|�]� (8)

Since point P is moving, therefore, 

�� − � = ����� (9)

When the camera moves, the corresponding pixels of the three-dimensional points in 

the image move along the line determined by the point �� and ���� = ��, and the am-

plitude of the motion depends on the translation amount � and the depth � [35]. 

We can specify a possible depth interval for 3D points and then determine the maxi-

mum and minimum displacements of the corresponding points on the epipolar line. If the 

displacement amplitude of a point is not between the minimum and maximum, it is prob-

ably a dynamic feature point. 

If the IMU data is invalid (that is, �� = 0), we considered the accuracy of the transla-

tion � calculated from the IMU data to be poor. Therefore, the FVB constraint was not 

used in such a case. 

2.3.2. GMS Constraint 

IMU datasets are not always accurate, and if the data has large deviation, the epipolar 

and FVB constraints are invalid. GMS constraints are required to prevent feature matching 

on a moving object. 

We considered using spatial consistency between feature point matching to constrain 

the feature points. The constraint uses a grid-based motion statistics method, namely, 

GMS [36]. 

In this method, the statistical probability of some matches in a region is considered 

as the motion smoothness. Thus, all feature point matches are checked by the model to 
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eliminate feature points on moving objects and to obtain a correct feature match. When 

feature points are matched, the GMS extracts high-quality feature matches to eliminate 

low-quality matches. This is an extremely robust matching method. Using video verifica-

tion, even in a weak texture environment containing blurred images and wide baseline 

data, GMS has been found to consistently outperform other feature-matching algorithms 

that can be run in real time. GMS can achieve the same accuracy as more complex and 

slower algorithms. Since GMS has high accuracy and high execution speed, it is more 

suitable for use in VINSs. 

We incorporated GMS constraints into a VINS system and used spatial consistency 

to eliminate feature point matching on dynamic objects. 

2.3.3. Sliding Window Constraint 

In the VINS, which is based on the feature point method, two adjacent images are 

usually used for feature point matching to calculate the relative motion of the camera dur-

ing this process. However, in a dynamic environment, we need to filter out dynamic fea-

ture points and maintain stationary matching, which is helpful for VINSs. However, due 

to the high frequency of the camera, which is usually more than 10 Hz, the pixels corre-

sponding to the moving object do not have significant motion in the two adjacent images. 

Therefore, the VINS cannot reduce the influence of the moving object. 

To solve this problem, the sliding window constraint was proposed to achieve fea-

ture matching between the current frame image and the image several frames before. The 

schematic representation of the sliding window constraint is as figure 4. 

 

Figure 4. Schematic diagram of the sliding window constraint. The feature points of the current 

frame image are matched with the feature points of the previous nth image. 

When compared to the adjacent image frames, the time difference increases signifi-

cantly. Therefore, the displacement of the pixels corresponding to the moving object in 

the two adjacent image frames becomes more obvious. However, the static feature points 

do not change. Thus, the influence of the dynamic object is reduced, and the features are 

matched to the static object. 

2.3.4. Multi-Constraint Fusion Algorithm 

Epipolar geometric constraints apply only to moving feature points that deviate from 

the epipolar line, whereas FVB constraints apply only to feature points that move along 

the epipolar line. These two constraints only matter when the accuracy of the IMU data is 

high. The GMS constraint restricts feature point matching by spatial consistency, and the 
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sliding window constraint improves feature-matching accuracy by the temporal and spa-

tial relationships of the visual data. These two constraints are independent of IMU data. 

Thus, the four feature-matching constraint algorithms can compensate each other. There-

fore, the proposed algorithm integrates the above four constraints and avoids the failure 

of a single constraint. 

3. Experiment 

We integrated the multi constraint fusion algorithm proposed in this paper into 

VINS-mono, and proposed the VINS-dimc. An Intel(R) Core(TM) i7-7700hq CPU @ 2.80 

GHz was used as the experimental platform. We performed the experiments on an Ub-

untu 16.04 LTS system. 

First, we verified the proposed algorithm by testing whether it could accurately elim-

inate dynamic feature matching by running the feature point matching experiment. Then, 

we ran the self-collected data into the VINSs to check whether it is helpful for positioning 

accuracy by checking the closed-loop error. Finally, we ran the public dataset in VINS-

dimc. The positioning results were compared with the ground-truth to calculate the abso-

lute positioning error. Then, the root mean square error (RMSE) of the error could be be 

obtained. We chose VINS-mono, OKVIS-mono, and ROVIO as references, which are 

among the most representative visual–inertial navigation systems. We also used our pre-

vious work as a reference to prove that this improvement is effective. 

3.1. Feature Point Matching Experiment 

3.1.1. Materials and Experimental Setup 

The equipment we used for data acquisition was the Intel RealSense d435i camera 

[37]. It is a monocular camera with IMU and depth camera. Only RGB images and IMU 

data were used in this experiment. We set the resolution of the image data to 640 × 480, 

and the frequency to 15 Hz. The frequency of the accelerometer was set to 60 Hz, and the 

frequency of the gyroscope to 200 Hz. 

During data acquisition, the experimenter shook the file bag in front of the lens. In 

the scene, the file bag is a moving object while the other objects are motionless. We used 

the traditional method and the proposed algorithm to perform the experiments. The col-

lected image example is shown in Figure 5. Figure 5a is the image of the previous frame 

and Figure 5b is the image of the current frame. 

  

(a) (b) 

Figure 5. Two adjacent images: (a) the previous and (b) current image frames. 
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3.1.2. Results 

Since only the file bag is moving in the scene, the ideal result is that there are no 

moving points on the file bag. The results of feature point matching are shown in Figure 

6. Figure 6a,b shows the results of feature matching using the traditional method, and 

Figure 6c,d shows the results of the proposed algorithm. In Figure 6a,b, there are many 

feature points on the moving portfolio. However, in the proposed method, there are no 

feature points on the moving file bag. The feature points on the static object are the same 

as those in the traditional method. Therefore, the proposed algorithm can effectively elim-

inate dynamic feature points. 

  
(a) (b) 

  
(c) (d) 

Figure 6. Results of feature point matching. (a,b) Results of the traditional methods. (c,d) Results of 

the proposed algorithm. (a,c) Feature point distribution of the previous frame. (b,d) Feature point 

distribution of the next frame. Green points are static feature points and red points are dynamic 

feature points. 

3.2. VINS Positioning Experiment 

3.2.1. Materials and Experimental Setup 

We performed an experimental verification using real scenes. The experimental sce-

nario is shown in Figure 7. During the experiment, a person walked around the scene. 

Therefore, there is a certain amount of dynamic information in the scene, which is a chal-

lenge for the VINS system. Since there is no exact ground-truth, we set the start and end 

of the experiment to the same point, so that we could evaluate the positioning accuracy 

by comparing the deviation between the start and end. During the experiment, the exper-

imenters held the camera to collect data along the closed-loop path in the scene. 
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Figure 7. Experiment scene for data collection. 

In this experiment, the same camera was used to collect data as in the previous ex-

periment. The data acquisition parameters were also the same as in the previous experi-

ment. An example of the visual data for the two adjacent frames we captured is shown in 

Figure 8. 

  

(a) (b) 

Figure 8. Visual data of two adjacent frames: (a) the previous and (b) current image frames. 

3.2.2. Results 

We used the proposed algorithm to eliminate feature points on moving objects, and 

the feature-matching results are shown in Figure 9. Figure 9a,b show the distribution of 

the feature points. The experiment shows that the proposed algorithm is still effective in 

the VINSs. The algorithm was able to eliminate the feature points that are on the pedes-

trians and retain the feature points of the static scene. 
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(a) (b) 

Figure 9. The results of feature point matching using the proposed algorithm. (a) Feature point dis-

tribution map of the previous frame image, and (b) feature point distribution map of the current 

frame image. Green points are static feature points. 

We set the start and end points of the positioning experiment to the same position, 

and the difference between the positioning result at the last moment and the initial value 

can be considered as an index of accuracy. 

Figure 10 shows the results of the experiment. Figure 10a shows the track of the sys-

tem in 3D space. Figure 10b shows the changes of XYZ three-axis coordinates during the 

experiment. The positioning results of the three systems differed only slightly in the XY 

direction; however, the loop error of VINS-dimc in the Z-direction was much smaller than 

that of OKVIS-mono and VINS-mono. 

  

(a) (b) 

Figure 10. Positioning experiment results of the self-collected visual data: (a) Positioning track in 3D 

space and (b) variation of XYZ 3D coordinates during the experiment duration. 

We calculated the difference in positioning results between the end point and the 

start point. The difference in OKVIS-mono was 0.516 m and the difference in VINS-mono 

was 0.168 m, whereas the difference in VINS-dimc was 0.153 m. 

Based on the proposed algorithm, the positioning accuracy of VINS-dimc improved 

significantly when compared to VINS-mono. So, the proposed algorithm is also effective 

for the self-collected data. The algorithm obviously contributes to positioning accuracy. 
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3.3. ADVIO Dataset Experiment 

3.3.1. Materials and Experimental Setup 

To scientifically test the positioning accuracy of VINS-dimc, we performed experi-

ments on the ADVIO public dataset [38] with ground-truth. This is a public dataset that 

uses handheld devices for visual–inertial odometry, such as the sensors in a smartphone. 

The dataset contains 23 sequences that include recordings from both outdoor and indoor 

settings. The ground-truth is obtained by combining a recent pure inertial navigation sys-

tem [39]. 

To verify the algorithm in different scenarios, this study selected the six most repre-

sentative of the 23 sequences. The selected sequences were 1, 2, 6, 11, 16, and 21, which 

contain various experimental scenes, including a shopping mall, a subway station, an of-

fice, and an outdoor area. They also contain all kinds of dynamic objects, such as pedes-

trians, elevators, and moving cars. 

Two adjacent raw images from sequence 1 of the public dataset were selected as 

shown in Figure 11. Figure 11a shows the previous image, and Figure 11b shows the cur-

rent image. In these two image frames, the other objects are motionless except for the 

moving elevator. Therefore, only the moving elevator affects the feature matching. There-

fore, the ideal result is that all feature points on the elevator are eliminated and the other 

feature points are retained. 

  

(a) (b) 

Figure 11. Two adjacent image in the ADVIO dataset: (a) the previous image, (b) the current im-

age. 

3.3.2. Experimental Results 

During the experiment, VINS extracts feature points and matches, and eliminates the 

abnormal features of the two images. We use the proposed feature point elimination al-

gorithm in VINS. Figure 12 shows the feature points matching results. Figure 12a,b shows 

the distribution of feature points in the image. 
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(a) (b) 

Figure 12. Feature point matching results. (a) Feature point distribution map of the previous frame 

image, and (b) feature point distribution map of the current frame image. Green points are static 

feature points. 

The proposed algorithm is also suitable for public data sets. It can eliminate the fea-

ture points on the moving elevator while retaining other feature points, and there is no 

obvious error in feature matching. 

We used the Evo library [40] to calculate the RMSE of the absolute positioning error 

(APE) of the positioning result. APE is the direct difference between the estimated pose 

and the ground-truth, which can directly reflect the accuracy of the algorithm and the 

global consistency of the trajectory. It should be noted that the estimated pose and ground 

truth are usually not in the same coordinate system, so we need to align them first. We 

need to calculate a transformation matrix S ∈ ��(3)  from the estimated pose to the 

ground-truth using the least square method. Therefore, the APE of frame i is defined as 

follows: 

�� = ��
����� (10)

where, � represents the ground-truth and � represents the calculation result of the al-

gorithm. 

Then, use root mean squared error (RMSE) to count the APE: 

����(��:�, ∆) = (
1

�
�‖�����(��)‖�

�

���

)
�
� (11)

where ∆ represents the interval time and m represents the number of samples taken. 

In the six sequences of the ADVIO public dataset, the error comparison data between 

the proposed method and the original method are shown in Table 1. 

Table 1. RMSE of results in different sequences in ADVIO dataset (unit in meters). 

Sequence Venue Object People 
OKVIS-

Mono 
ROVIO VINS-Mono 

Previous 

Work 

VINS-

dimc 

1 Mall Escalator Moderate 1.6606 2.5990 1.8393 1.8140 1.6428 

2 Mall None Moderate 7.2727 - 2.5336 2.5160 2.4170 

6 Mall None High 4.5450 - 3.8394 3.6688 3.3327 

11 Metro Vehicles High - - 5.8722 5.8740 5.6198 

16 Office Stairs None 1.8130 - 1.2584 1.1092 1.2231 

21 Urban Vehicles Low - 20.5237 15.8333 15.8889 15.1988 
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Since the dataset contains many dynamic objects that require the system to be highly 

robust, both OKVIS-mono and ROVIO are unable to run some of the datasets. As shown 

in Table 1, VINS-dimc achieved excellent performance when compared to the other three 

state-of-the-art VINSs. When compared to our previous work, VINS-dimc has also made 

significant progress. Not only are there scenes with considerable dynamic information, 

but also scenes where almost all objects are stationary, such as in an office. The system not 

only runs successfully for all datasets, but also improves the positioning accuracy. VINS-

dimc achieves better robustness and higher positioning accuracy than conventional VINSs 

in both dynamic and static environments. 

Figure 13 shows the error data of the results for different sequences in the ADVIO 

public dataset. The figures in the left column show the absolute error over time. The ab-

scissa represents the experimental time; the unit is seconds, and the ordinate is the abso-

lute position error in meters. The figures in the right column show the statistics for the 

absolute position error. The statistics in the figures from top to bottom are the maximum, 

minimum, standard deviation, median, mean, and RMSE. The horizontal axis represents 

the size in meters. 

  

(a) (b) 

  

(c) (d) 
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(e) (f) 

  

(g) (h) 

  

(i) (j) 
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(k) (l) 

Figure 13. Comparison of positioning results between conventional OKVIS-mono, ROVIO, VINS-

mono, previous works, and the proposed VINS-dimc on different sequences of the ADVIO dataset: 

(a,b) sequence 1, (c,d) sequence 2, (e,f) sequence 6, (g,h) sequence 11, (i,j) sequence 16, and (k,l) 

sequence 21. The left images show the absolute positioning error over time. The right images show 

some statistics on the absolute positioning error. 

4. Discussion and Conclusions 

In this study, we present an algorithm for feature-matching elimination based on 

multiple constraints. This algorithm has two main advantages. First, the information from 

IMU is combined with epipolar and FVB constraints to eliminate abnormal feature points 

using geometric relationships. Second, the GMS and sliding window constraints are in-

troduced, which are combined with the epipolar and FVB constraints to eliminate feature 

point matching for dynamic objects. The Epipolar constraint and FVB constraint combine 

IMU data and use geometric information to eliminate dynamic feature points. The GMS 

constraint considers the spatial consistency of the feature point matching. Sliding window 

constraint uses time correlation to constrain feature points. Thus, the proposed algorithm 

integrates four constraints to avoid the failure of a single constraint. 

We integrated the algorithm into VINS-mono and proposed VINS-dimc. Through 

feature point matching experiments, we proved that the proposed algorithm is helpful in 

removing dynamic feature points. In the experiment with self-collected data, the closed-

loop error of VINS-dimc is much lower than that of conventional methods. In the experi-

ment with the ADVIO public dataset, the positioning error of VINS-dimc is the smallest. 

Therefore, the proposed method can improve the matching accuracy of feature points and 

the positioning accuracy of VINSs. 

In future work, we will consider another difficulty of VINS: illumination changes. In 

practical applications, the change of illumination has a great impact on the stability of 

feature points. We intend to propose an image enhancement method and integrate it with 

VINS to improve the accuracy and robustness of the system. 
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