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Abstract: In complex environments, path planning is the key for unmanned aerial vehicles (UAVs)
to perform military missions autonomously. This paper proposes a novel algorithm called flight
cost-based Rapidly-exploring Random Tree star (FC-RRT*) extending the standard Rapidly-exploring
Random Tree star (RRT*) to deal with the safety requirements and flight constraints of UAVs in
a complex 3D environment. First, a flight cost function that includes threat strength and path length
was designed to comprehensively evaluate the connection between two path nodes. Second, in
order to solve the UAV path planning problem from the front-end, the flight cost function and flight
constraints were used to inspire the expansion of new nodes. Third, the designed cost function
was used to guide the update of the parent node to allow the algorithm to consider both the threat
and the length of the path when generating the path. The simulation and comparison results show
that FC-RRT* effectively overcomes the shortcomings of standard RRT*. FC-RRT* is able to plan
an optimal path that significantly improves path safety as well as maintains has the shortest distance
while satisfying flight constraints in the complex environment. This paper has application value in
UAV 3D global path planning.

Keywords: path planning; Rapidly-exploring Random Tree star (RRT*); unmanned aerial vehicles
(UAVs); sampling-based algorithms

1. Introduction

In the last decade, unmanned aerial vehicles (UAVs) have gradually come to play
an important role in various military operations [1]. UAVs can greatly improve the threat
target surprise defense capability, battlefield speed escape capability, hostile fire suppres-
sion capability, and multi-dimensional diversified combat capability. Path planning is one
of the most important problems that can take place during the autonomous navigation
flight of UAVs [2,3], which is usually defined as autonomously finding an optimal path
from the start node to the end node [4]. Optimal path selection needs to be determined
based on the flight performance constraints, the specific mission requirements, and the
flight environment constraints [5,6]. Scholars have conducted a lot of research on the UAV
path planning problem and proposed a series of algorithms, such as graph-based optimiza-
tion methods, including the visibility graph (VG) algorithm [7] and Voronoi diagrams [8];
the searching-based methods, including the Dijkstra [9] algorithm, A* algorithm [10] and
D* algorithm [11]; the sampling-based methods, such as PRM algorithm [12] and RRT
algorithm [13]; the nature-inspired methods, such as genetic algorithm (GA) [14], ant
colony optimization (ACO) [15], artificial potential field algorithm [16], particle swarm
optimization (PSO) [17] and fluid-based algorithm [18]; and other methods, such as control
theory-based methods [19].

As a sampling-based path planning algorithm, RRT* does not explicitly construct
the entire planning space and its boundaries as a searching-based method, but instead
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directly obtains samples through sampling to form a search tree. This approach avoids the
problem where search time grows exponentially with the number of spatial dimensions,
thus significantly reducing the search time available for path planning in high-dimensional
spaces [20,21]. Meanwhile, compared to intelligent methods, such as GA and ACO, RRT*
has a lower algorithmic complexity in 3D space [22,23]. As such, it is more suitable for
solving path planning problem in 3D space. Additionally, RRT* has been proven to be
asymptotically optimal. In other words, when the number of samples tends to infinity, the
solution that is obtained by RRT* is the optimal solution that converges with the probability
solution [24]. Therefore, for UAV path planning in a complex environment, RRT* can
ensure that a feasible path in 3D space is found quickly. In summary, RRT* is more suitable
for UAV path planning than other algorithms in complex environments.

Recent research developments have proposed many improved RRT* algorithms using
different approaches to improve the performance of RRT*. On the one hand, some scholars
use biasing sampling to improve RRT* [25–28]. This approach attempts to distribute the
samples in the favorable region through the biasing procedure, such as Theta*-RRT* [27]
and A*-RRT* [28]. Although this approach can improve the initial sampling quality and
the convergence speed of the algorithm, the planning path cannot satisfy the flight and
environmental constraints of the UAV. On the other hand, some improved RRT* algorithms
based on heuristic information to guide local sampling have also been proposed [29–32].
These algorithms will use heuristic information to guide the search after RRT* finds a feasible
path for the first time in order to find the optimal path quickly. In addition to the two
improved approaches mentioned above, there is another approach that can be implemented
to improve RRT* performance, which the relaxation of asymptotic optimality [33–35], such
as through the LBT-RRT proposed by Salzman [33]. The path that is obtained by this
algorithm eventually converges with the probability one to a path within a factor of (1 + ε)
of the optimal path, so it is called asymptotically near-optimal. Compared to RRT, this
algorithm produces high-quality solutions faster and the quality of the solutions is essentially
comparable to those of RRT* or RRG. Other algorithms that use this improved approach are
SST [34] and NoD-RRT [35]. These approaches can effectively improve the performance of
RRT*, but the solution is asymptotically near-optimal.

It is not difficult to determine that the improved RRT* algorithms by these three dif-
ferent approaches are not suitable for UAV path planning because they take into account
neither the impact of complex environments on the path safety of UAVs nor the flight
constraints. Note that in this paper, path safety refers to how when the path of the UAV is
affected by threats with detection or attack range, the planned path makes it possible for the
UAV to avoid being threatened, ensuring its safety. If the path safety and flight constraints
determined by a complex environment are considered after the optimal path is generated
using these improved algorithms, then the optimality of the final path will be affected, and
it is possible that even a feasible path may not be found. Therefore, for UAV path planning
and optimization in complex 3D environments, the impact of various threats on path safety
and the flight constraints should be fully considered when finding the optimal path in
order to ensure that the final planning path is the optimal path that satisfies both the safety
and flight constraints. In the sparse A* algorithm [36], the authors considered the flight
constraints when searching the space, making it possible to obtain a flyable optimal path
while greatly reducing the search range and complexity. Similarly, in some evolutionary
algorithms [37,38], the threat impact of the complex environment and flight constraints
are also included in the objective function in order to directly plan the optimal path by
satisfying the path safety and constraints. However, few improvements making UAV path
planning suitable in complex environments have been seen for the RRT* algorithm.

For the flight mechanics constraints of UAVs, two studies, [37,39], provide some typical
flight constraints for UAV path planning. Most of these constraints are concentrated on
the geometric level to constrain the path points in the planned path (such as the angle
constraints of the UAV, etc.). If only the length of the planned path is used as the standard
for path evaluation, then these constraints are feasible. However, in this paper, we also need
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to consider the path threat cost of UAVs. It is not feasible to evaluate the path threat cost by
relying on the path points alone. Occasionally, there are situations where the adjacent path
points meet the constraints, but the path segments do not. Therefore, this paper makes
some improvements to the flight constraints in [37,39]. For some constraints that need to
be evaluated on the path segment, consider whether the path segment conflicts with the
constraint while the path point meets the constraint.

Therefore, for UAV path planning problems in complex military operational envi-
ronments, this paper proposes a new algorithm called FC-RRT*, which is inspired by the
sparse A* and the improved evolutionary algorithms. We designed a flight cost function
that use the distance cost and threat cost as the basis of FC-RRT*. In the extension of the
tree nodes, we consider the flight cost function and flight constraints comprehensively and
use them as heuristic information to guide the expansion of the tree nodes. After that, the
flight cost function and flight constraints are also used to guide the update of the parent
nodes. By guiding the flight cost function and flight constraint together twice, an algorithm
is created to find an optimal path with the shortest length and that satisfies path safety and
flight constraints. The path satisfies the planning requirements of military operations, such
as surveillance and reconnaissance, hostile fire suppression capability, battlefield speed
escape capability, and threat-target surprise defense capability. The contributions can be
summarized as follows in Figure 1:
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Figure 1. Flowchart and result diagram of FC-RRT * algorithm. In the figure, the green box repre-
sents contribution 1, the yellow box represents contribution 2, and the orange box represents con-
tribution 3. It can be seen in the result diagram that the algorithm in this paper can obtain a path 
with higher path safety for radar and other threat areas than RRT* can. 

1. A flight cost function including threat strength and path length was established to 
improve the UAV path safety in complex environments. Path safety is one of the most 
important requirements in UAV path planning. Therefore, it is not adopted to judge 
the path using Euclidean distance alone. Considering this problem, a flight cost func-
tion that includes path length and threat strength is proposed to guide the path plan-
ning of the UAV. This enables the UAV to effectively avoid threats and to improve its 
path safety by obtaining the shortest path. 

2. This paper proposes an approach to guide the expansion of new nodes using heuristic 
information. To solve the threat strength problem in UAV path planning from the 
front-end, both path length and threat strength cost as well as flight constraints should 
be considered when the FC-RRT* performs new node expansion. Therefore, we pro-
pose an approach that uses the flight cost function as heuristic information to directly 
guide node expansion while introducing flight constraints to it for the first time. 

Figure 1. Flowchart and result diagram of FC-RRT * algorithm. In the figure, the green box represents
contribution 1, the yellow box represents contribution 2, and the orange box represents contribution
3. It can be seen in the result diagram that the algorithm in this paper can obtain a path with higher
path safety for radar and other threat areas than RRT* can.

1. A flight cost function including threat strength and path length was established to
improve the UAV path safety in complex environments. Path safety is one of the
most important requirements in UAV path planning. Therefore, it is not adopted to
judge the path using Euclidean distance alone. Considering this problem, a flight cost
function that includes path length and threat strength is proposed to guide the path
planning of the UAV. This enables the UAV to effectively avoid threats and to improve
its path safety by obtaining the shortest path.

2. This paper proposes an approach to guide the expansion of new nodes using heuristic
information. To solve the threat strength problem in UAV path planning from the
front-end, both path length and threat strength cost as well as flight constraints
should be considered when the FC-RRT* performs new node expansion. Therefore,
we propose an approach that uses the flight cost function as heuristic information
to directly guide node expansion while introducing flight constraints to it for the
first time. Moreover, the algorithm structure is optimized to improve the operation
efficiency of FC-RRT*. Using this approach, the path threat strength is reduced from
the initial new node expansion to guarantee the path safety of the UAV. In addition,
FC-RRT* also leads to less sample dispersion in the planning space.
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3. This paper proposes a new approach for updating the optimal parent node in the
neighbor region. After the new node is guided by the flight cost function and flight
constraints, an approach of introducing the flight cost function and flight constraints
to update the parent node is proposed to guide optimal path finding. This approach
selects the parent nodes with the shortest path length and can effectively avoid threats
when updating the parent node in order to avoid being discovered by the enemy or
colliding with obstacles and ensuring path safety.

The rest of this paper is organized as follows: Section 2 describes the UAV path
planning in complex environments, laying the foundation for the current work. Section 3
analyzes the FC-RRT* algorithm in detail from five aspects: FC-RRT* framework; the
determination of the flight cost function; the path evaluation criteria; the new node selec-
tion approach, which is guided by heuristic information; and the improved parent node
update approach. Section 4 analyzes FC-RRT*, including its probabilistic completeness and
asymptotic optimality, and compares its asymptotic computational complexity with RRT*.
The simulation and comparison results are discussed in Section 5. Section 6 contains the
conclusions and future prospects.

2. Related Work and Problem Description

We briefly summarize the A* algorithm, RRT algorithm, and RRT* algorithm as the
description of relevant work in Section 2.1. Then, the problems to be described in this paper
are analyzed and discussed in Section 2.2.

2.1. Related Work

The A* algorithm is a classic shortest path search algorithm that is based on the
Dijkstra algorithm. The search direction is determined by introducing the distance heuristic
information from the node to the end point in the node expansion process in order to
improve the search efficiency and to shorten the search time. The A* algorithm measures the
possibility that node n is the point on the shortest path determined through an estimation
function f (n) during node expansion. The valuation function f (n) can be expressed as
f (n) = g(n) + h(n), where g(n) represents the actual cost from the initial node to node n,
and h(n) represents the estimated cost from node n to the target node. As the heuristic
term is related to the target node, the node search direction in the A* algorithm is directed
to the target point in order to improve the search efficiency.

The RRT algorithm takes the starting point as the root node and constructs a fast search
tree composed of feasible path segments incrementally. At the beginning of the algorithm,
a search tree is constructed using only the initial node as the root node. First, the expansion
target point xrand is determined by random sampling, and then, the leaf node xnearest closest
to xrand is found from the nodes of the current tree. If the distance between xrand and xnearest
is within a certain range, then xrand is taken as the new node xnew; otherwise, select a node
within a certain range around the leaf node in the xrand direction to be xnew. Then, try to
connect xnew into the tree. If the connection between xnew and xnearest does not collide with
the environmental obstacles, connect xnew into the search tree as a new leaf node. When the
leaf node of the random tree contains the goal or is in the area around the goal, a path from
the start to the goal that is composed of tree nodes can be found in the random tree.

Compared to the RRT * algorithm, the RRT algorithm increases the optimization
process when connecting sampling points during the search tree. The parent node selection
method for xnew is as follows: find the set Xnear of all of the nodes xnear within a certain
distance of xnew and then select the point in Xnear that can be connected with xnear without
collision and that has the shortest length as the parent node. Then, xnear near xnew is
reviewed in the tree. When the path from xnear to xnew is shorter, remove the connection
between xnear and the parent node, and set the parent node of these points as point xnew.
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2.2. Problem Description

In real flight environments where UAVs are performing military operations, there will
usually be many types of obstacles and threats, including terrain threats, radar threats,
anti-aircraft gun threats, and no-fly zone threats. Different types of threats are handled in
different ways. Therefore, in order to truly restore the UAV flight environment, this paper
simulates a complex environment containing the above threats and plans the UAV path in
this environment. The definition of a complex environment in this paper is as follows:

Definition 1 (complex environment) . If the environment in which the UAV path planning takes
place is a three-dimensional space with terrain threats, radar threats, anti-aircraft gun threats, and
no-fly zone obstacles, and the same type of threat occurs many times, then the UAV path-planning
environment is defined as being complex.

The definition and modeling of different types of obstacles in a complex space are also
different. They are analyzed below:

(1) Terrain threats: Due to the large topographic relief, more information will be lost if
it is approximately represented by the basic configuration. As such, it is difficult to represent
this topographic information using the basic configuration. In order to accurately represent
terrain information and to improve operation efficiency, we note that the elevation data are
mostly stored in the lattice, so it is easy to convert the elevation data into a three-dimensional
grid environment model. Therefore, this paper uses the elevation map information for
Hawaii Island as the terrain threat.

(2) Radar threats and anti-aircraft gun threats: Radar threats and anti-aircraft gun
threats cannot be treated as a no-fly zone. This is because radar and anti-aircraft gun threats
have both detection range and attack range. It is not enough to avoid the threat itself, which
will bring hidden dangers to path security. Therefore, when avoiding such threats, it is
also necessary to stay as far away from the treat center as possible in order to reduce the
degree of the threat that a UAV experiences when crossing the radar detection range or
anti-aircraft gun attack range and to ensure the path safety of UAV to a certain extent.

(3) No-fly zone obstacles: To avoid the obstacles in the no-fly zone, we simulated
tower obstacles. For such obstacles, if a UAV has planned a path that allows it to successful
avoid colliding with them, then the UAV has successfully avoided such obstacles.

These complex environmental conditions and UAV performance bring many flight
constraints to path planning. A careful look at the constraints of UAV path planning prob-
lems shows that most of them are constrained at the geometric level by using separated
route points (path planning generally does not consider dynamic constraints). Since this
paper focuses on the UAV path planning problem rather than constructing new flight con-
straints, we directly select and derive a set of flight constraints suitable for this paper based
on the existing representative constraints in [37,39] to accommodate the key performance
constraints and complex environmental requirements in UAV path planning.

The constraints are calculated as follows.

1. Path length constraint

The path length is used to represent the flight distance of the UAV. Let Lmax be the
maximum flight distance of the UAV. Then, the path length constraint is calculated as

fL =
N

∑
i=0

√
(xi+1 − xi)

2 + (yi+1 − yi)
2 + (zi+1 − zi)

2 ≤ Lmax (1)

where (xi, yi, zi), i = 1, 2, . . . , N, denotes the coordinate of the i-th path point in the 3D
planning environment, and N is the total number of path points.



ISPRS Int. J. Geo-Inf. 2022, 11, 112 6 of 24

2. Turning angle constraint

Consider the smoothness of the path, where the maximum turning angle φmax is intro-
duced to constrain the turning angle. Suppose the vector ai is equal to [xi − xi−1, yi − yi−1, ]T ,
and ||ai|| is the norm of vector ai. The turning angle constraint of UAV is

φi = arccos(
aT

i ai+1

||ai|| ||ai+1||
) ≤ φmax (2)

3. Climbing/gliding angle constraint

Similar to the turning angle, the climbing/gliding angle can be calculated as

− γmax ≤ γi = arctan(
zi − zi−1

||ai||
) ≤ γmax, (3)

where γmax is the maximum climbing angle, and the −γmax is the minimum gliding angle.

4. Path segment constraint

The UAV must maintain a direct distance before changing the flight attitude or after
turning. Additionally, UAVs do generally not expect to turn frequently in order to reduce
navigation errors. Therefore, it is necessary to limit the path segments between adjacent
path points to be larger than the shortest path segment length lmin. The path segment
constraint can be expressed by

lmin−||pi+1 − pi||≤ 0, (4)

where pi+1 is (xi+1, yi+1, zi+1), and pi is (xi, yi, zi). pi+1 and pi are two adjacent path points.

5. Terrain limit

To calculate the terrain constraints, relying on path points alone may cause the corre-
sponding path segments to collide with the terrain, so the constraints of the path segments
also need to be considered. Hence, let pi,k be any path point on the path segment (pi, pi+1);
Hsa f e is the minimum safe flight altitude of the UAV, and zmap

i,j is the terrain altitude at path
point pi,k. Then, the terrain limit is

g1,j =

{
0 pi,j ≥ Hsa f e + zmap

i,j

1 otherwise
(5)

We usually use the path length as a cost function to evaluate the planned paths.
However, in this paper, which considers the impact of complex environmental factors
on the path safety of the UAV, the distance between the path and the threat area is also
considered to avoid planning a path that is too close to the threat, which is expressed
through the path threat strength cost function. In Section 3, we will analyze the cost
function in detail.

3. FC-RRT* Algorithm

The standard RRT* approximates the search space by sampling, avoiding the sharp
increase in computational complexity caused by the increase in the dimensionality of the
search space. Therefore, it is suitable for UAV path planning. However, studies [40,41]
proved that the standard RRT* cannot guarantee the path safety of UAVs in path planning
and that may even make the path infeasible due to the violation of flight constraints.

Therefore, considering the path safety and flight constraints of UAVs in complex
environments, a new algorithm, named FC-RRT*, is proposed in this paper to find the
optimal UAV path. Firstly, a flight cost function is designed using the threat strength
and path length; secondly, the designed flight cost function and flight constraint are used
to guide the expansion of new nodes directly. Finally, the designed flight cost function
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and flight constraint are used to guide the update of the parent nodes in the neighboring
regions. FC-RRT* considers threat strength and path length at the same time. Its purpose is
to plan an optimal path that is as short as possible while also effectively avoiding the threat,
in order to satisfy UAV path planning requirements for military operations in complex
environments (Algorithm 1 is FC-RRT* framework).

Algorithm 1: FC-RRT*

1 : Notation: Tree T, Enviroment ξ

2 : T.V ← {pstart}; E← ∅;
3 : for i = 1 to n do
4 : T ← (V, E);
5 : prand ← Sample(ξ);
6 : pnew ← Heuristic_ cos t(T.V, prand)
7 : T.V ← T.V ∪ {pnew};
8 : Pnear ← Near(pnew, T.V, ri);
9 : for all pnear ∈ Pnear do
10 : rewire_ImpRRT∗(pnear, pnew);
11 : for all pnear ∈ Pnear do
12 : rewire_ImpRRT∗(pnew, pnear);
13 : return T = (V, E)

The FC-RRT* as given in Algorithm 1 differs from the standard RRT* in two parts: the
expansion of new nodes and the update of the parent nodes in the neighboring regions.
For the new node expansion, RRT * first selects the node in the tree that is the closest to the
sample node. Then, a new node is selected in the direction of the tree node to the sample
node according to the expansion distance. Finally, if the new node is collision-free, then it
is added to the tree [24]. In contrast, our FC-RRT* algorithm uses the flight cost function
as heuristic information to guide the expansion of new nodes. The heuristic information
already includes guidance on the expansion direction and distance of new nodes, so
new nodes satisfying the flight constraint can be added directly to the tree (Algorithm 1,
lines 6, 7). To update the parent node, the Euclidean distance is usually used to select the
nearest parent node without considering the threat strength and flight constraints in RRT*.
In the FC-RRT* algorithm, we use the flight cost function and flight constraints to guide the
selection of the optimal parent node (Algorithm 1, lines 9–12). Since this approach considers
the threat strength, path length, and flight constraints simultaneously, the planned path is
an optimal path that satisfies the path safety and constraints. The details of FC-RRT* are
analyzed below.

3.1. Evaluation of the Flight Cost Function

For UAV path planning in a complex environment, it is not enough to only consider
one path length factor. UAVs not only need to avoid the no-fly zone when flying in the
battlefield, they also need to avoid the impact of threats, such as radars and anti-aircraft
guns, as much as possible according to different missions. Furthermore, even if radar
and anti-aircraft guns are avoided, the UAV is still be threatened by radar detection and
anti-aircraft attacks, meaning that its path safety cannot be ensured. In other words, we
expect the algorithm to keep the UAV away from threats while obtaining a shorter path, so
as to avoid reducing the path safety of the UAV by only pursuing the shortest planned path.

Generally, the threat radius of radar and anti-aircraft guns is very large, so it would be
impractical to attempt to totally avoid all of the threats that they pose. If the algorithm is
designed to be completely free from these threats, then it would result in the length of the
path being increased or would result in a path planned far beyond the flight environment.
Therefore, we cannot simply regard these threat areas as no-fly zones that can be completely
avoided. Note that the probability of being detected by radar and attacked by anti-aircraft
guns decrease as the distance between the UAV and the treat increases. Therefore, it is
necessary to consider the impact of the path length and path threat at the same time. Further,
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the impact of the path threat on mission completion is adjusted appropriately according
to different UAV missions. Hence, different from the cost function of the standard RRT*,
the FC-RRT* algorithm improves the original path evaluation method by using length as
the only cost. In this paper, we designed a flight cost function with the threat and length
cost of the path segments that can be used to guide the expansion of new nodes and to
update the parent nodes. It enables the planned path to meet the UAV path requirements
in complex environments. The flight cost function is analyzed in this section, which lays
the foundation for the subsequent algorithm analysis.

The flight cost function contains the path length cost and the threat strength cost,
defined as

fc = λl fl + λt ft, (6)

where fl is the length cost of the path segment and ft is the threat cost of the path segment.
λl and λt are the weighting factors.

3.1.1. Path Length Cost Function

To calculate the length cost of the path segment, let any pair of nodes be pa = (xa, ya, za)
and pb = (xb, yb, zb). The length l of the path segment (pa, pb) is

l =
√
(xa − xb)

2 + (ya − yb)
2 + (za − zb)

2 (7)

Then, the length cost function fl of path segment (pa, pb) is defined as

fl(pa, pb) =
l − lmin

lmax − lmin
, (8)

where lmax is the maximum distance among all of the optional path segments. Similarly,
lmin is the minimum distance among the optional path segments.

3.1.2. Path Threat Strength Cost Function

The threat cost is the extent to which the UAV is exposed to enemy threats while flying.
Obviously, the closer a UAV is to threats such as radar and anti-aircraft guns, the greater
the probability that the UAV will be found or destroyed, meaning that the threat impact
is stronger. Regarding the calculation of the threat strength, not only should the threat
intensity at the path points be calculated, but the path segments that are connected by the
path points should also be analyzed approximately. Therefore, we first processed the path
segment as follows.

For a path segment (pa, pb), divide it into N0 piecewise parts uniformly. Suppose that
the jth dividing point in the path segment (pa, pb) is denoted as pab,j = (xab,j, yab,j, zab,j),
which is calculated as

pab,j =
pb − pa

N0
j + pa (9)

The determination of the N0 value depends on the minimum threat radius and the
approximate minimum diameter of the hill terrain. It is necessary to ensure that the length
of all of the dividing segments is less than the minimum diameter of the radar, anti-aircraft
guns and other threats. This will detect whether the path segment conflicts with threats,
and there will be no situation where the path points satisfy the constraint but the path
segment does not. N0 is calculated as

minN0 =

⌈
fL

2Nmin(r1, . . . rn)

⌉
, (10)

where N is the number of path segments, and r1, . . . , rn is the minimum radius of n threats
or hill terrain. fL is the total path length, which is approximately 1.5 to 2 times the distance
from the start to the destination. N0 can also be increased according to the accuracy
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requirement after the minimum value constraint is satisfied. However, it should be noted
that the larger the N0 is, the higher the computational complexity will be.

For a path segment (pa, pb) that is evenly divided into N0 segments, the threat intensity
can be expressed as

t =

√
(xa − xb)

2 + (ya − yb)
2 + (za − zb)

2

N0

K

∑
k

N0+1

∑
j

1
dj,k

(11)

Hence, the cost function of the threat is

ft(pa, pb) =
t− tmin

tmax − tmin
, (12)

with

dj,k =

{ ∣∣∣∣∣∣[ pb−pa
N0

(j− 1) + pa]− Rk

∣∣∣∣∣∣−rk dj,k ≤ Lth

∞ otherwise
, (13)

where Lth denotes the impact range of the threats, k = 1, 2, . . . , K denotes the K threats
within the impact range, tmax and tmin are the maximum threat strength and the minimum
threat strength, respectively, among all of the optional path segments, dj,k is the shortest
distance between the kth threat and the dividing point, Rk is the threat center, and rk is the
threat radius. rk is calculated slightly differently for different threats. Therefore, we need to
calculate the nearest distance separately for different threat models present in this paper.

3.2. Path Evaluation Based on Flight Cost Function

The purpose of the proposed algorithm is to find an optimal path that is suitable for a
UAV. The designed flight cost function will be used to evaluate the quality of the path. The
definition of an optimal path in FC-RRT* is given as follows:

Definition 2. For any group of weights [λl , λt] : λl + λt = 1, when the total flight cost A of each
path segment is the smallest, the planned path is considered to be the optimal path, i.e.,

σoptimal : [p0, p1 . . . pN ] =
N
∪

i=0
argmin fc([pi, pi+1]), (14)

where σoptimal represents the optimal path, which is composed of N + 1 path points[p0, p1 . . . pN ].

For the allocation of weights λl and λt, path threat and path length can be prioritized
according to different tasks:

1. Fast penetration and escape. If the UAV is required to perform the task, then it
indicates that the user expects to obtain a shorter path in order to quickly reach the
target. At this time, the weight of the path length occupies the dominant position and
weakens the impact of path threat.

2. Fast attack. Under this type of task, the UAV needs to have a certain ability to ensure
its own safety. At the same time, on the premise of relatively small risk, the UAV
needs to attack enemy targets quickly. Therefore, it is necessary that the planned
path demonstrates a certain security performance and shortens the path as much as
possible. In other words, there are certain requirements for path threats and length.

3. Reconnaissance and patrol. Because the execution of this type of mission needs to
ensure the path safety of the UAV as well as that it is not found by the enemy during
reconnaissance, the impact of path threat is particularly important. Section 5 of this
paper will analyze path planning under different tasks through simulation.
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3.3. New Node Extension Based on Heuristic Information

Standard RRT* finds the point that is the closest to prand in the tree by calculating the
Euclidean distance and then expands the new node pnew through the local planner [24].
This new node expansion approach is not suitable for UAV path planning. In military
operations, the flight environments in which UAVs are used are complex. In order to
minimize the probability of a UAV being affected by threats or colliding with obstacles,
the node that can effectively avoid the threat and that has the shortest distance from the
tree node is selected as much as possible. Meanwhile, flight constraints should also be
considered. Therefore, in FC-RRT*, we use the designed flight cost function fc to inspire
new node expansions and to introduce flight constraints to screen new nodes.

As shown in Figure 2, after obtaining the sample node prand, we use Heuristic_ cos t( )
to return the new node pnew. The heuristic information process for guiding new node
expansion is shown in Algorithm 2. First, the Euclidean distances between each tree node
pv and prand are calculated separately. If the distance between tree nodes pv and prand is less
than the maximum extended distance given by FC-RRT*, and is greater than the shortest
path segment constraint distance lmin, then prand is determined as a potential new node. If
this distance is greater than lmin, then the vertex generated by extending the length δ along
the tree node pv in the direction of pv to prand is calculated as a potential new node.
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Figure 2. No. 1 shows the flight constraint determination (true or false symbol) and the flight cost fc
for potential new nodes (orange nodes). No. 2 shows that the new node expansion of FC-RRT* has
been completed. The black nodes and edges are the trees that have been generated, and the blue
node is prand.

Algorithm 2: Heuristic _ cos t(T.V, prand)

1 : for all pv ∈ T.V do
2 : if(lmin ≤‖ pv − prand ‖≤ δ)
3 : pnew ← prand
4 : elseif(‖ pv − prand ‖> δ)

5 : pnew ← pv + δ
prand−pv
‖prand−pv‖

6 : if(collision_free(pv, pnew)∧
UAV_free(pv, pnew))then

6 : c← λl fl( pv, prand) + λt ft( pv, pnew)
7 : else
8 : continue
9 : pnew ← argmin(c)
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Then, environmental constraints and flight constraints are detected for the potential
edge (pv, pnew). We use collision_free( ) to detect collisions with threats and terrain. Addi-
tionally, we use UAV_free( ) to detect whether the planned path satisfies the turning angle
and climbing/gliding angle constraints.

If both constraints are satisfied, then the designed flight cost function is used to
calculate the cost between the potential new node and each tree node pv. The Euclidean
distance between the sample node prand and each tree node pv is calculated directly to
determine the path length cost fl . However, for the calculation of the threat strength cost ft,
due to the limitation of the maximum extension length δ, the new node is only determined
within the range of δ around the tree node. Therefore, in order to evaluate the threat
strength correctly, we choose the edge consisting of pv and each potential new node to
calculate the threat strength cost. After calculating the flight cost between each tree node
pv and prand, the potential new node with the minimum flight cost is selected as the new
node pnew by argmin( ).

3.4. Parent Node Updating Based on Flight Cost

In Section 3.2, we use heuristic information including threat strength and path length
cost to guide the new node expansion, so that FC-RRT* meets the path length and safety
requirements of UAV path planning as soon as the new node is determined. In order to
further guide path generation, the evaluation approach of using Euclidean distance as the
updating parent node in standard RRT* should also be improved. Therefore, we introduce
the flight cost function to the optimal parent node updating in FC-RRT* in order to plan an
optimal path that can be evaluated simultaneously with threat strength and path length.

To determine the neighbor region range, the tree nodes were selected from the ball
with the radius setting γ3(log i/i)1/3 (where γ3 > 2n(1 + 1/n)µ[C f ree]) [42].

The parent node updating approach in the FC-RRT* neighborhood is shown in Algo-
rithm 3, and the following analysis takes the first call of rewire_ImpRRT∗( ) as an example.
The standard RRT* first detects whether the edge (pnew, pnear) is collision-free, and if true,
the parent node is updated according to the Euclidean measure [21]. However, for the
UAV, measuring the path by distance alone cannot ensure path safety. Additionally, the
neighbor region node pnear with the lowest path length cost may not satisfy the turning
angle constraint or the climbing/gliding angle constraint. Moreover, there is a maximum
path length constraint for the UAV. If the planned path length exceeds the maximum range
limit, then the UAV cannot complete the mission.

Algorithm 3: rewire_ImpRRT ∗ (x1, x2)

1 : if(collision_free(x1, x2)∧
UAV_free(x1, x2))then

2 : c← fc(x1, x2)
3 : if( fc,T(x1) + c < fc,T(x2)∧

lenth_max(x1, x2)) ≤ Lmaxthen
4 : T.parent(x2)← x1

Therefore, the edge connecting the potential parent node and the new node is detected
to determine whether it meets the performance constraints or not (through UAV_free( )),
and whether the edge is collision-free in the flight environment (through collision_free( )).
Then, we evaluated the optimal parent node updating by introducing the flight cost function
in order to guarantee that the UAV is kept away from the threat while also obtaining the
shortest path. The flight cost from the start node pstart through each pnear to pnew is
calculated separately. Additionally, after that, the pnear with the lowest cost is selected as
the parent node. Finally, lenth_max( ) is used to determine whether the maximum path
length constraint is satisfied. The lenth_max( ) is calculated as

lenth_max(x1, x2) = fl(pstart, x1) + fl(x1, x2)+
∣∣∣∣∣∣pgoal − x2

∣∣∣∣∣∣ (15)
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4. Analysis

In this section, the FC-RRT* algorithm is theoretically analyzed in combination with
RRT* [32]. Through analysis, we prove that the proposed FC-RRT* has probabilistic com-
pleteness and asymptotic optimality. Meanwhile, the asymptotic computational complexity
is basically the same as that of RRT*.

4.1. Probabilistic Completeness

This section analyzes the probabilistic completeness of FC-RRT*. Most sampling-based
path planning algorithms are probabilistically complete, and the definition of probabilistic
completeness is shown below.

Definition 3 (Probabilistic completeness). Given the starting node and the set of desired goal
nodes, if for any robust feasible path planning problem, the following equation is satisfied, i.e.,

lim inf
n→∞

P
(

σn,ALG ∩ Pgoal 6= ∅
)
= 1, (16)

algorithm ALG is considered to be probability complete.
Referring to the description of probability completeness in Definition 3, the probability com-

pleteness of FC-RRT* is described in Theorem 1.

Theorem 1 (Probabilistic completeness of FC-RRT*). When the number of given samples is
infinite, the probability of FC-RRT* finding a feasible solution for any robust feasible path planning
problem is one, that is,

lim inf
n→∞

P
(

σn,FC−RRT∗ ∈ C f ree, σn,FC−RRT∗(0) = pstart, σn,FC−RRT∗(1) ∈ Pgoal

)
= 1 (17)

Proof of Theorem 1. The proof of Theorem 1 is based on the following three arguments:

1. The random tree generated by FC-RRT* must include pstart as one of its vertices.
Meanwhile, the target node must be within the set of desired goal nodes Pgoal , i.e.,
σn,FC−RRT∗(0) = pstart, σn,FC−RRT∗(1) ∈ Pgoal , which is the same as RRT*.

2. Similar to RRT *, the FC-RRT* planning tree is connected (see Algorithm 1). In other
words, any random sample can be connected to the nearest vertex in the neighbor of
the tree.

3. FC-RRT* sets the target node in the set of desired goal nodes. Therefore, when the
random sampling is infinite, the probability of generating FC-RRT* random tree to
the target region is close to one. �

Based on the above three arguments, we are able to prove that when any path planning
problem is given, FC-RRT* can find a feasible path and approach a probability of 1 as the
number of samples approaches infinity (the premise of this conclusion is that there is
a feasible solution to a given path planning problem). Therefore, FC-RRT* and RRT* also
guarantee probability completeness.

4.2. Asymptotic Optimality

FC-RRT* inherits the asymptotic optimality of standard RRT *. This section analyzes
the asymptotic optimality of FC-RRT* in dealing with path planning problems. Firstly, the
definition of asymptotic optimality is given as follows.

Definition 4 (Asymptotic optimality). For any path planning problem, when the number of
samples approaches infinity, the algorithm ALG is said to be asymptotically optimal if it can
return the tree graph of the least cost solution. Similar to RRT*, we set the following assumptions
to prove that FC-RRT* is asymptotically optimal. They have been used to prove that RRT * is
asymptotically optimal [32].
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Assumption 1 (Additivity of the cost). For any two collision free paths, i.e., σ1, σ2 ∈ C f ree, the
cost function fc(·) must satisfy fc(σ1) ≤ fc(σ1|σ2) : fc(σ1) + fc(σ2).

Assumption 2 (Continuity of the cost). The cost function fc(·) is a Lipschitz continuous
function, and there is a constant δ such that any two very close collision free paths σ1 : [0, g1], σ2 :

[0, g2] ∈ C f ree, have

∣∣∣∣∣ fc(σ1)− fc(σ2)

∣∣∣∣∣≤ δ sup
τ:[0,1]
‖σ1(τg1)− σ2(τg2)‖ .

Assumption 3 ( γ-spacing of the obstacle). For any sampling node p, there is a ball region
in collision free space C with a radius of γ ∈ R>0 and center of another node p1 ∈ C f ree, i.e.,
p ∈ BP1,γ.

Based on the above assumptions, the asymptotic optimality description of FC-RRT* is
given as follows:

Theorem 2 (Asymptotic optimality of FC-RRT*). Let Assumptions 1, 2 and 3 hold; when
the number of samples is infinite, the probability of FC-RRT* gradually converging to the optimal
solution of the given path planning problem is

P
(

lim sup
n→∞

(c(σn,FC−RRT∗) = c∗)
)
= 1, (18)

where c∗ is the optimal solution of the path planning problem.

Proof of Theorem 2. Assumption 1 indicates that the cost function of the algorithm needs
to be additive, and the cost cannot be negative. When the algorithm runs rewiring processes,
different path segments need to be added for comparison (see rewire_ImpRRT∗( )). The
standard RRT * takes the Euclidean distance as the cost, which must satisfy Assumption 1
(i.e., fc(σ1) = fl(σ1)). The cost function fc(·) of FC-RRT* consists of the path length cost fl(·)
and path threat cost ft(·), and ft(·) ≥ 0. For any weight combination [λ1, λ2] (λ1 + λ2 = 1),

fc(σ1) : fl(σ1) + ft(σ1) ≤ fl(σ1) + ft(σ1) + fl(σ2) + ft(σ2) (19)

Therefore, FC-RRT* also satisfies Assumption 1. �

Assumption 2 indicates that two very close paths have similar costs. Similar to RRT*,
FC-RRT* also holds for this assumption. For two very close paths, the path lengths are
similar. Moreover, because the distance between the two close paths and the threat is very
similar, the path threat cost is also similar.

Assumption 3 indicates that there is a collision free region around the feasible path.
The algorithm can select the sampling node with the lowest cost from the sampling nodes
in the region in order to converge the algorithm to the optimal path. The determination of
the neighborhood radius γ using the FC-RRT* algorithm is the same as RRT*, i.e., γ3 ≥ γ∗3 .
This ensures that at least one node of the tree τ = (υ, ε) falls into this region when a
large number of samples are taken. This means that when calling the rewire_ImpRRT∗( )
function to select the parent node, the node with a lesser cost is likely to be rewired to
optimize the path. Therefore, when the sampling times approach infinity, the probability
that the path cost variation ‖ fc(σ1)− fc(σ1)‖ of the two feasible paths is approximately
zero is one. Therefore, FC-RRT* is proven to be asymptotically optimal.

4.3. Computational Complexity

In this section, we mainly compare the asymptotical computational complexity of
standard RRT* and FC-RRT*. The comparative analysis shows that the asymptotic compu-
tational complexity of the two algorithms is almost the same.

In order to compare the progressive computational complexity of RRT* and FC-RRT*,
we need to evaluate the time required by comparing the number of execution steps of
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each process. Note that the Sample(·), collision_free(·) and Near(·) processes of the two
algorithms are the same, and they can be performed in a certain number of steps (i.e., the
execution of these procedures is independent of the number of vertices in the tree.). For each
iteration i, Sample(·) executes at least once, collision_free(·) executes at least three times,
and Near(·) executes at least once. The difference is that the standard RRT* divides the
new node expansion into two processes (e.g., the authors of [32] called them the Nearest(·)
and steer(·) processes), and the proposed FC-RRT* algorithm directly returns to the new
node through the Heuristic_ cos t(·) process. Therefore, the asymptotic computational
complexity of the Heuristic_ cos t(·) process needs to be considered.

The steer(·) process of RRT* is only a simple expansion of nodes, and it basically
does not affect the calculation time. However, both the Heuristic_ cos t(·) and Nearest(·)
processes involve the problem of finding the nearest neighbor. The study conducted
in [43] shows that the nearest neighbor search takes at least logarithmic time, and each
iteration changes according to the changes that take place in the sampling points (i.e.,
process execution is related to the number of vertices of the tree). For FC-RRT* and RRT*,
because each iteration has only one sampling, their nodes in iteration i are the same, i.e.,
VRRT∗

i = VFC−RRT∗
i . Therefore, both RRT* and FC-RRT* need at least logarithmic time

log(n) to find the nearest neighbor in iteration i. Therefore, FC-RRT* and RRT* have almost
the same asymptotic computational complexity.

Theorem 3. There is a constant A such that,

lim
n→∞

E
[
SRRT∗

i

SFC−RRT∗
i

]
≤ α, (20)

where SRRT∗
i and SFC−RRT∗

i represent the numbers of steps involved in RRT* and FC-RRT*,
respectively, in the iteration.

5. Simulation and Analysis

In order to comprehensively evaluate the effectiveness of the proposed FC-RRT*
algorithm, we carried out simulation evaluation and analysis.

There is no widely accepted environmental standard model in UAV path planning.
For sampling-based path planning methods, we usually adopt basic configurations to
represent obstacles or threats in the scene. Therefore, in this paper, when establishing the
threat model, as in [44], a hemispherical model to approximately describe the warning
radar and its threat area is implemented, and the model uses the cylindrical model to
approximately describe the anti-aircraft gun building and its attack range. The cone model
was used to approximately describe the tower (since the tower has no detection or strike
capability, it is treated as a no-fly zone). However, the use of a basic configuration results
in a lot of information regarding the terrain being lost. Therefore, in this paper, a real
elevation map was constructed to represent the terrain in order to truly reflect the terrain
threat information.

Table 1 shows some basic FC-RRT* parameters, where Case 1, Case 2, and Case 3 are
different weight assignments in the flight cost function, respectively. Additionally, the
established parameters for radar, anti-aircraft gun, and tower are indicated.
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Table 1. Parameter values.

Parameter Value

Case 1 λl= 0.1; λt = 0.9
Case 2 λl= 0.5; λt = 0.5
Case 3 λl= 0.9; λt = 0.1

Lth 20 m
δ 70 m

N0 15
φmax 45◦

γmax 30◦

lmin 30 m
Iter 2000

Start (40,40,30)
Target (350,350,50)

Rader

Center radius
(100,80,0) 35

(100,350,5) 35
(170,230,20) 35
(280,200,20) 35

Anti-air. gun

Center radius height
(70,170,0) 30 40

(170,140,0) 30 40
(300,100,0) 30 40
(260,180,0) 25 40

Control tower

Center radius height
(200,290,10) 15 50
(100,275,10) 20 40

5.1. Simulation and Analysis of FC-RRT* in the Complex Environment

Through the complex flight environment, FC-RRT* is simulated and analyzed verifying
the effectiveness and superiority of the heuristic information to guide new node expansion
and parent node updating.

Figures 3–5 show the directed tree graph and planning path of FC-RRT* in three dif-
ferent cases. Table 2 shows the statistical results, including the number of tree nodes, the
number of tree nodes in threat range Lth, the path length, the minimal distance between
the path and the threats, the threat value of the path, the proportion of the threat impact
path length in the total path length, and the success rate of 50 experiments.
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Case 3; (b) 2D top view of Case 3.

Table 2. Statistical results of the FC-RRT* for three different weights.

Cases Case1 (λl = 0.1 and
λt = 0.9)

Case2 (λl = 0.5 and
λt = 0.5)

Case3 (λl = 0.1 and
λt = 0.9)

Tree nodes 1426 1435 1412
Tree nodes inLth 58 456 871
Path Length (m) 617.7 532.2 479.2

minDis. to Thr. (m) 18.71 12.62 4.90
Thr. cost 8.29 37.58 95.833

Path in Thr.(%) 2.65 44.19 81.78
Succ.Rate (%) 94 92 94

From the simulation success rate in Table 2, after improving the new node determina-
tion and parent node update, and introducing the UAV constraint, FC-RRT* still managed
successful path planning in the complex environment. From Figures 6 and 7, the path
planned using FC-RRT* satisfies the turning angle and climbing/gliding angle constraints,
and the turning and climbing/gliding angles are relatively smooth.
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Furthermore, since the flight cost function is applied as heuristic information to
guide the new node expansion, from Figures 3–5, the distribution of the tree nodes differs
significantly based on the three weights. Case 1 represents a weight assignment that focuses
on path safety with little consideration of path length cost. Hence, the tree nodes in Figure 3
are not expanded near the threats. Most of them are mostly concentrated within a certain
distance from the threat. Additionally, from Table 2, the number of nodes in the threat range
Lth for Case 1 shows that only a few tree nodes are located within the threat scope. Case 2
represents the weight assignment for both the path safety and path length requirements, so
a certain number of tree nodes exist in the threat impact range, which is shown in Figure 4.
Meanwhile, as shown in Table 2, the number of tree nodes in the threat range Lth of Case 2
has increased compared to Case 1. The weight assignment of Case 3 represents the desire
to achieve close to the lowest path loss, even though it sacrifices path safety. Therefore,
from Figure 5, the tree nodes are basically evenly distributed in the sampling environment.
Additionally, the number of nodes in the threat range Lth in Table 2 is also the highest.
From the above, the weights λl and λt in the flight cost function affect the expansion of
new nodes. Namely, using the flight cost function as heuristic information can effectively
guide the expansion of new nodes, thus guiding the path planning from the front-end.

Combined with Figures 3–5 and Table 2, the planning paths under three different
weight distributions are quite different. From Figure 3, the planning path in Case 1 has
a larger distance between the path and the threat, which also results in a longer path length.
Meanwhile, comparing the statistical results of the three cases in Table 2, it can be seen that
Case1 has the largest distance between the path and the threat; the threat strength value
and the percentage of threat paths are the lowest; and the path length is the longest. This
confirms that at the weight of Case1, the planning path focuses on path safety, although
the path length cost is more expensive. From Figure 4 for Case 2, the distance between the
planned path and threat and the path length cost are both at the medium level (compare
with other cases). Additionally, from Table 2, the statistical results of Case 2 are moderate
in the three cases. This proves that path safety has a similar importance to path length at
the weight of Case 2. As seen in Figure 5 for Case 3, the path length is the shortest, but
the distance between the path and the threat is the shortest. This is also reflected in the
comparison of the statistical results in Table 2, where the path length is the shortest of the
three weights. However, the distance between path and threats is the smallest, and the
threat path value and the threat path percentage are largest. Hence, although the weight of
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Case 3 plans the shortest path, it greatly affects path safety and reduces the probability of
survival. From the above, the flight cost function can effectively guide the path planning of
the UAV and obtain the optimal path required by the user.

In summary, the simulation results show that FC-RRT* is suitable for UAV path
planning in the complex environment, and that it meets the path safety and path length
requirements. In terms of front-end new node expansion and back-end parent node
updating, the flight cost function and flight constraint are introduced twice, meaning
that FC-RRT* plans an optimal path with the shortest length while satisfying the path
safety requirements. Additionally, the weight assignment of different flight cost functions
in the algorithm can guide the generation of paths with different requirements. Case 1
indicates that the path with the highest survival probability is preferred, while there is
essentially no requirement for path length cost. Therefore, it can be used for military
missions such as cruising and long-range surveillance on the battlefield. Case 2 indicates
that both path safety and path length are more important. It can be used for military
missions for applications such as enemy suppression and for striking enemy facilities. The
application of Case 3 allows the UAV to quickly pass through enemy threats while ignoring
the probability of survival and the ability to avoid threats, so it can be applied to speed
escape and surprise defense situations.

5.2. Comparison and Discussion

In order to further verify the superiority of the FC-RRT*, we compared it to the
standard RRT*. In this experiment, the flight environment is adjusted to clearly show the
comparison of the algorithms. The adjusted parameters are shown in Table 3, and other
parameters are shown in Table 1.

Table 3. Parameters that were adjusted in the comparison.

Parameter Value

Wig λl= 0.6; λt = 0.4

Rader

Center radius
(100,80,0) 40
(100,350,5) 40

(170,230,20) 40
(280,200,20) 40

Anti-air. gun

Center radius height
(70,170,0) 30 50
(170,140,0) 30 50
(300,100,0) 30 50
(260,180,0) 25 50

Control tower

Center radius height
(200,290,10) 15 50
(100,275,10) 20 40

From the tree node distribution in Figure 8, since RRT* only considers the Euclidean
distance when new nodes are expanded, the tree nodes generated by the algorithm are
evenly distributed in the sampling space. However, the FC-RRT* algorithm adopts the
proposed flight cost function to inspire guiding new node expansion, so the number of
tree nodes near the threat region is significantly smaller (refer to Figure 3). Additionally,
this is demonstrated by the comparison of the number of tree nodes in the threat range
Lth in Table 4. Meanwhile, from Table 4, the length of the RRT* planning path is shorter
compared to FC-RRT*. However, compared to FC-RRT*, the path planned by RRT* has
a larger threat value and the smaller nearest distance to the threat, and most of the path
is in the affected range of threat. However, considering the path safety of the UAV in the
complex environment created for these simulations, the path planned by FC-RRT* adopts
the flight cost function to guide the expansion of new nodes and to direct parent node
updating. Although this approach results in a longer path, both the path threat value



ISPRS Int. J. Geo-Inf. 2022, 11, 112 19 of 24

and the percentage of the path affected by threats are smaller than RRT*, and the closest
distance to the threat is relatively large. Therefore, the RRT* path is too close to the threat,
which affects path safety. In contrast, in FC-RRT*, the planning path is far away from the
threat, which guarantees path safety while maintaining the shortest flight path.
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Table 4. Statistical results comparison between FC-RRT* and RRT*.

Algorithms Sta. RRT* FC-RRT*

Tree nodes 1460 1446
Tree nodes inLth 1049 414
Path Length (m) 482.06 534.88

minDis. to Thr. (m) 0.41 10.54
Thr. cost 286.44 11.99

Path in Thr.(%) 95.34 56.62
Succ. Rate (%) 96 98

Additionally, from Figures 9 and 10, the path planned by RRT* is shorter but has
more large-angle turns, while FC-RRT* generates a path with fewer turns and the path
is smoother. Further, from Figures 11 and 12, some of the turning and climbing/gliding
angles of the path points do not satisfy the UAV constraint in standard RRT*. However, for
FC-RRT*, the planned path satisfies the angle constraints and is relatively smooth.
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In summary, comparing the RRT* and FC-RRT* performance for UAV path planning
in the complex environment, the path planned by RRT* is close to the threat, meaning
that path safety is not guaranteed. Additionally, there are too many large angle-turns and
cannot meet the flight constraints. Hence, RRT* is not suitable for UAV path planning.
However, for FC-RRT*, both the path threat strength and path length cost are considered,
and the flight cost function is designed to guide the new node to expand so that the new
node can expand to the environment that meets the path safety requirements. However,
for FC-RRT*, the new node is extended to the path safety environment because of the
application of the flight cost function that includes the threat strength and path length
cost. Additionally, the flight cost function is used to guide optimal parent node updating.
Therefore, the path planned by FC-RRT* is relatively far from the threats, guaranteeing
path safety. At the same time, due to the introduction of the flight constraints in FC-RRT*,
the path satisfies the constraints and the path is smoother compared with the standard
RRT*. The experiment proves that FC-RRT* is suitable for UAV path planning in a complex
environment and can meet the requirements of military operations.
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5.3. Discussion before Actual Flight Test Preparation

Our paper mainly studies a three-dimensional path planning method that is suitable
for UAVs. Considering the complexity of the battlefield environment and the diversity of
obstacle threats, we proposed an FC-RRT* algorithm to meet the UAV planning require-
ments in this environment. In order to create the algorithm, we studied certain practical
application values, and we have extended the discussion on the practical application of the
algorithm in this section.

We selected the four-rotor UAVs that we designed in the laboratory to measure and
record the relevant parameters and compared the obtained data with the simulation results
of the algorithm in this paper in order to observe whether the simulation results in this
paper can meet the parameter constraints of the UAV. In future flight tests in real-life
conditions, we will select the same UAVS. The four-rotor UAV is shown in Figure 13, and
the relevant UAV parameters are shown in Table 5. In order to fully introduce the four-rotor
platform that we will use to conduct flight tests in the future, the relevant parameters of
the self-designed autopilot are introduced in Table A1 in Appendix A.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 24 of 27 
 

 

 
Figure 13. The self-designed four-rotor platform. 

Table 5. The UAV specifications. 

UAV Specification 
Take-off Weight 1kg 
Max Playload 0.5kg 
Wingspan 455mm 
Battery Capacity 5000mAh 
Max Forward Speed 4m/s 
Flight Time 28min 
Max Turning Angle 275° 
Max Tilt Angle 45° 

It can be seen from Table A1 that when a battery with a load capacity of 5000 mAh 
flies, the maximum flight time of the UAV is 28 min, and the maximum flight speed of the 
UAV is 4 m/s. Combined with the maximum planned UAV path length given in Table 2 
and Table 4 in Section 5 of this article, it can be seen that the simulation results can meet 
the parameter conditions of the actual UAV flight length and can complete the flight in 
one full power load. At the same time, the maximum steering angle constraint and max-
imum climb angle constraint of the UAV set in the simulation meet the angle constraint 
limit of the four-rotor UAV. Therefore, we can preliminarily determine that the algorithm 
developed in this paper can complete flight tests using the four-rotor UAV platform. Of 
course, this is only a preliminary judgment before the actual flight experiment. For some 
actual parameters, such as the influence of specific weather and wind direction, accurate 
data can be obtained during actual test flights in the future. 

6. Conclusion 
In this paper, we propose a path planning algorithm for UAVs in complex environ-

ments called FC-RRT*, which comprehensively considers the length of the path and the 
safety of the path to guarantee that a UAV is able to safely complete military missions. 
FC-RRT* improves and optimizes standard RRT*. First, we designed a flight cost function 
that includes both path threat strength and path length cost. Then, an approach using the 
flight cost function as heuristic information to guide the expansion of new nodes is pro-
posed at the front-end, which enables new nodes to be expanded to a sampling space with 
high path safety. After that, we considered both the same flight cost function and flight 
constraints in the parent node update at the back-end. The path planned by FC-RRT* has 
the shortest distance and highest safety because it guides both the front-end and back-
end. Then, we analyzed the FC-RRT* in depth. Simulations and comparisons prove that 
FC-RRT* is suitable for UAV path planning in a complex environment. Additionally, FC-

Figure 13. The self-designed four-rotor platform.

Table 5. The UAV specifications.

UAV Specification

Take-off Weight 1 kg
Max Playload 0.5 kg
Wingspan 455 mm
Battery Capacity 5000 mAh
Max Forward Speed 4 m/s
Flight Time 28 min
Max Turning Angle 275◦

Max Tilt Angle 45◦

It can be seen from Table A1 that when a battery with a load capacity of 5000 mAh flies,
the maximum flight time of the UAV is 28 min, and the maximum flight speed of the UAV
is 4 m/s. Combined with the maximum planned UAV path length given in Tables 2 and 4
in Section 5 of this article, it can be seen that the simulation results can meet the parameter
conditions of the actual UAV flight length and can complete the flight in one full power
load. At the same time, the maximum steering angle constraint and max-imum climb angle
constraint of the UAV set in the simulation meet the angle constraint limit of the four-
rotor UAV. Therefore, we can preliminarily determine that the algorithm developed in this
paper can complete flight tests using the four-rotor UAV platform. Of course, this is only
a preliminary judgment before the actual flight experiment. For some actual parameters,
such as the influence of specific weather and wind direction, accurate data can be obtained
during actual test flights in the future.
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6. Conclusions

In this paper, we propose a path planning algorithm for UAVs in complex environ-
ments called FC-RRT*, which comprehensively considers the length of the path and the
safety of the path to guarantee that a UAV is able to safely complete military missions.
FC-RRT* improves and optimizes standard RRT*. First, we designed a flight cost function
that includes both path threat strength and path length cost. Then, an approach using
the flight cost function as heuristic information to guide the expansion of new nodes is
proposed at the front-end, which enables new nodes to be expanded to a sampling space
with high path safety. After that, we considered both the same flight cost function and flight
constraints in the parent node update at the back-end. The path planned by FC-RRT* has
the shortest distance and highest safety because it guides both the front-end and back-end.
Then, we analyzed the FC-RRT* in depth. Simulations and comparisons prove that FC-RRT*
is suitable for UAV path planning in a complex environment. Additionally, FC-RRT* can be
applied to different military missions, such as cruising or long-range surveillance, striking
enemy facilities, and battlefield speed escape or surprise defense.

Of course, this algorithm is not the only way to deal with UAV path planning in
complex environments. Intelligent algorithms such as the genetic algorithm are also
capable of this, but intelligent algorithms usually comprise a great deal of complexity.
Therefore, as an algorithm with relatively low computational complexity, the algorithm
proposed in this paper improves the computational efficiency on the premise of obtaining
similar results. Meanwhile, we hope to conduct more in-depth research on this algorithm
in future research, including but not limited to the theoretical improvement and actual
flight verification of the algorithm, so that our algorithm can have stronger application
value. Additionally, FC-RRT* is only suitable for static UAV path planning, which means
that all environmental information needs to be known. Therefore, further studies need to
be conducted on dynamic path planning algorithms in other complex environments.
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Appendix A

Table A1. The UAV commercial self-designed autopilot specifications.

Autopilot Specification

Size Weight 39 g, w. 50 mm, h. 15.5 mm, and l. 81.5 mm
CPU 32-bit STM32F427 and STM32F103

Sensor

MPU6000 six-axis accelerometer/gyro,
ST Micro L3GD20 16-bit gyroscope,
ST Micro LSM303D 14-bit accelerometer/magnetometer,
MS5611 MEAS barometer,
GPS module

Interface UART, I2C, SPI, 2 CAN, USB, 3.3V, and 6.6V ADC input

Sample frequency IMU (250 Hz), magnetometer (100 Hz), barometer (100
Hz), GPS module (10 Hz)
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