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Abstract: Several studies have worked on co-clustering analysis of spatio-temporal data. However,
most of them search for co-clusters with similar values and are unable to identify co-clusters with
coherent trends, defined as exhibiting similar tendencies in the attributes. In this study, we present
the Bregman co-clustering algorithm with minimum sum-squared residue (BCC_MSSR), which uses
the residue to quantify coherent trends and enables the identification of co-clusters with coherent
trends in geo-referenced time series. Dutch monthly temperatures over 20 years at 28 stations were
used as the case study dataset. Station-clusters, month-clusters, and co-clusters in the BCC_MSSR
results were showed and compared with co-clusters of similar values. A total of 112 co-clusters with
different temperature variations were identified in the Results, and 16 representative co-clusters
were illustrated, and seven types of coherent temperature trends were summarized: (1) increasing;
(2) decreasing; (3) first increasing and then decreasing; (4) first decreasing and then increasing; (5) first
increasing, then decreasing, and finally increasing; (6) first decreasing, then increasing, and finally
decreasing; and (7) first decreasing, then increasing, decreasing, and finally increasing. Comparisons
with co-clusters of similar values show that BCC_MSSR explored coherent spatio-temporal patterns
in regions and certain time periods. However, the selection of the suitable co-clustering methods
depends on the objective of specific tasks.

Keywords: co-clustering; coherent trends; The Netherlands; temperature series; data mining

1. Introduction

Thanks to the advancement of earth observation and model simulation systems, un-
precedented amounts of spatio-temporal data with various resolutions have been accumu-
lated [1,2]. On one hand, these massive amounts of data provide opportunities to investigate
complex patterns and knowledge to help decision-making [3]; on the other hand, how to
extract patterns from these data becomes a challenging issue [4]. As one of the most impor-
tant data mining tasks, clustering methods group data elements into clusters by identifying
similar ones and separating dissimilar ones, thus helping to extract underlying patterns in
the data [5–7].

There have been many studies on analyzing patterns in spatio-temporal data using
clustering methods [8]. Most studies applied traditional clustering methods, also named
one-way clustering methods, which analyze either spatial or temporal patterns in the data
and are thus called spatial clustering or temporal clustering. In particular, spatial clustering
methods analyze data along the spatial dimension and partition similar data elements along
all the timestamps into clusters of locations (Figure 1a,b). For example, Andrienko et al. [9]
used a self-organizing map (SOM) as a one-way clustering method to identify spatial clusters
of similar temporal distributions in city traffic data. Hagenauer and Helbich [10] proposed
hierarchical spatio-temporal SOM (HSTSOM), which analyzed spatial and temporal patterns
separately in the layers to search for clusters in socio-economic data. Liu et al. [11] applied
k-means clustering method to identify spatial clusters of states with similar time series of
spatial autocorrelation curves to examine the effect of policies on COVID-19 transmission.
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Temporal clustering methods analyze the data along the temporal dimension and group
similar data elements along all the locations into clusters of timestamps (Figure 1a,c). For
instance, Ahas et al. [12] grouped years with similar rhythm of human activities by clustering
analysis to differentiate urban and rural landscapes. Wu et al. [13] identified years with
similar temperature variations along all stations in the Netherlands to explore temporal
varying behavior in Dutch weather data.
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Recently, co-clustering analysis of spatio-temporal data has attracted the attention of
researchers in geo-field. Unlike one-way clustering, co-clustering methods (Figure 1a,d)
analyze the data from both spatial and temporal aspects simultaneously, and partition
similar data elements along both dimensions into clusters of locations and timestamps [8].
Consequently, they are capable of discovering both spatial and temporal patterns in the
data simultaneously. Wu et al. [14] applied the co-clustering method to analyze temperature
patterns along both spatial and temporal dimensions in Dutch temperature series. Wu
et al. [15] and Wu et al. [16] used the co-clustering method to explore patterns of both spatial
and temporal differentiations in long-term spring phenology in Europe and China, respec-
tively. Ullah et al. [17] detected potential space-time disease clusters in annual and monthly
malaria series in Pakistan by using co-clustering analysis. Andreo et al. [18] used the co-
clustering method to identify spatio-temporal clusters of favorable conditions for West Nile
emergence and maintenance in Greece. Liu et al. [19] applied the co-clustering method to
Manhattan Taxi data to discover mobility patterns in both spatial and temporal dimensions.

Even though those aforementioned co-clustering methods have analyzed the data
from both spatial and temporal aspects, they are only capable of identifying co-clusters
with similar values. For instance, in the toy datasets in Figure 2 where rows indicate
locations, columns indicate timestamps, and values indicate temperature, the similar values
in the thick dashed rectangle in Figure 2a can be identified by those co-clustering methods
as one co-cluster. However, they may fail to discover co-clusters with coherent trends,
where subsets of timestamps have similar varying behavior only under subsets of locations,
e.g., the values in the thick dashed line in Figure 2b. Here, the coherent trend is defined as
exhibiting similar tendencies in the values of the attribute(s) [20,21]. The identification of
co-clusters with coherent trends is important to help explore patterns in many applications.
Take climatology for instance, the study of temperature trends has attracted attention of
researchers because it was found to have impacts on crop yields, population dynamics of
insects, and even high deaths of elderly people with chronic disease [22–25]. Besides, crime
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analysis could also benefit from such a co-clustering method, in that the identified similar
trends of occurrences at various locations would help the police to investigate the movement
of gangsters and take relevant measures efficiently [26]. Thus, the use of a co-clustering
method that is able to identify co-clusters with similar varying behavior in spatio-temporal
data is necessary.
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Unlike the aforementioned co-clustering methods that seek for high similarity of values
in the co-cluster, the co-clustering methods for coherent trends aim at high score of coherence
in the co-cluster [27]. As stated by Eisen et al. [20], the coherent trend of measurement series
can be calculated by various methods, e.g., Euclidean distances, correlations coefficient
etc. Cheng and Church [28] introduced the residue as the distance measure to quantify
the coherent trend for co-clusters. The residue is termed as the differences between each
element in the co-cluster and the matching row mean as well as column mean [29]. Take
the toy dataset in Figure 2b for example, the clustering assignment {1122} for rows and
{111222} for columns would be preferred, considering the row and column distributions of
the dataset. With such assignment, the values in the thick dashed rectangle in Figure 2b is
partitioned as one co-cluster, and the residue of elements in the co-cluster equals to zero.

Several studies have worked on co-clustering methods with coherent trends for explor-
ing coherent patterns, especially in the field of microarray analysis. As aforementioned,
Cheng and Church [28] first proposed the minimum sum-squared residue co-clustering
algorithm (MSSRCC) to search for co-regulation patterns in expression data. Cho and
Dhillon [30] applied MSSRCC with different strategies, e.g., incremental local search, to
search for coherent co-clusters in both synthetic and several real gene expression datasets.
Yang et al. [31] introduced a co-clustering algorithm called flexible overlapped biclustering
that yields all overlapping co-clusters whose mean residues are smaller than a predefined
value to explore coherent patterns in gene expression data. Kluger et al. [32] proposed
a spectral co-clustering algorithm which computes a singular vector of normalized gene
expression data, projects data onto the topmost vectors, and then applies normalized cuts.
Rathipriya et al. [33] developed a binary particle swarm optimization-based co-clustering al-
gorithm which combines swarm intelligent technique and co-clustering to discover coherent
relationships between web users and web pages.

The objective of this study is, thus, to apply a co-clustering method to spatio-temporal
data, which enables the identification of spatio-temporal co-clusters with coherent trends.
Here, we focus on geo-referenced time series, one important type of spatio-temporal data,
which are usually recorded at stationary locations and timestamps with uniform intervals.
Dutch monthly temperature series are used to illustrate the co-clustering method. As far
as we know, none of previous studies identified co-clusters with coherent trends in spatio-
temporal data. The novelty of this research lies in the following three aspects: (1) A
co-clustering algorithm that enables the identification of co-clusters with coherent trends
is introduced to analyze Dutch meteorological temperature series; (2) 112 co-clusters with
different temperature variations were identified by the co-clustering algorithm, and seven
types of coherent temperature trends were summarized. (3) Comparisons with co-clusters
of similar values reveal differences between these two types of methods.
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The rest of this paper is organized as follows. Section 2 describes the Dutch temper-
ature dataset and the specific co-clustering algorithm used in this study. Next, Section 3
presents results of the co-clustering analysis of Dutch temperature series, and discusses the
differences between co-clusters with similar values and coherent trends. Finally, Section 4
draws conclusions.

2. Data and Methods

This section first presents the dataset and the study area used to illustrate this study.
Afterwards, the specific co-clustering algorithm, named Bregman co-clustering algorithm,
with minimum sum-squared residue is described in detail.

2.1. Data

Monthly temperatures from January 1992 to December of 2011 at 28 meteorological
stations in the Netherlands were used as the case study dataset to illustrate the iden-
tification of co-clusters with coherent trends. The original daily temperature data was
freely available at the website of the Royal Netherlands Meteorological Institute (KNMI,
https://dataplatform.knmi.nl/ (accessed on 14 February 2022)), which were then averaged
to generate the monthly average temperatures. The Thiessen polygons map (Figure 3) was
created using the stations’ coordinates to define the area that each station had influence on,
e.g., the highlighted polygon indicating the influenced area by the station Schiphol (240).
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The Netherlands were chosen as the study area for its location. With the North Sea as
its neighbor in the north and west, as well as Belgium and Germany as neighbors in the
south and east, respectively, the weather of the Netherlands is influenced by the moderate
marine climate in the west and the continental climate in the east. As a result, temperatures
gradually change from the southwest to the northeast of this country.

https://dataplatform.knmi.nl/


ISPRS Int. J. Geo-Inf. 2022, 11, 134 5 of 14

2.2. Bregman Co-Clustering Algorithm with Minimum Sum-Squared Residue (BCC_MSSR)

Unlike co-clustering methods that identify co-clusters with similar values, co-clustering
methods for exploring local coherent varying behavior search for co-clusters with similar
trends. By mapping locations to location-clusters and timestamps to timestamp-clusters,
they result in co-clusters within each, of which the tendencies of the attribute(s) were similar.
The MSSRCC is used in this study because its authenticity was empirically improved
in several datasets and termed as Bregman co-clustering algorithm with minimum sum-
squared residue (BCC_MSSR) following the work of [27]. Unlike the information divergence
used in the Bregman block average co-clustering algorithm with I-divergence (BBAC_I) that
identified co-clusters with similar values, the residue was used as the distance measure of
coherent trends in the co-clusters for BCC_MSSR, as mentioned earlier. The sum-squared
residue was then defined as the sum of squared variances of any element in the co-cluster
and the matching row mean and column mean, which was used to construct the objective
function before and after mapping. The optimization of the co-clustering issue could be
regarded as the problem of minimizing the total squared residue.

BCC_MSSR algorithm enables the identification of co-clusters with coherent trends in
any real valued data matrix. The Dutch monthly temperature series used in the case study
can be organized as a co-occurrence matrix between the two variables: stations (S) taking
values in stations sets {1, 2, . . . , z}, and months (M) taking values in all months. In other
words, the temperature series can be formalized as the data matrix O(S, M). Suppose the
stations and months are mapped to k and l, station-clusters and month-clusters, respectively,
in the co-lustering analysis. Then, the data matrix after co-clustering is O(Ŝ, M̂), with Ŝ
taking values in the station-cluster sets {1, 2, . . . , k} and M̂ taking values in the month-
clusters sets {1, 2, . . . , l}.

Suppose that I and J indicate the set of indices of locations in a location-cluster and the
set of indices of timestamps in a timestamp-cluster, respectively. The residue of a specific
element, o(i, j), in a co-cluster is calculated as

h(i, j) = o(i, j)− o(i, J)− o(I, j) + o(I, J) (1)

where o(i, J) indicates the mean of elements in station i whose month indices fall into
J, o(I, j) indicates the mean of elements in month j whose station indices fall into I, and
o(I, J) indicates the mean of all elements in that co-cluster. The residue matrix H can
be represented as (I − RRT)O(S, M)(I − CCT), where R and C are rows (stations) and
columns (months) cluster indicator matrices with the size z × k and n × l respectively, and
RT is the transposed matrix of R.

Then, the objective function of BCC_MSSR is represented as the sum-squared residue
of elements before and after co-clustering:

||H||2 = ∑I,J ∑i∈I,j∈J h(i, j)2 (2)

where || · || denotes the norm of a matrix, e.g., ||O|| =
√

∑i,j o(i, j)2. Then, the co-clustering
problem becomes the minimization issue. To minimize the objective function to obtain
the optimal co-clustering results, BCC_MSSR was designed with an iterative process. The
optimization procedure of this co-clustering algorithm is described in following steps
(Figure 4):
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Step 1: Random initialization. Station-clusters and month-clusters were randomly
mapped to station-clusters and month-clusters, which generated the initial R and C.

Step 2: Calculation of the residue and the objective function. The residue of each
element as well as the sum-squared residue of elements before and after mapping were
calculated, which can be further represented as

||H||2 = ∑I,J ∑i∈I,j∈J h(i, j)2
= ||(I − RRT)O(S, M)(I − CCT)||2 (3)

Step 3: Update mapping from stations to station-clusters. The Equation (3) was firstly
decomposed to sum-squared residue related to rows (stations) [30]:

||Hstations||2 = ||O(i, ·)P − z−1/2
j O(j, ·)R||2 i ∈ {1, 2, . . . , z}, j ∈ {1, 2, . . . , k} (4)

where OP = O(S, M)(I−CCT), OR = RTOP and O(i, ·)P denote the ith row (station) in OP.
Then, the new station-clusters membership can be updated by minimizing the Equation (4):

j = argmin
1≤j≤k

||O(i, ·)P − z−1/2
j O(j, ·)R||2 (5)

Step 4: Update mapping from months to month-clusters. Equation (3) could be also
decomposed to sum-squared residue related to columns (months):

||Hmonths||2 = ||O(·, i)P − n−1/2
j O(·, j)C||2 i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , l} (6)
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Step 5: Re-calculation of the residue and objective function. The residue and the
objective function were recalculated using the updated station-clusters and month-clusters.
Once the objective function achieved the convergence with the change of the function
below a threshold, the optimal station-clusters and month-clusters were yielded. Otherwise,
repeat steps 3–5 until convergence. Since trends in geo-referenced time series data require
consecutive timestamps, such a constraint was added for the month-clusters in the co-
clustering results by selecting those with consecutive months. Finally, the optimal co-
clustering results were yielded.

Both Banerjee, Dhillon, Ghosh, Merugu, and Modha [27], and Cho and Dhillon [30]
proved that the objective function in Equation (3) can achieve convergence as it was mono-
tonically minimized with iterations. However, since the clustering algorithm was locally
optimized, the whole optimization procedure was typically repeated with multiple runs
to obtain the optimal co-clustering results. Finally, it is worth mentioning that MATLAB
version R2019b was used for implementing the co-clustering algorithm in this study, and
the codes are available upon reasonable request.

3. Results and Discussion

The monthly temperature data with the size of 28 (stations) × 240 (months) was
analyzed by BCC_MSSR to identify spatio-temporal co-clusters with coherent trends. The
number of station-clusters and month-clusters were optimized using the silhouette method
and k-means. The silhouette method was used because it can produce clustering results
that have high correlation with experts’ judgement [34,35]. Two to fifteen with an interval
of one were used as the candidate numbers of station-cluster and month-cluster. With
the number of four for both station-cluster and month-cluster, the silhouette method gave
0.6492 and 0.7252 as the highest values. Thus, four was selected as the optimal number for
both station-clusters and month-clusters.

After the co-clustering analysis, the 28 stations and 240 months were mapped to four
station-clusters and four month-clusters, respectively, which are displayed using small
multiples and diamond charts in Figures 5 and 6. Co-clusters were intersected by each
station-cluster and each set of consecutive months in month-clusters under this circum-
stance. Doe to the local/global minimum issue existing in all clustering algorithms [15],
we focus on some co-clusters that frequently appear in the BCC_MSSR results. Those
co-clusters are displayed using the heatmaps and line charts in Figure 7.
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3.1. Spatio-Temporal Co-Clusters with Coherent Trends

Figure 5a shows the spatial distribution of four station-clusters over the Netherlands
with colors. The whole country was divided into four regions from the southwest to
northeast. Unlike the increasing temperature patterns found in the results of previous
co-clustering analysis of Dutch temperature series [14,36], there were no increasing or de-
creasing temperature patterns in these four regions in this study. It is because these four
station-clusters were partitioned based on temperature variations, and it is possible that two
stations with similar temperature variations have different temperature values. Stations
within each region have similar temperature variations, e.g., Schipol (240), Hoek van Hol-
land (330), Wilhelminadorp (323), Vlissigen (310), and Westdorpe (319) in station-cluster1.
Most stations in each station-cluster were adjacent, except Schipol (240) in station-cluster1,
De Kooy (235) in station-cluster2, Twenthe (290) in station-cluster3, and Leeuwarden (270)
in station-cluster4.

The temporal distribution of elements in each of the month-clusters over 240 months
is displayed in Figure 5b. Because of the assignment of BCC_MSSR, the months were not
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always consecutive in month-clusters. Due to the requirement of consecutive timestamps,
we selected those months that were consecutive for at least four timestamps in each month-
cluster as potential months to construct co-clusters with similar temperature variations. To
further explain the situation, the temporal distribution of months in month-cluster1 and
month-cluster3 over 240 months in 20 years are displayed in Figure 6, whereby the x-axis is
12 months and the y-axis is 20 years. We can see that months in month-cluster1 were mostly
distributed around the summer. Even though the lengths of consecutive months in month-
cluster1 were different, they still had similar temperature variations, e.g., May to September
2008 and May to October 2002. It is also worth mentioning that consecutive months at the
two years of transition were also considered as potential months, e.g., September 2004 to
January 2005. According to the criteria for potential months to construct co-clusters, 28 sets
of consecutive months were selected. Consequently, 112 co-clusters (28 × 4 station-clusters)
with similar temperature variations were generated. Due to limited space, 16 representative
co-clusters are displayed (Figure 7) and similar co-clusters are described in the text.

Figure 7 shows those 16 representative co-clusters with different temperature trends
among them. The trends were similar within each co-cluster. One heatmap and one line
chart were used to display each co-cluster: the heatmap on the top provides the direct view
of the co-cluster, with the x-axis indicating the number of consecutive months and y-axis
indicating the involved stations; while the line chart below shows the coherent temperature
trends of the co-cluster, with the y-axis indicating temperature values.

Overall, there are mainly seven types of coherent temperature trends in the representa-
tive co-clusters, ranked by the degree of complexity, as follows: (1) increasing; (2) decreasing;
(3) first increasing and then decreasing; (4) first decreasing and then increasing; (5) first
increasing, then decreasing, and finally increasing; (6) first decreasing, then increasing, and
finally decreasing; (7) first decreasing, then increasing, decreasing, andfinally increasing.
As displayed in Figure 7, the fourth to eighth co-clusters all exhibit increasing temperature
trends, even with various ranges of temperatures and differences in increasing speed. The
involved stations were those stations in the southwestern part of the Netherlands, and
the involved months were January to May 1992. Such increasing temperature trends in
winter and early spring might cause earlier onset and the extension of the growing season
in provinces nearby the coastline [37]. Co-clusters with similar temperature trends were
intersections of station-cluster1, February to June 2006, and February to May 2011. In the
eighth co-cluster, we can see that the speed is constant at first, then it accelerated, and finally
decelerated. The involved stations were those in the center-northeastern part of the country,
and the involved months were February to June 1998. Co-clusters with similar coherent
trends were intersections of station-cluster3 in the center-northeastern part, February to July
2007, and February to May 2011. The co-cluster showing decreasing temperature trends was
the ninth one, with smooth declining curves. The involved stations were those stations in
the northeastern part of the country, and the involved months were September 1999 to Jan-
uary 2000. Co-clusters with similar decreasing trends were intersections of station-cluster4,
September 1991 to January 1992, and September 2003 to February 2004. The decreasing
temperature trend in the winter after the heat wave in the summer of 2003 might lead to the
another increase in the premature deaths in the northern provinces [37,38].

Several co-clusters exhibit first increasing and then decreasing temperature trends
in Figure 7, i.e., first to third and tenth ones, with different ranges of temperatures. The
first to third co-clusters start with relatively high temperature, then increase, and finally
decrease. Even with these similarities, they are still different in the turning timestamps
for decreasing and also the speeds of increasing and decreasing. The involved stations of
first and third co-clusters were those stations in the northeastern part of the country, and
the involved months were June to October 1996 and May to October 2005, respectively.
The involved stations of the second co-cluster were stations in the southwest, and the
involved months were May to October 2002. Co-clusters exhibiting similar temperature
trends were stations in the northeast, May to October 1993, June to October 1994, and May
to October 2008. The tenth co-cluster started with low temperature, and then increased,
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and finally dropped. The involved stations of this co-cluster are those in the southwest, and
the involved months were April to September 2010. The thirteenth and fifteenth co-clusters
show the opposite trends of first decreasing and then increasing. Although they were
classified into the same main type of coherent trends, these two co-clusters have quite
different ranges of temperatures and fashions of changing. Starting with relatively high
temperatures, the thirteenth co-cluster fell sharply and then increased a bit in the end. The
involved stations of this co-cluster were stations in the southwest, and the involved months
were September 1995 to February 1996. On the contrary, the fifteenth co-cluster started
with low temperature, then decreased, and finally increased with two different speeds.

Other co-clusters exhibited more complex temperature variations. For instance, the
seventh, eleventh and fourteenth co-clusters show first increasing, then decreasing, and
finally increasing trends. Although with a bit of difference in the starting values and temper-
ature ranges, the seventh and fourteenth co-clusters had a similar mode of variations. The
involved stations of the seventh and fourteenth co-clusters were stations in the northeastern
and southwestern part of the country, respectively. The involved months were January
to May 1997 for the former, and December 2001 to April 2002 for the latter. Compared
with these two co-clusters, the eleventh co-cluster had smaller ranges of temperature but
more drastic variations. The involved stations of this co-cluster were stations in the north-
eastern part of the Netherlands, and the involved months were November 1993 to March
1994. The twelfth co-cluster exhibits first decreasing, then increasing, and finally decreasing
temperature trends. Although with small range of low temperatures, this co-cluster goes
through locally drastic variations. The involved stations of this co-cluster were stations
in the southwestern part of the country, and the involved months were December 1994 to
March 1995. Co-clusters showing similar temperature trends were stations in the southwest
and November 1998 to March 1999. Exhibiting the most complex temperatures trends, the
sixteenth co-cluster experienced first decreasing, then increasing, decreasing, and finally
increasing variations. The involved stations of this co-cluster were stations in the center-
southwest of the Netherlands, and the involved months were October 2007 to March 2008.
These complex temperature variations might worsen their interaction with air pollution,
resulting in increasing mortalities in the southwestern and center-southwest part of the
country [39].

3.2. Regional Coherent Spatio-Temporal Patterns in Dutch Monthly Temperature Series

Combining Figures 5–7, we can see that even though the spatial coverage of
the Netherlands is relatively small, this country exhibits complicated regional coherent
temperature patterns in different areas and certain periods. The distance to the coast shows
the negative relation with the temperature variability [40]. Close to the coast and more
influenced by maritime climates directly, the southwestern part of the Netherlands mainly
showed the patterns of first increasing and then decreasing temperatures from May to
October 2002 and 2010. The center-southwestern part of the country exhibited the patterns
of first decreasing, then increasing, decreasing, and finally increasing temperature patterns
from October 2007 to March 2008. The center-northeastern part of the Netherlands mainly
shows the increasing temperature patterns from February to June 1998 and 2007, which
we suppose is the reason for the earlier start of the pollen season around this region [41].
The northeastern part of the country mainly shows the decreasing temperature patterns
from September 1999 and 2003 to January next year, which we think influenced the crop
yields and also economy in the northern provinces, where agriculture is the major income
source [42].

3.3. Comparisons of Co-Clusters with Coherent Trends and Those with Similar Values

As aforementioned, there have been studies on identification of co-clusters with similar
values in spatio-temporal data [14,17,19]. In this subsection, we will compare the results
of co-clusters with similar trends and those of co-clusters with similar values. To this
end, Bregman block average co-clustering algorithm with I-divergence (BBAC_I) [14] was
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applied to the same Dutch monthly temperature dataset used in the case study. For the
sake of comparison, the numbers of station-clusters and month-clusters were both set as
four. The comparisons were made in terms of station-clusters, months-clusters, co-clusters,
and explored patterns.

The station-clusters and month-clusters in the BBAC_I results are displayed in Figure 8.
In the aspect of station-clusters, the general view of four station-clusters (Figure 8a) were
dissimilar to the BCC_MSSR results. Although four regions from the northeast to the
southwest were divided, they revealed increasing temperature patterns. Besides, the
composition and spatial distribution of each station-cluster were different between the
two results. For station-clusters in BBAC_I, they were more compact in space, and most
elements in each station-cluster were adjacent. Unlike them, the spatial distributions of
stations in each station-cluster in BCC_MSSR were more stretched from the south to north,
especially in station-clusters 2 and 3. As a matter of fact, the composition and spatial
distribution of station-clusters in BBAC_I results were more similar to those in the BBAC_I
results of Dutch yearly temperatures in Wu, Zurita-Milla, and Kraak [14] than those in the
BCC_MSSR results in this study. We suppose that it was because temperature values were
more influenced by different climates, i.e., moderate marine and continental climate in the
Netherlands, whereas temperature trends are more variable along longitudes [43]. The
composition and temporal distribution of month-clusters in the BBAC_I results (Figure 8b)
were also different from those of the month-clusters in the BCC_MSSR results.
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Even though the names of co-clusters with coherent trends and co-clusters with
similar values reveal differences on their own, heatmaps were used to provide a more
straightforward view of dissimilarities between the two. To this aim, two elements in the
co-cluster2 ({Rotterdam (344), September 2000} and {Herwijnen (356), January 2001}) in
the BCC_MSSR results and the corresponding co-clusters of each element in the BBAC_I
results are displayed in Figure 9 as examples. As shown on the left of Figure 9, the two
elements have quite different temperature values, and they were partitioned into the same
co-cluster in BCC_MSSR results because of similar variations exhibited by the co-cluster,
i.e., rapid deceasing and then increasing a bit. However, in the BBAC_I results where the
co-clusters were divided by similar values, the two elements were partitioned into different
co-clusters. The element {Rotterdam (344), September 2000} belonged to a co-cluster with all
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high temperatures as elements, while the element {Herwijnen (356), January 2001} belonged
to another co-cluster with low temperatures.
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In terms of the explored patterns, the BBAC_I results discovered the spatio-temporal
patterns throughout the whole study area and study period, i.e., the decreasing temperature
trends from the southwest to northeast of the country, and from month-cluster1 to month-
cluster4 (Figure 8). In comparison, the BCC_MSSR results explored regional coherent
spatio-temporal patterns in part of the whole study area and certain time periods, e.g., first
increasing and then decreasing temperatures patterns in the southwestern part of the country
from May to October 2002 (Figures 5–7).

As discussed above, BCC_MSSR and BBAC_I results are different in several aspects.
However, there is no superior methods for all tasks. The selection of the appropriate co-
clustering methods should depend on the research objective of the specific task at hand [8,44].
If the objective was to identify similar values of the attributes in the dataset, e.g., extremely
high temperatures in summer, BBAC_I would be suggested. If the objective was to analyze
the similar trends of the attribute at various regions, e.g., the temperature variations in
different locations and their subsequent impacts, then BCC_MSSR would be considered as
the suitable method.

4. Conclusions

In this study we presented the Bregman co-clustering algorithm with minimum sum-
squared residue (BCC_MSSR) to analyze geo-referenced time series. Unlike previous co-
clustering studies on spatio-temporal data that identify co-clusters with similar values,
BCC_MSSR enables the identification of co-clusters with coherent trends, defined as ex-
hibiting similar tendencies in the attribute(s). Using the residue as distance measure to
quantify coherent trends, this algorithm regards the co-clustering issue as the minimization
of the sum squared residue. To illustrate this study, Dutch monthly temperatures over
20 years at 28 stations were used as the case study. Station-clusters, month-clusters, and
co-clusters in the results were displayed using small multiples, heatmaps, and line charts.
Then, the BCC_MSSR results of co-clusters with coherent trends were compared with the
BBAC_I results of co-clusters with similar values in terms of station-clusters, months-clusters,
co-clusters, and explored spatio-temporal patterns.

Results show that the Netherlands was divided into four regions (station-clusters)
from the southwest to northeast, and stations within each region have similar temperature
variations. A total of 112 co-clusters with different temperature variations among them were
identified in Dutch monthly temperature datasets. The 16 representative co-clusters were
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illustrated, and seven types of coherent temperature trends were summarized: (1) increasing;
(2) decreasing; (3) first increasing and then decreasing; (4) first decreasing and then increas-
ing; (5) first increasing, then decreasing, and finally increasing; (6) first decreasing, then
increasing, and finally decreasing; (7) first decreasing, then increasing, decreasing, finally
increasing. Comparisons with co-clusters of similar values show that the two co-clustering
results were different: spatial distributions of station-clusters in BCC_MSSR were more
stretched in space, and BCC_MSSR discovers coherent spatio-temporal patterns in local
regions and certain time periods. However, the selection of the appropriate co-clustering
methods should depend on the objective of the specific task at hand.

As it was the first time that BCC_MSSR was applied to geo-referenced time series, in
the future there are the following directions to work on: (1) in this study we only used this
co-clustering algorithm for a small dataset, in the next, we plan to apply BCC_MSSR to a
larger spatio-temporal dataset to test its scalability; (2) besides geo-referenced time series,
we plan to apply this algorithm to other types of spatio-temporal data, e.g., trajectories;
(3) we plan to place the results of this research in broader applications, e.g., to study the
impacts of obtained various temperature trends on crop yields in the Netherlands.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 41901317.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ribeiro de Almeida, D.; de Souza Baptista, C.; Gomes de Andrade, F.; Soares, A. A survey on big data for trajectory analytics.

ISPRS Int. J. Geo-Inf. 2020, 9, 88. [CrossRef]
2. Li, Z.; Yang, C.; Liu, K.; Hu, F.; Jin, B. Automatic Scaling Hadoop in the Cloud for Efficient Process of Big Geospatial Data. ISPRS

Int. J. Geo-Inf. 2016, 5, 173. [CrossRef]
3. Li, Z.; Tang, W.; Huang, Q.; Shook, E.; Guan, Q. Introduction to Big Data Computing for Geospatial Applications. ISPRS Int. J.

Geo-Inf. 2020, 9, 487. [CrossRef]
4. Shekhar, S.; Jiang, Z.; Ali, R.Y.; Eftelioglu, E.; Tang, X.; Gunturi, V.M.V.; Zhou, X. Spatiotemporal Data Mining: A Computational

Perspective. ISPRS Int. J. Geo-Inf. 2015, 4, 2306–2338. [CrossRef]
5. Han, J.; Kamber, M.; Pei, J. Data Mining Concepts and Techniques, 3rd ed.; Morgan Kaufman MIT Press: Cambridge, MA, USA, 2012.
6. Tatiana, V.L.; Felix, B.; Philipp, R.; Natalia, A.; Gennady, A.; Andreas, K. MobilityGraphs: Visual Analysis of Mass Mobility

Dynamics via Spatio-Temporal Graphs and Clustering. IEEE Trans. Vis. Computer Graph. 2016, 22, 11–20.
7. Lamb, D.S.; Downs, J.; Reader, S. Space-Time Hierarchical Clustering for Identifying Clusters in Spatiotemporal Point Data.

ISPRS Int. J. Geo-Inf. 2020, 9, 85. [CrossRef]
8. Wu, X.; Cheng, C.; Zurita-Milla, R.; Song, C. An overview of clustering methods for geo-referenced time series: From one-way

clustering to co- and tri-clustering. Int. J. Geogr. Inf. Sci. 2020, 34, 1822–1848. [CrossRef]
9. Andrienko, G.; Bremm, S.; Schreck, T.; Von Landesberger, T.; Bak, P.; Keim, D.; Andrienko, N. Space-in-Time and Time-in-Space

Self-Organizing Maps for Exploring Spatiotemporal Patterns. Comput. Graph. Forum 2010, 29, 913–922. [CrossRef]
10. Hagenauer, J.; Helbich, M. Hierarchical self-organizing maps for clustering spatiotemporal data. Int. J. Geogr. Inf. Sci. 2013, 27,

2026–2042. [CrossRef]
11. Liu, L.; Hu, T.; Bao, S.; Wu, H.; Peng, Z.; Wang, R. The Spatiotemporal Interaction Effect of COVID-19 Transmission in the United

States. ISPRS Int. J. Geo-Infation 2021, 10, 387. [CrossRef]
12. Ahas, R.; Aasa, A.; Silm, S.; Roosaare, J. Seasonal Indicators and Seasons of Estonian Landscapes. Landsc. Res. 2005, 30, 173–191.

[CrossRef]
13. Wu, X.; Zurita-Milla, R.; Kraak, M.-J. Visual discovery of synchronization in weather data at multiple temporal resolutions.

Cartograph. J. 2013, 50, 247–256. [CrossRef]
14. Wu, X.; Zurita-Milla, R.; Kraak, M.-J. Co-clustering geo-referenced time series: Exploring spatio-temporal patterns in Dutch

temperature data. Int. J. Geogr. Inf. Sci. 2015, 29, 624–642. [CrossRef]
15. Wu, X.; Zurita-Milla, R.; Kraak, M.-J. A novel analysis of spring phenological patterns over Europe based on co-clustering. J.

Geophys. Res. Biogeosci. 2016, 121, 1434–1448. [CrossRef]
16. Wu, X.; Cheng, C.; Qiao, C.; Song, C. Spatio-temporal differentiation of spring phenology in China driven by temperatures and

photoperiod from 1979 to 2018. Sci. China Earth Sci. 2020, 63, 1485–1498. [CrossRef]
17. Ullah, S.; Daud, H.; Dass, S.C.; Khan, H.N.; Khalil, A. Detecting space-time disease clusters with arbitrary shapes and sizes using

a co-clustering approach. Geospat. Heal. 2017, 12. [CrossRef]

http://doi.org/10.3390/ijgi9020088
http://doi.org/10.3390/ijgi5100173
http://doi.org/10.3390/ijgi9080487
http://doi.org/10.3390/ijgi4042306
http://doi.org/10.3390/ijgi9020085
http://doi.org/10.1080/13658816.2020.1726922
http://doi.org/10.1111/j.1467-8659.2009.01664.x
http://doi.org/10.1080/13658816.2013.788249
http://doi.org/10.3390/ijgi10060387
http://doi.org/10.1080/01426390500044333
http://doi.org/10.1179/1743277413Y.0000000067
http://doi.org/10.1080/13658816.2014.994520
http://doi.org/10.1002/2015JG003308
http://doi.org/10.1007/s11430-019-9577-5
http://doi.org/10.4081/gh.2017.567


ISPRS Int. J. Geo-Inf. 2022, 11, 134 14 of 14

18. Andreo, V.; Izquierdo-Verdiguier, E.; Zurita-Milla, R.; Rosà, R.; Rizzoli, A.; Papa, A. Identifying Favorable Spatio-Temporal
Conditions for West Nile Virus Outbreaks by Co-Clustering of Modis LST Indices Time Series. In Proceedings of the IGARSS
2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 4670–4673.

19. Liu, Q.; Zheng, X.; Stanley, H.E.; Xiao, F.; Liu, W. A Spatio-Temporal Co-Clustering Framework for Discovering Mobility Patterns:
A Study of Manhattan Taxi Data. IEEE Access 2021, 9, 34338–34351. [CrossRef]

20. Eisen, M.B.; Spellman, P.T.; Brown, P.O.; Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl.
Acad. Sci. USA 1998, 95, 14863–14868. [CrossRef]

21. Kriegel, H.-P.; Kröger, P.; Zimek, A. Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering,
and correlation clustering. ACM Trans. Knowl. Discov. Data 2009, 3, 1. [CrossRef]

22. Liang, L.; Li, L.; Liu, Q. Precipitation variability in Northeast China from 1961 to 2008. J. Hydrol. 2011, 404, 67–76. [CrossRef]
23. Alexander, L.V.; Uotila, P.; Nicholls, N. Influence of sea surface temperature variability on global temperature and precipi-tation

extremes. J. Geophys. Res. Atmos. 2009, 114, 1–13.
24. Estay, S.A.; Clavijo-Baquet, S.; Lima, M.; Bozinovic, F. Beyond average: An experimental test of temperature variability on the

population dynamics of Tribolium confusum. Popul. Ecol. 2010, 53, 53–58. [CrossRef]
25. Zanobetti, A.; O’Neill, M.S.; Gronlund, C.J.; Schwartz, J.D. Summer temperature variability and long-term survival among elderly

people with chronic disease. Proc. Natl. Acad. Sci. USA 2012, 109, 6608–6613. [CrossRef] [PubMed]
26. Andresen, M.A.; Malleson, N. Crime seasonality and its variations across space. Appl. Geogr. 2013, 43, 25–35. [CrossRef]
27. Banerjee, A.; Dhillon, I.; Ghosh, J.; Merugu, S.; Modha, D.S. A generalized maximum entropy approach to bregman co-clustering

and matrix approximation. J. Mach. Learn. Res. 2007, 8, 1919–1986.
28. Cheng, Y.; Church, G.M. Biclustering of expression data. In Proceedings of the Proceedings ISMB 2000, San Diego, CA, USA,

19–23 August 2000; pp. 93–103.
29. Cho, H.; Dhillon, I.S.; Guan, Y.; Sra, S. Minimum Sum-Squared Residue Co-clustering of Gene Expression Data. In Proceedings of

the 2004 SIAM International Conference on Data Mining; Society for Industrial & Applied Mathematics (SIAM), Philadelphia, PA,
USA, 22–24 April 2004.

30. Cho, H.; Dhillon, I. Coclustering of Human Cancer Microarrays Using Minimum Sum-Squared Residue Coclustering. IEEE/ACM
Trans. Comput. Biol. Bioinform. 2008, 5, 385–400. [CrossRef]

31. Yang, J.; Wang, H.; Wang, W.; Yu, P. Enhanced biclustering on expression data. In Proceedings of the Third IEEE Symposium on
Bioinformatics and Bioengineering, Bethesda, MD, USA, 12 March 2003; pp. 321–327.

32. Kluger, Y.; Basri, R.; Chang, J.T.; Gerstein, M. Spectral Biclustering of Microarray Data: Coclustering Genes and Conditions.
Genome Res. 2003, 13, 703–716. [CrossRef]

33. Rathipriya, R.; Thangavel, K.; Bagyamani, J. Binary Particle Swarm Optimization based Biclustering of Web Usage Data. Int. J.
Comput. Appl. 2011, 25, 43–49. [CrossRef]

34. Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987,
20, 53–65. [CrossRef]

35. Lewis, J.M.; Ackerman, M.; Sa, V.R.D. Human cluster evaluation and formal quality measures: A comparative study. In
Proceedings of the 34th Conference of the Cognitive Science Society (CogSci), Sapporo, Japan, 1–4 August 2012; Volume 34,
pp. 1870–1875.

36. Wu, X.; Zurita-Milla, R.; Verdiguier, E.I.; Kraak, M.-J. Triclustering Georeferenced Time Series for Analyzing Patterns of Intra-
Annual Variability in Temperature. Ann. Am. Assoc. Geogr. 2017, 108, 71–87. [CrossRef]

37. Visser, H. The Significance of Climate Change in the Netherlands. An Analysis of Historical and Future Trends (1901–2020)
in Weather Conditions, Weather Extremes and Temperature-Related Impacts. MNP Rep. 2005, 550002007. Available online:
https://www.pbl.nl/en/publications/The_significance_of_climate_change_in_the_Netherlands (accessed on 5 January 2022).

38. Garssen, J.; Harmsen, C.; De Beer, J. The effect of the summer 2003 heat wave on mortality in the Netherlands. Eurosurveillance
2005, 10, 13–14. [CrossRef]

39. Fischer, P.H.; Marra, M.; Ameling, C.B.; Janssen, N.; Cassee, F.R. Trends in relative risk estimates for the association between air
pollution and mortality in The Netherlands, 1992–2006. Environ. Res. 2011, 111, 94–100. [CrossRef] [PubMed]

40. Daniels, E.E.; Lenderink, G.; Hutjes, R.W.A.; Holtslag, A.A.M. Spatial precipitation patterns and trends in The Netherlands during
1951–2009. Int. J. Clim. 2014, 34, 1773–1784. [CrossRef]

41. van Vliet, A.J.H.; Overeem, A.; De Groot, R.S.; Jacobs, A.F.G.; Spieksma, F.T.M. The influence of temperature and climate change
on the timing of pollen release in the Netherlands. Int. J. Clim. 2002, 22, 1757–1767. [CrossRef]

42. Schaap, B.F.; Blom-Zandstra, M.; Hermans, C.M.L.; Meerburg, B.; Verhagen, J. Impact changes of climatic extremes on arable
farming in the north of the Netherlands. Reg. Environ. Chang. 2011, 11, 731–741. [CrossRef]

43. Shao, J.; Li, Y.; Ni, J. The characteristics of temperature variability with terrain, latitude and longitude in Sichuan-Chongqing
Region. J. Geogr. Sci. 2012, 22, 223–244. [CrossRef]

44. Grubesic, T.H.; Wei, R.; Murray, A.T. Spatial Clustering Overview and Comparison: Accuracy, Sensitivity, and Computational
Expense. Ann. Assoc. Am. Geogr. 2014, 104, 1134–1156. [CrossRef]

http://doi.org/10.1109/ACCESS.2021.3052795
http://doi.org/10.1073/pnas.95.25.14863
http://doi.org/10.1145/1497577.1497578
http://doi.org/10.1016/j.jhydrol.2011.04.020
http://doi.org/10.1007/s10144-010-0216-7
http://doi.org/10.1073/pnas.1113070109
http://www.ncbi.nlm.nih.gov/pubmed/22493259
http://doi.org/10.1016/j.apgeog.2013.06.007
http://doi.org/10.1109/tcbb.2007.70268
http://doi.org/10.1101/gr.648603
http://doi.org/10.5120/3001-4036
http://doi.org/10.1016/0377-0427(87)90125-7
http://doi.org/10.1080/24694452.2017.1325725
https://www.pbl.nl/en/publications/The_significance_of_climate_change_in_the_Netherlands
http://doi.org/10.2807/esm.10.07.00557-en
http://doi.org/10.1016/j.envres.2010.09.010
http://www.ncbi.nlm.nih.gov/pubmed/20970785
http://doi.org/10.1002/joc.3800
http://doi.org/10.1002/joc.820
http://doi.org/10.1007/s10113-011-0205-1
http://doi.org/10.1007/s11442-012-0923-4
http://doi.org/10.1080/00045608.2014.958389

	Introduction 
	Data and Methods 
	Data 
	Bregman Co-Clustering Algorithm with Minimum Sum-Squared Residue (BCC_MSSR) 

	Results and Discussion 
	Spatio-Temporal Co-Clusters with Coherent Trends 
	Regional Coherent Spatio-Temporal Patterns in Dutch Monthly Temperature Series 
	Comparisons of Co-Clusters with Coherent Trends and Those with Similar Values 

	Conclusions 
	References

