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Abstract: Drifting snow, the flow of dispersed snow particles near ground level under the action of
wind, is a major form of snow damage. When drifting snow occurs on railways, highways, and other
transportation lines, it seriously affects their operational safety and results in drifting snow disasters.
Drifting snow disasters frequently occur in the high latitudes of northwest China. At present, most
scholars are committed to studying the prevention and control measures of drifting snow, but the
prerequisite for prevention is to effectively evaluate the susceptibility of drifting snow along railways
and highways to identify areas with a high risk of occurrence. Taking the Xinjiang Afukuzhun
Railway as an example, this study uses a geographic information system (GIS) combined with on-site
monitoring and surveys to establish a drifting snow susceptibility evaluation index system. The
drifting snow susceptibility index (DSSI) is calculated through the weight of an evidence (WOE)
model, and a genetic algorithm backpropagation (GA-BP) algorithm is used to obtain optimised
evaluation index weights to improve the accuracy of model evaluation. The results show that the
accuracies of the WOE model, WOE backpropagation (WOE-BP) model, and weight of evidence
genetic algorithm backpropagation (WOE-GA-BP) model are 0.747, 0.748, and 0.785, respectively,
indicating that the method can be effectively applied to evaluate drifting snow susceptibility.

Keywords: GIS; drifting snow; GA-BP; WOE; susceptibility

1. Introduction

Drifting snow is an atypical gas–solid two-phase flow in which dispersed snow
particles move near the ground under the action of wind; also referred to as snowstorm
flow [1,2], it is a major form of snow damage. In the first instance, drifting snow can be
characterised according to the blowing height: (i) low drifting snow, where the blowing
height is within the range of 0–2 metres near the surface; (ii) blowing snow, where the
height of blowing is more than 2 metres; (iii) snowstorm, which occurs in extremely low
temperature and extreme wind speed conditions, and during which visibility is extremely
low [3]. An alternative characterisation is based on the motion of snow particles in drifting
snow, which can be divided into three groups based on different moving states: creep,
jump, and suspension [4]. Drifting snow is mainly distributed in China, Russia, the United
States, and other countries with a large latitude span. In China, it is distributed in Xinjiang,
Northeast China, Tibet, and other regions [5]. Drifting snow severely affects transportation,
agricultural and animal husbandry production, industrial construction, and people’s life
and property safety [6–12].

The snowstorms of February 1978 in England resulted in $1 billion in damage. In
October 1985, a drifting snow disaster affected the Qinghai–Tibet Plateau, and the affected
area was equivalent to the combined area of China’s Jiangsu and Shandong provinces. In
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February 2009, the UK was hit by the worst snowstorm in the century, with more than
3000 schools closed along and major closures in the road, rail, tube, and air transport
systems, costing the economy nearly 1.2 billion pounds [13]. On 3 January 2010, a sudden
snowstorm in Inner Mongolia led to heavy snow accumulation on the railway line; more
than 1817 trains were stopped, and several carriages were buried in snow, trapping more
than 1400 passengers [14]. On 22 December 2012, under the double action of extreme cold
and strong wind, a section of the G30 Connection Line in Xinjiang was hit by drifting
snow. More than 300 vehicles were blocked, and hundreds of people were trapped on a six-
kilometre section. In February 2013, a major snowstorm, Nemo, hit the northeastern part of
the United States, which caused five states to declare a state of emergency; all highways
in Massachusetts were closed [15]. From February 29 to 13, 2016, severe drifting snow
disasters frequently occurred in Maytas, Xinjiang Region, causing traffic jams and trapping
hundreds of cars and passengers in disaster areas. With the acceleration of construction in
northwestern China, road construction has presented an urgent need for the risk assessment
and effective protection of drifting snow disasters.

From different dynamic factors, snow disasters can be classified into two categories.
One is the disaster resulting from the accumulation of natural snow to a certain thickness,
and the other is the drifting snow disaster in certain areas resulting from the transport of
wind. Several scholars have studied the obstructive effect of objects in drifting snow [16,17],
and the relationship between wind speed, snow particle size, and snow output [18–21].
Early snow disaster assessment research was based on a combination of satellite data and
fuzzy mathematics method theory [22–28]. With the continuous development of geographic
information systems (GISs), several scholars have begun to use them to assess the risk of
snow disasters. For example, snow disaster factors have been extracted and combined with
a grey weighting clustering method and an analytic hierarchy process to establish a snow
disaster assessment model and snow disaster risk-zoning analysis [29–31].

However, the existing research results have notable shortcomings for drifting snow,
especially for railway drifting snow disasters. Firstly, the influencing factors of linear
engineering drifting snow are notably different from natural snow disasters, but recent
studies do not specifically establish a risk evaluation index system for railway drifting
snow disasters [32–34]. In addition, risk research is focused on snow and the resultant
situation of road icing [35–39]. Secondly, while establishing the index evaluation system,
there is no objective analysis of the weight of each index; moreover, probability and fuzzy
analyses are the main methods used for developing the system [40,41].

This study uses the Xinjiang Afuzhun Railway as the research object, combined with
a site survey and monitoring data based on a GIS platform, establishes a railway drifting
snow susceptibility evaluation system, and uses the weight of evidence (WOE) model to
calculate the susceptibility index. Then combined with a genetic algorithm backpropagation
(GA-BP) algorithm, the weight of each index factor was studied to optimise the evaluation
results, and the reliability of the method was verified by a receiver operating characteristic
(ROC) curve. The result shows that this method can provide a reference for other similar
railway projects.

2. Evaluation Model
2.1. Evidence Weight Method

The WOE method is based on Bayesian statistical theory. The method uses statistical
analysis of the contribution of the evidence-level factors to the research goal to predict
whether the event will occur; in this manner, the influence of subjective factors can ef-
fectively be avoided [42]. This method was first applied in the field of medicine and
then introduced by geologists Bonham-Carter et al. [43] and Ahterberg et al. [44] into the
field of mineral research. It has been widely used in research on landslides, debris flows
and other geological hazards [45]; however, it has seldom been applied to drifting snow
disaster evaluation.
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The appropriate starting place to describe the mathematical principle of WOE is to
consider the study area as being equally divided into N grids, where M represents the total
number of grids with drifting snow, and M represents the total number of grids with no
drifting snow. The number of grids with drifting snow in the secondary state classification
of a certain evidence layer is represented by A, and event A represents the number of
drifting snow grids that did not occur. For the secondary status of any evidence factor, its
contribution to the drifting snow is defined as

W+
i = ln

[
P
(

A
M

)
/P
(

A
M

)]
(1)

W−i = ln

[
P

(
A
M

)
/P

(
A
M

)]
(2)

where P(A⁄M) is the conditional probability, which is the probability of A occurring under M.
The computed values of W+

i and W−i can indicate the impact of the secondary state
classification in the evidence layer on the occurrence of drifting snow. Specifically, W+

i > 0
or W−i < 0 indicates that the grading factor is conducive to the occurrence of drifting snow,
whereas W+

i < 0 or W−i > 0 alternatively indicates that it is not conducive to the occurrence
of drifting snow. The difference between the two can indicate the strength of the correlation
between the secondary factor and drifting snow, that is, W f i = W+

i −W−i . The larger
W f i is, the better the indicator of this secondary factor is to the occurrence of drifting
snow. Conversely, if the indicator is poor, then the secondary factor is not conducive to the
occurrence of drifting snow. If W f i = 0, the secondary factor has no effect on drifting snow.

2.2. Coupling Model

The relationship between the various factors influencing wind and snow and the
occurrence of drifting snow is complex and nonlinear; it cannot be accurately studied using
functional relationships. However, BP neural network has good applicability to nonlinear
problems and can be used for drifting snow disaster evaluation [46]. In previous studies, it
has been mostly used for landslide risk evaluation. The factors that affect the stability of
landslides are used as an input layer, and the risk index is used as an output layer. However,
the consideration for the connection between neurons was slightly lacking [47,48]. The
genetic algorithm can optimise the weights and thresholds of the neural network while
making full use of the nonlinear mapping ability of the neural network and improving
the convergence speed and prediction accuracy of the neural network [49]. Therefore, the
weight of each input layer in the improved BP neural network can be coupled with the
evidence weight model to obtain the drifting snow susceptibility index (DSSI), and the
susceptibility zone map can be obtained using the GIS platform. The calculation process is
shown in Figure 1.
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Figure 1. Calculation flow chart.

3. Overview of the Study Area and Data Sources
3.1. Overview of the Study Area

The A(Aletai)-F(Fuyun)-Z(Zhun-dong) Railway is located in Changji Autonomous
Prefecture of the Aletai Region, Xinjiang Uygur Autonomous Region. It runs across one city,
two countries, and eight administrative regions. The line lies between 45◦11–48◦11′ N and
87◦38–90◦32′ E with an overall altitude of 597–1219 m, where the low terrain is generally
to the north, and the high terrain is overall to the south. From northwest to southeast,
it passes through two geomorphic units, that is, the intermontane alluvial plain and the
low-hill area at the southern foot of the Altai Mountains (Figure 2).
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The AFZ Railway (Figure 3) passes through the zone between the northwest area of
the Zhungeer Basin and the southern foot of the Altai Mountains, which belongs to the
temperate continental climate. There is little rain in summer, and the winters are cold
and long. The north–south span of the whole line is large and located in high latitude
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areas. The area has deep snow in winter with high-wind speed; it is one of the three major
snow-covered areas in China.
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Figure 3. Route map.

3.2. Data Source

The susceptibility zone based on GIS requires a large amount of raster data, including
terrain data, wind field data, and snow depth data along the line. Therefore, the research
data in this study is divided into three categories, and the raster resolution is 10 m × 10 m:

1. Terrain data

Topographic data include elevation data, topographic relief, roughness, and slope
aspect. Based on the 30M resolution digital elevation data of the “Geospatial Data Cloud”,
this part of the data can be obtained using GIS-related analysis functions.

2. Wind field data

The wind speed and dominant wind direction determine the direction and trend of
snow flow movement. The AFZ Railway is located in a mountainous area with complex
terrain, which significantly changes the wind speed and wind direction. The research
requirements cannot be met only by relying on historical meteorological data of nearby
weather stations. Therefore, for two consecutive years, 20 meteorological monitoring
stations (Figure 4), set up along the entire railway line, monitored the wind speed and
direction in the project area.
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3. On-site snow depth data

The thickness of the drifting snow along the railway is an important standard to
measure its degree of severity and evaluate the susceptibility of drifting snow. Therefore,
our research group organised personnel to conduct field measurements of the thickness of
the drifting snow along the railway (Figure 5) and established the corresponding data set.
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4. Establishment of Evaluation Index System and Model Construction
4.1. Evaluation Index System

The occurrence of drifting snow disasters is the result of natural snowfall, wind
field, and terrain factors. Based on previous research results and field data from regional
environmental conditions, that is, regional snowfield and wind field conditions, this study
selected elevation, relief amplitude, surface roughness, aspect, snowfall, frequency of heavy
snowfall, average wind speed, maximum wind speed, the angle between the wind and
the line directions, and snow wind speed frequency. Therefore, a total of ten influencing
factors were used to build the evaluation index system (Figure 6).
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4.2. Index Factor Classification

Index factor data includes both continuous and discrete types of data. For the con-
tinuous data, the physical meaning needs to be discretised. For discrete data, each level
has a clear physical meaning. Finally, the drifting snow area ratio, graded area ratio, and
WOE are used to comprehensively evaluate the impact of the secondary status of each
index factor on the drifting snow [50]. The drifting snow area ratio is equal to the area
of the drifting snow in the secondary state of the indicator factor/the total area of the
drifting snow in the whole region; the graded area ratio is the area of each secondary
state of the index factor compared to the total area of the index factor. Their relative sizes
represent the importance of each second-level state classification of this indicator factor to
the drifting snow susceptibility [51]. If the area ratio of the drifting snow is greater than
that of the graded area ratio, it indicates that drifting snow can easily occur in the graded
state; otherwise, the opposite is true.

4.2.1. Regional Environmental Conditions

1. Elevation

The influence of altitude on drifting snow is reflected in two aspects. Firstly, altitude
can affect the wind speed and the size of the flow section, that is, the flow section decreases
with the increasing altitude, and the wind speed increases in high altitude areas; Secondly,
the wind speed can affect the temperature; moreover, the size of snow particles has a
close relationship with the temperature. The temperature can affect the melting speed of
snow particles. The deeper the melting degree of snow particles, the larger is the particle
size and the faster the corresponding starting wind speed. The elevation of this study
area is between 597 m and 1219 m, the occurrence of drifting is concentrated between
597 m and 1063 m, and there is no drifting snow over 1063 m. According to the actual
distribution, the elevation is divided into five secondary states: 597–764 m, 764–865 m,
865–955 m, 955–1063 m, and 1063–1219 m. The area ratio of drifting snow, the area ratio of
classification, and the WOE in each secondary state were calculated (Figure 7).
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2. Relief amplitude

Relief amplitude refers to the difference in elevation between the highest point and
the lowest point in a certain range, indicating the steepness of the terrain in a certain area.
The size of the relief amplitude can also reflect the degree of irregularity of the ground
in a certain area. When the relief amplitude is small, the near-ground wind movement
is affected by friction resistance, and the wind speed changes slightly. The ground snow
particles are affected by a horizontal force, but the vertical force is not noticeable, and the
snow particles have no upward movement trend. Moreover, when the relief amplitude
is large, air turbulence becomes larger and a vortex is formed. At this time, the vertical
force on snow particles on the ground increases. When the vertical force is greater than
the gravitation force on snow particles, supplemented by transverse wind, snow particles
fly from the ground and form drifting snow. Therefore, in this study, the relief amplitude
is divided into five secondary states: 0–17, 17–25, 25–37, 37–59, 59–137. The area ratio of
drifting snow, the area ratio of classification, and the WOE in each secondary state were
counted (Figure 8).
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3. Surface roughness

Surface roughness is the ratio of the actual ground surface to the projected area within
a certain range, reflecting the roughness of the ground surface. The formula is as follows:

SR = (AC.AB)/(AC.AC) = 1/cos a (3)

In the formula, a is the slope of the secondary grid unit; then, the area of the AB surface
is the surface area of the secondary grid, and the area of the AC surface is the projected area
of the grid, where cos a = AC/AB, with the result being the secant of the slope.

Relief amplitude affects fluid turbulence over relatively large distances, whereas
surface roughness affects turbulence only over small distances. However, both these factors
can increase the vertical force on snow particles; moreover, it is easy to move under the
action of transverse force and finally form drifting snow. Therefore, in this study, the
surface roughness is divided into four secondary states: 1–1.009, 1.009–1.034, 1.034–1.12,
and 1.12–1.668. The area ratio of drifting snow, the area ratio of classification, and the WOE
in each secondary state were calculated (Figure 9).
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4. Aspect

The difference in the aspect of the slope leads to the different times of the sun. A
long sunshine time results in a sunny slope; short sunshine time leads to a shaded slope.
The southern slope of the northern hemisphere has a longer sunshine time than the north
slope. The impact of slope direction is reflected in two aspects. Firstly, different slope
directions receive different light hours, resulting in different regional temperatures, which
affect the melting speed of snow particles [52]. Secondly, there are differences in vegetation
in different slope directions. Plants on sunny slopes grow more abundantly, and their
aboveground crown and root systems are more developed, meaning they also have a
better blocking effect on drifting snow. Hence, in this study, the aspect is divided into
six secondary states: 0–60◦, 60–120◦, 120–180◦, 180–240◦, and 240–360◦. The area ratio of
drifting snow, the area ratio of classification, and the WOE in each secondary state were
calculated (Figure 10).
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4.2.2. Regional Snow Field Conditions

1. Snowfall

The annual snowfall is an important factor in drifting snow, and the snow source in a
certain area is termed sufficient based on the amount of snowfall. According to the snowfall
data of the “Geospatial Data Cloud” platform, the snowfall in the study area is divided into
four secondary states: 40–900 mm, 900–1350 mm, 1350–1700 mm, and 1700–1928 mm. The
area ratio of classification and the WOE in each secondary state were calculated (Figure 11).
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2. Frequency of heavy snowfall

According to different times, the snow particles on the ground can be divided into
new and old snow. The particle size of new snow is relatively smaller than that of old snow.
There is a high incidence of drifting snow, usually within a few days after snowfall. The
longer the time since the snowfall, the larger is the size of the snow particles; therefore, the
occurrence of drifting snow is related to the frequency of snowfall. The more frequent the
snowfall, the greater is the total amount of fresh snow and the greater the possibility of
drifting snow. According to previous research results and the statistical data of the National
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Meteorological Station on Altay region (1961–2013) [53], the frequency of heavy snowfall
in this study area can be divided into four secondary states: 1.5–2.0, 2.05–2.75, 2.75–3.1,
and 10–3.50. The area ratio of classification and the WOE in each secondary state were
calculated (Figure 12).
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4.2.3. Regional Wind Field Conditions

1. Wind speed

The wind is a necessary condition for the formation of drifting snow. According to the
mechanical formula, the movement of snow particles is a function of wind speed. Therefore,
wind speed is an important factor in the evaluation of drifting snow susceptibility.

There are many statistical analysis methods for wind speed. For example, the average
and maximum wind speed are typical statistical methods. To further analyse the wind
speed data collected on-site, the wind speed statistics data are divided into two types: the
average and maximum wind speeds; both of them are used as drifting snow evaluation
indicators. According to the wind speed data collected on-site in the winter of 2018 and
2019 (Table 1), the average wind speed and maximum wind speed are divided into four
secondary states. The average wind speed is divided into 1.29–1.34 m/s, 1.34–1.67 m/s,
1.67–1.8 m/s, and 1.8–2.73 m/s states, and the maximum wind speed is divided into
7.7–11.7 m/s, 11.7–13.05 m/s, 13.05–13.7 m/s, and 13.7–15.25 m/s states. The area ratio of
classification and the WOE in each secondary state were calculated (Figure 13).

Table 1. Statistics of average wind speed and maximum wind speed along the line.

Monitoring
Mileage

Average Wind
Speed (m/s)

Maximum
Wind Speed

(m/s)

Monitoring
Mileage

Average Wind
Speed (m/s)

Maximum
Wind Speed

(m/s)

DK89+900 1.5 14.1 DK89+900 1.76 12.5
DK112+800 1.45 7.8 DK112+800 1.23 15.6
DK120+200 1.68 12.8 DK120+200 1.65 13.7
DK129+300 1.79 11.8 DK129+300 1.32 13
DK134+600 2.89 13.4 DK134+600 1.45 14
DK139+400 1.32 10.6 DK139+400 1.26 19.9
DK146+500 2.62 17.2 DK146+500 0.98 7.7
DK224+350 2.74 11.7 DK224+350 1.64 13.5
DK288+000 2.63 12.8 DK288+000 2.82 13.3
DK322+150 1.64 12.1 DK322+150 2.8 13.7
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to the monitoring data obtained in the field and combined with the actual situation in the 
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2. Angle between wind and line direction

The angle between the wind and line directions can greatly affect the snow resistance
of regional road sections caused by drifting snow. The line and wind directions change
between 0◦ and 90◦. When the angle between the line and the wind direction is 90◦, the
line has the greatest blocking effect on wind and snow flow, and snow particles form a
great accumulation on the line’s subgrade. When the angle between the line and the wind
direction is 0◦, the snow particles in the drifting snow flow are consistent with the line
direction and are not blocked by the line but accumulate on the line roadbed. According
to the monitoring data obtained in the field and combined with the actual situation in the
research area, the angle between the main wind and line directions is divided into five
secondary states: 0–17.5◦, 17.5–6.5, 36.5–55.5◦, 55.5–74.5◦, and 74.5–89◦. The area ratio of
classification and the WOE in each secondary state were calculated (Figure 14).
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3. Snow wind speed frequency

The starting wind speed of snow particles is greatly related to the size of the snow
particles. Generally, the starting wind speed of snow particles with small particle sizes is
lower. According to research findings, when the temperature is below −6 ◦C, the snowfall
starting wind speed is approximately 3.4 m/s [54]. The winter temperature in the study
area is relatively low. In most cases, the temperature is lower than−6 ◦C. The starting snow
wind speed measured by the on-site wind tunnel test is approximately 4 m/s (3 m high).
Therefore, the speed of 4 m/s is defined as the starting snow wind speed, and the statistical
results are shown in Table 2. The frequency of snow wind speed in the study area is divided
into six secondary states: 0.55–1.59%, 1.59–4.58%, 4.58–6.06%, 6.06–12.2%, 12.2–17.7%,
17.7–23.18%. The area ratio of classification and the WOE in each secondary state were
calculated (Figure 15).

Table 2. Statistic table of snow wind speed frequency.

Monitoring
Mileage

Wind Speed
Frequency above 4 m/s

Monitoring
Mileage

Wind Speed
Frequency above 4 m/s

DK27+600 4.42% DK89+900 4.58%
DK33+500 6.06% DK112+800 4.45%
DK42+800 12.20% DK120+200 3.01%
DK44+700 21.67% DK129+300 1.59%
DK47+500 22.48% DK134+600 4.52%
DK50+500 9.17% DK139+400 5.23%
DK52+800 21.06% DK146+500 0.55%
DK56+900 22.81% DK224+350 10.64%
DK62+600 17.71% DK288+000 23.18%
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4.3. Analysis of the Construction of WOE Model Improved by GA-BP Algorithm
4.3.1. Weight of Evidence (WOE) Model

We used the formulae in Section 2.1 (Equations (1) and (2)) to calculate the evidence
weight of each indicator’s secondary status factor (Table 3). On this basis, ArcGIS was used
to superimpose each impact factor layer to calculate the drifting snow susceptibility index
(DSSI) of the entire study area. DSSI is the algebraic sum of Wfi calculated using the grid
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calculator overlay, and its numerical value can represent the degree of susceptibility to
drifting snow. The DSSI in the study area is in the range −8.27–9.89.

DSSI =
n

∑
i=1

W f i (4)

Table 3. Index factors and Wfi.

Index Factors Index
Classification Wfi Index Factors Index

Classification Wfi

Elevation (m)

597–764 0.071

Average wind speed (m/s)

1.29–1.34 1.121

764–865 1.3275 1.34–1.67 1.277

865–955 −0.108 1.67–1.8 −1.808

955–1063 −1.312 1.8–2.73 −0.732

1063–1219 −0.109

Maximum wind
speed (m/s)

7.7–11.7 −1.4303

Relief Amplitude

0–17 −0.350 11.7–13.05 0.682

17–25 −0.002 13.05–13.7 1.132

25–37 0.465 13.7–15.25 1.417

37–59 0.876

Included angle (◦)

0–17.5 0.774

59–137 0.815 17.5–36.5 0.575

Aspect (◦)

0–60 0.007 36.5–55.5 0.161

60–120 −0.044 55.5–74.5 −0.650

120–180 0.011

Snow wind speed
frequency (%)

0.55–1.59 0.603

180–240 0.069 1.59–4.58 0.8443

240–300 −0.050 4.58–6.06 1.029

300–360 −0.005 6.06–12.2 −0.273

Surface roughness

1–1.009 −0.325 12.2–17.7 1.730

1.009–1.034 0.265 17.7–23.18 −1.142

1.034–1.12 0.645

Frequency of heavy
snowfall (%)

1.5–2.05 −4.3617

1.12–1.668 0.447 2.05–2.75 −0.062

Snowfall(mm)

740–900 −0.759 2.75–3.1 1.463

900–1350 −0.479 3.1–3.5 0.185

1350–1700 1.266

1700–1928 0.541

Wfi—Weight of evidence for each secondary state factor.
There are 22,912,695 grids in the area along the railway, including 1,405,522 grids

for low-prone areas, 4869708 grids for medium-prone areas, and 3988465 grids for high-
prone areas, accounting for 61.34%, 21.25%, and 17.41%. High-susceptibility areas are
concentrated in DK57–DK116 Km, moderately susceptible areas are concentrated in DK0–
DK57 Km, and DK116–DK139 Km, and the rest are low-prone areas (Figure 16).
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4.3.2. GA-BP Algorithm Optimisation

Although the WOE model can characterise the impact of each index factor on the
risk, it does not consider the weight ratio of each factor in the stacking calculation, which
ignores the relative importance of each index factor to the overall contribution. However,
the neural network model has noticeable black-box characteristics and can mine nonlinear
behaviours from training data, which has notable advantages in the weight determination
of evaluation factors [55–57]. The genetic algorithm can optimise the weights of the neural
network and improve the evaluation accuracy of the model. The construction of the neural
network model has been studied in detail in numerous research [58–60] and is, therefore,
not mentioned here. This study constructs a neural network model of 10–12–1. The model
contains ten input layer neurons corresponding to the evaluation indicators one by one,
one output layer neuron corresponding to the DSSI, and 12 hidden layer neurons.

There are 22,912,695 grid units in this research area and 2,171,375 grid units in the
drifting snow area. We randomly selected 2000 grids from the drifting snow grid and the
non-drifting snow grid, a total of 4000 grid cells. The evaluation index attributing data
corresponding to each grid is extracted as the input layer, and the DSSI is extracted as the
output layer to construct neural network training samples. First, we used the BP neural
network for training, calculated the weight value, and then used the GA algorithm to
improve the neural network (Figure 17), which was used for retraining and to calculate the
weight value (Table 4).
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Table 4. Calculated index factor weights.

Serial Number Index Factor BP Weight GA-BP Weight

1 Elevation 0.880037 0.870972

2 Relief Amplitude 1.129359 0.799087

3 Aspect 0.815339 0.663054

4 Surface roughness 0.744768 0.275845

5 Snowfall 0.763512 0.651298

6 Frequency of heavy snowfall 1.134141 1.399246

7 Average wind speed 0.993594 1.684908

8 Maximum wind speed 1.116979 1.915338

9 Included angle 1.473144 2.706506

10 Snow wind speed frequency 0.949127 0.933745

Figure 17 shows that using a BP neural network or a GA-BP neural network, the
correlation coefficient R, after training, is above 0.99, which is consistent with the data.
Through weight calculation, the factors with a relatively large contribution to drifting
snow calculated using both training models are the same. The highest weight is the angle
between the wind and the line directions, followed by the maximum wind speed; the
weight of snowfall frequency is also large, which also confirms the importance of dynamic
factors and the provenance of drifting snow.
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5. Drifting Snow Evaluation and Accuracy Analysis Susceptibility Evaluation
5.1. Susceptibility Evaluation

Based on the WOE model calculation and ArcGIS grid calculator, the weight results in
Table 4 were substituted into the optimisation calculation, and an optimised drifting snow
susceptibility zoning diagram (Figure 18) could be reconstructed. The results show that
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1. The location of the high-susceptibility concentration area calculated by the three
models is unchanged, and all of them are between DK57 km and DK116 km. After the
BP neural network weight optimisation, the DK 230–DK 231+300 km susceptibility
grade is improved, from low susceptibility area to medium susceptibility area. After
the GA-BP model weight optimisation, the susceptibility level of DK23–DK33+400 km
is improved, especially the DK32+400 km–DK33+400 km section is changed from a
medium- to a high-prone area.

2. The weight analysis results are consistent with the theoretical analysis. The factors that
have a greater contribution to the drifting snow susceptibility are the angle between
the wind and the line directions, the maximum wind speed, the amount of snowfall,
and the frequency of snowfall.

3. Compared with the WOE and WOE-BP models, the WOE-GA-BP model obtained a
higher proportion of high-susceptibility areas in the susceptibility zoning map and
included more drifting snow occurrence areas, which has more practical significance
for guiding drifting snow protection areas.

5.2. Accuracy Evaluation

In this study, the receiver operating characteristic (ROC) curve and area under the
curve (AUC) were taken as the measurement standards. Fawcett conducted a detailed
study on the basic theory and calculation method of the ROC curve and AUC [61].

According to the research results, the corresponding results for the AUC value and
evaluation accuracy are as follows: AUC < 0.7, poor evaluation accuracy; 0.7 < AUC < 0.8,
medium evaluation accuracy; AUC > 0.8, good evaluation accuracy. This study divides the
DSSI into 100 intervals from large to small and gradually counts the cumulative occurrence
frequency of drifting snow in each interval. The total grid frequency of the study area
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is taken as the abscissa, and the cumulative occurrence frequency of drifting snow is the
vertical coordinate when drawing the ROC curve (Figure 19).
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According to the ROC curve, the AUC areas corresponding to the three evaluation
models are 0.747 (WOE), 0.748 (WOE-BP), and 0.785 (WOE-GA-BP), all of which have
achieved good evaluation accuracy. After the BP algorithm optimises the weights, the
model evaluation accuracy is improved by only 0.134%. After the GA-BP algorithm
optimises the weights, the model evaluation accuracy is considerably improved, reaching
5.1%, which is close to the optimal standard of 0.8.

6. Conclusions

In this paper, the WOE model, the WOE-BP model, and the WOE-GA-BP model were
used to study the evaluation index system of drifting snow susceptibility along railways.
The influence of the weight of each index and the evaluation effect of each model were
combined with the wind field data obtained from field monitoring. The results indicated
the following:

1. Taking Afuzhun Railway in Xinjiang as the specific research object, the evaluation
index system for drifting snow susceptibility on the railway can be established by
selecting ten influencing factors, such as elevation, snowfall, the angle between the
wind and the line directions. Using the DSSI proposed in this paper, the WOE model
can be used to obtain the preliminary zoning of drifting snow susceptibility along
the railway.

2. Based on the initial classification of drifting snow susceptibility, 4000 grid cells were
randomly selected as training samples, and the influence of each index on the weight
of the evaluation results was calculated using the BP and GA-BP algorithms. The re-
sults showed that the weight of the angle between the wind and the line directions was
the largest, followed by the largest wind speed and the frequency of heavy snowfall.

3. The calculated weights were used to optimise the WOE model. The results showed
that the evaluation accuracy of all models was improved. The GA-BP algorithm im-
proved the evaluation accuracy by 5.1% to 0.785, achieving a high evaluation accuracy.

4. The GA-BP algorithm can effectively study the complex nonlinear relationship be-
tween various indicators and obtain evaluation results that are highly consistent
with the actual situation. This method can effectively find the high incidence area
of drifting snow in linear railways and provide a theoretical basis for the effective
prevention and control of drifting snow.
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5. In the relatively mature application fields for WOE, such as landslide susceptibility
evaluation, the evaluation accuracy of this evaluation model can reach 0.8 or even
higher. In comparison, the evaluation accuracy of this model for linear engineering
(such as railway) is low. In the future application of this research, we will focus on
optimising the evaluation model to improve the evaluation accuracy of the model.

6. The evaluation accuracy of this method partly depends on the accuracy of data,
especially the wind field data. This study is based on on-site monitoring and takes
considerable time to collect data. Hence, further research is required to develop a
more efficient and simple method to obtain field data.
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