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Abstract: Estimation of soil organic matter content (SOMC) is essential for soil quality evaluation.
Compared with traditional multispectral remote sensing for SOMC mapping, the distribution of
SOMC in a certain area can be obtained quickly by using hyperspectral remote sensing data. The
Advanced Hyper-Spectral Imager (AHSI) onboard the ZY1-02D satellite can simultaneously obtain
spectral information in 166 bands from visible (400 nm) to shortwave infrared (2500 nm), providing
an important data source for SOMC mapping. In this study, SOMC-related spectral indices (SIs)
suitable for this satellite were analyzed and evaluated in Shuyang County, Jiangsu Province. A
series of SIs were constructed for the bare soil and vegetation-covered (mainly rice crops and tree
seedlings) areas by combining spectral transformations (such as reciprocal and square root) and dual-
band index formulas (such as ratio and difference), respectively. The optimal SIs were determined
based on Pearson’s correlation coefficient (ρ) and satellite data quality, and applied to SOMC level
mapping and estimation. The results show that: (1) The SI with the highest ρ in the bare soil area
is the ratio index of original reflectance at 654 and 679 nm (OR-RI(654,679)), whereas the SI in the
vegetation area is the square root of the difference between the reciprocal reflectance at 551 and
1998 nm (V-RR-DSI(551,1998)); (2) the spatial distribution trend of regional SOMC results obtained
by linear regression models of OR-RI(654,679) and V-RR-DSI(551,1998) is consistent with the samples;
(3) based on the optimal SIs, support vector machine and tree ensembles were used to predict the
SOMC of bare soil and vegetation-covered areas of Shuyang County, respectively. The determination
coefficient of the soil–vegetation combined prediction results is 0.775, the root mean square error is
3.72 g/kg, and the residual prediction deviation is 2.12. The results show that the proposed SIs for
ZY1-02D satellite hyperspectral data are of great potential for SOMC mapping.

Keywords: hyperspectral satellite data; soil organic matter; spectral transformation; spectral analysis;
spectral index

1. Introduction

Soil organic matter (SOM) is essential for soil nutrients and a key indicator for evaluat-
ing soil environment [1] and food security [2]. It provides nutrients for crop growth [3–5]
and plays a vital role in soil formation, conservation, environmental protection, and sustain-
able development of agriculture and forestry [2]. Changes in the abundance and properties
of SOM profoundly impact many processes in the soil ecosystem. Therefore, SOM monitor-
ing is necessary to keep track of soil environmental conditions. Traditional estimation of soil
organic matter content (SOMC) mainly relies on collecting a large number of soil samples
and laboratory chemical analysis. This method is relatively accurate, but the alteration
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of soil’s natural status and mass loss is inevitable during the sampling and measuring
process [6]. It is also time consuming and laborious, and it is difficult to achieve large-scale
investigation in a short time [7]. Soil proximal sensing methods can achieve non-destructive
measurements, yet only soil properties at the sampling point can be obtained [8]. Therefore,
it is challenging to obtain the spatial distribution of SOM at a regional scale [9].

Satellite remote sensing has the advantages of fast monitoring, wide coverage and low
cost [9]. In particular, hyperspectral satellite data have rich spectral information, making
it possible to predict the spatial distribution of SOMC on a large scale and with high
accuracy [10]. The ZY1-02D satellite, launched in September 2019, carries an Advanced
Hyperspectral Imager (AHSI) that can simultaneously acquire spectral information in 166
bands from the visible (400 nm) to the shortwave infrared (2500 nm) with a swath width
of 60 km [11]. AHSI can obtain spectral details of the absorption features of SOM from
hundreds of continuous narrow bands [10,12], making it an important data source for
SOM mapping.

In recent years, many researchers have studied the monitoring of SOMC by satellite
remote sensing. For example, Tiwari et al. [13] used artificial neural network (ANN)
algorithms to model and map soil organic carbon (SOC) in New Delhi, India, based
on EO1-Hyperion images. Emadi et al. [14] drew SOC in northern Iran using ANN,
random forest (RF) and support vector machine (SVM) algorithms based on Landsat 8
and MODIS data. The Food and Agriculture Organization of the United Nations (FAO)
offered [15] step-by-step guidance for developing 1 km grids for SOC stocks in the Soil
Organic Carbon Mapping cookbook. Venter et al. [16] used satellite-driven high-resolution
maps to map SOC stocks and trends over South Africa and the depth reached 30 cm.
European Union’s Copernicus programme used the Sentinel satellite to estimate SOC
in European croplands [17]. Endsley et al. [18] estimated a daily global carbon budget
including surface (0–5cm depth) SOC with the SMAP Level 4 Carbon (L4C) product.
However, satellite remote sensing can only be used to estimate the topsoil organic matter
content, and the accurate assessment of the actual SOC quantity stored in other layers is
still a huge challenge.

The absorption characteristics of soil spectral reflectance are mainly due to the over-
tones and combinations of fundamental vibrations caused by the stretching and bending of
N-H, O-H and C-H groups [19]. The significant negative correlation between SOM and soil
spectral reflectance is the foundation for predicting the spatial distribution of SOM [20].
In the bare soil area, researchers have proposed many different forms of soil spectral in-
dices (SIs) to estimate SOMC. For example, Krishnan et al. [21] used the first derivative
absorption rate index (FDAI), absorption ratio index I (ARI I) and absorption ratio index II
(ARI II) to estimate the SOMC in Illinois, USA. Based on the absorption characteristics of
soil biochemical components, Bartholomeus et al. [22] constructed multiple SIs that have
strong correlations with SOC. Jin et al. [23] analyzed the correlations between the difference
index (DI), ratio vegetation index (RI), normalized difference vegetation index (NDI) and
SOMC. However, most of these indices were constructed based on laboratory soil spectra.
Due to the difference between laboratory soil samples and field soils and the influence of
the observation scale, it is challenging to obtain satisfying results when these indices are
directly applied to satellite data.

In the vegetation-covered area, SOM plays a vital role in crop growth. For example,
the humic acid in SOM is an essential source of SOC in the vegetation-covered area. Humic
acid can stimulate plant growth and absorb colloidal cations [3,24,25]. Cellulose, lignin and
other components of vegetation are usually affected by SOM, which leads to changes in
the absorption characteristics of the vegetation canopy spectrum [26]. In the vegetation-
covered area, according to this indirect interaction mechanism between SOM and vegetation
canopy spectrum, researchers tried to relate SOMC with vegetation SIs that can indicate
chlorophyll content, moisture and cellulose content. In previous studies, some vegetation
SIs have been applied to evaluate SOMC, such as the normalized difference vegetation
index (NDVI), enhanced vegetation index (EVI), moisture stress index (MSI) and cellulose
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absorption index (CAI) [26–29]. However, these indices are mainly designed to indicate the
physicochemical parameters of the vegetation and have very limited ability to characterize
the SOM.

Therefore, in this study, Shuyang County of Jiangsu Province was selected as the
study area and satellite-based SIs were constructed that are sensitive to topsoil organic
matter content in bare soil and vegetation-covered areas. In Section 2, the study area, soil
sampling data, and satellite data are introduced, and the construction process of SIs and
evaluation methods are described in detail. Then, in Section 3, the correlations between
the transformed spectra and SOMC are analyzed, the optimal SIs are obtained, and the
application effects of the optimal SIs are evaluated. In Section 4, the considerations for
screening the SIs, the necessity of constructing SIs separately in bare soil and vegetation-
covered areas, and the impact of land-use types on SOMC are discussed.

2. Materials and Methods
2.1. Study Area

The study area, Shuyang County (33◦53’–34◦25’ N, 118◦30’–119◦10’ E), is located in
the northern part of Jiangsu Province (as shown in Figure 1a). The county spans 60 km
from east to west and 55 km from north to south, covering an area of 2298 km2. The terrain
is higher in the west and lower in the east, and the ground elevation is mostly between 4.5
and 7 m. The river network is dense. The whole area lies in a temperate monsoon climate
zone with abundant sunshine and average annual precipitation of 937.60 mm [30–32]. The
soil texture of the topsoil (0–15 cm) in Shuyang County is mainly silt, and the contents
of clay and sand are relatively small. The soil types include cambisols, regosols, luvisols,
greyzems, anthrosols, gleysols, fluvisols, nitisols and arenosols (Figure 1b) [33,34], and the
crops are mainly rice, wheat, maize and soybean [35]. The land-use types of cultivated land
in the study area mainly include paddy fields, dry land and nurseries (Figure 1c).
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2.2. Hyperspectral Satellite Data Acquisition and Preprocessing

The hyperspectral satellite image used in this study (Figure 2a) was acquired by the
AHSI of ZY1-02D on October 22, 2020. The detailed parameters of AHSI/ZY1-02D data are
shown in Table 1. The spectrum of AHSI ranges from 0.4 to 2.5 µm with 166 bands. The
spectral resolution of the 76 bands in the visible and near-infrared (VNIR) region is 10 nm,
whereas the spectral resolution of the 90 bands in the shortwave infrared (SWIR) region is
20nm. The swath width of AHSI is 60 km, and the spatial resolution is 30 m.
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Table 1. The parameters of Advanced Hyperspectral Imager (AHSI) data of ZY1-02D satellite.

Spectral range 400–2500 nm

Number of bands 166

Spatial resolution 30 m

Spectral resolution
VNIR 10 nm

SWIR 20 nm

Swath width 60 km

Orbital period 55 days

Radiometric calibration and atmospheric correction (using the MODTRAN radiative
transfer model) were carried out on the L1A data to obtain surface reflectance. Due to the
low spectral response or atmospheric absorption of the sensor, only 130 bands in the spectral
ranges of 464–997 nm, 1022–1106 nm, 1173–1324 nm, 1459–1778 nm and 1963–2468 nm
were used in the study. A Savitzky–Golay filter [36] (the number of points on the left and
right sides of the filter core center point was 3, the order of the derivative was set to 0, and
the degree of smoothing polynomial was 1) was used to remove noise and smooth the
spectrum, followed by orthorectification. Then the images were seamlessly mosaicked and
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cropped to obtain the preprocessed reflectance image of the whole Shuyang County. After
this, we generated a binary map of cultivated and non-cultivated land of the study area
according to the ground survey data. Finally, we masked the reflectance image with the
binary map, and only the cultivated land area was kept for subsequent experiments. All the
images were co-registered and rectified to the world geodetic system (WGS) 1984 datum.

Shuyang County was in the dry season when the satellite images acquired. The bare
soil area in the image is mainly the soil that has just been plowed after the maize harvest,
and the vegetation-covered area includes rice crops and tree seedlings. At the imaging
time, the vegetation was in the growing season. The spectra of vegetation pixels have
the typical vegetation spectral absorption characteristics (such as the red edge and green
peak). Firstly, the training samples of bare soil and vegetation-covered areas were selected
based on the comparison between pixel spectra and the standard spectral library (such as
the USGS spectral library), in addition to the visual interpretation of the high-resolution
satellite images (Gaofen-1 and Gaofen-2). Subsequently, the red edge normalized difference
vegetation index (RENDVI) [37,38] was calculated based on the reflectance image of the
whole study area. The classification accuracy of 96.59% was calculated using 88 randomly
selected test samples. It can be seen from Figure 2c that the bare soil area was mainly
distributed in the south, whereas the vegetation-covered area was distributed in the north.

2.3. Ground Sampling and Soil Measurements

In July 2020, 92 surface soil samples (0–15 cm) were collected through a random
sampling scheme (the minimum distance between the sampling points was set as 2 km).
At each sampling point (red crosses in Figures 1 and 2), five soil samples were collected in
a circular area with a diameter of 10 m using the five-point method (Figure 2b), and the
five samples were then mixed into one composite sample [39]. A one-kilogram composite
sample of each spot was taken, dried indoors, and passed through a 2 mm sieve to remove
gravel and plant residues. Then, the SOC content of the samples was determined in the
fine fraction by the potassium dichromate-volumetric method [40]. Finally, the SOMC was
obtained by multiplying a transformation coefficient of 1.724 (Van Bemmelen factor) to
the SOC content [41]. According to Figure 2c, 92 sampling points were divided into two
categories, with 38 sampling points in the bare soil area and 54 sampling points in the
vegetation-covered area.

2.4. Methods
2.4.1. Research Process

The flow chart of this research is shown in Figure 3. The whole process can be
divided into three main steps: (1) obtaining SOMC and reflectance spectra of soil samples,
(2) constructing the optimal SIs, and (3) evaluating the application effect of the optimal SIs.
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2.4.2. Construction of the Optimal SIs

Considering that the reflectance of some wavelengths is not sensitive to SOMC, spectral
transformations are implemented on the original reflectance (OR). The spectral transforma-
tions can enhance the detailed information of the spectrum and help to extract the spectral
features of SOM [39,42]. Before the transformation, low-quality bands are removed to avoid
more noise and uncertainty. It should be noted that image spectroscopy is a powerful tool
for estimating the spatial distribution of SOMC. In addition to obtain spectral information,
it can also observe continuous spatial distribution information [43,44]. Therefore, the im-
pact of each operation on the image quality needs to be considered in the construction of
SIs. It is necessary to ensure that surface reflectance images and the optimal SIs do not lose
the ability to intuitively express surface information. In this study, the images with better
quality were those without noticeable mosaic lines, stripe noise and other phenomena that
blur the actual feature information in terms of visual effects.

In Table 2, the formulas of different spectral transformations are listed. We calculated
the correlations between SOMC and the reflectance spectra of different spectral transfor-
mations (including OR). Then, we analyzed the distribution of the correlation between
different spectra and SOMC, and checked the quality of the transformed reflectance image.
The spectra with higher correlations and better image quality were selected to calculate
SIs. Next, further statistical analyses were conducted on all index formulas, and finally, we
selected four index formulas, as shown in Table 3. The correlation between each type of
spectral index (SI) and SOMC was analyzed, and the indices with higher correlation and
better image quality were chosen as the optimal SIs.
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Table 2. The spectral transformations involved in this research 1.

Type Expression

Original reflectance (OR) R
Reciprocal reflectance (RR) 1/R

Square root reflectance (SRR)
√

R
First-order differential reflectance (FDR) R′λi =

1
2 ×

( Rλi+1−Rλi
λi+1−λi

+
Rλi−Rλi−1

λi−λi−1

)
First-order differential of reciprocal reflectance (RFDR) (

1/Rλi

)′
= 1

2 ×
(
(1/Rλi+1 )−(1/Rλi )

λi+1−λi
+

(1/Rλi )−(1/Rλi−1 )
λi−λi−1

)
First-order differential of square root reflectance (SRFDR) (√

Rλi

)′
= 1

2 ×
(√

Rλi+1−
√

Rλi
λi+1−λi

+

√
Rλi−
√

Rλi−1

λi−λi−1

)
Second-order differential reflectance (SDR) R′′ λi =

1
2 ×

(
R′λi+1

−R′λi
λi+1−λi

+
R′λi
−R′λi−1

λi−λi−1

)
1 i−1 and i+1 denote the former and latter band of band i, λ is the wavelength.

Table 3. The construction formulas of spectral indices (SIs) 1.

SIs Expression

Difference index (DI) p− q
Ratio index (RI) p

q
Normalized difference index (NDI) p−q

p+q
Square root index of difference (DSI)

√
p− q

1 p and q are the transformed spectra values corresponding to any two bands and p 6= q.

Pearson’s correlation coefficient (ρ) was adopted to determine the correlation between
two variables in the correlation analysis. Its formula is as follows:

• ρX,Y =
cov(X, Y)

σXσY
=

E((X− µX)(Y− µY))

σXσY
, (1)

where σX , σY are the standard deviations of the X and Y arrays, respectively; µX , µY are the
mean values of X, Y, respectively.

2.4.3. Application Assessment of the Optimal SIs

In order to evaluate the ability of the optimal SIs to characterize SOMC, we analyzed
the application performance from two aspects. One compares the optimal SIs with the
traditional SOM indices. In bare soil and vegetation-covered areas, we selected an optimal
SI with the highest correlation. We calculated the correlation between other traditional
indices and SOMC for comparison, and the bases for the selection of traditional indices
are listed in Table 4. The linear regression (LR) model describing the relationship between
each index and SOMC was established individually, and the corresponding determination
coefficient (R2) was calculated to evaluate the performance of each index. In addition, the
LR models of the optimal SIs here were also applied to obtain the inversion map of SOMC
for recognition of SOMC levels.

The other utilizes the optimal SIs to construct the prediction models of SOMC to
evaluate their application performance. All the optimal SIs were selected to construct the
corresponding model in the bare soil and vegetation-covered areas. Considering the data
redundancy caused by the high correlation between indices, principal component analysis
(PCA) was adopted for dimensionality reduction. PCA linearly transforms predictors
to remove redundant dimensions, and generates a new set of variables called principal
components [45,46].

In terms of the inversion model, SVM and tree ensembles (TE) show good performance
in soil attributes’ estimation by satellite remote sensing. George et al. [47] used different
hyperspectral indices generated by EO-1 Hyperion data and the SVM method to draw
various soil salinity severity levels in the Mathura region of the Indo-Gangetic plain of India,
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and the overall classification accuracy was 78.13%. Based on GF-5 data, Meng et al. [48]
used the TE model to predict SOMC in Mingshui County, Heilongjiang Province, China,
and the root mean square error of the model was 3.36 g/kg. In this study, six SVM models
(linear SVM, quadratic SVM, cubic SVM, fine Gaussian SVM, medium Gaussian SVM,
coarse Gaussian SVM) and two TE models (boosted trees, bagged trees) were compared for
SOMC estimation in bare soil and vegetation-covered areas. In order to avoid overfitting,
the K-fold cross-validation method was used to verify the modeling accuracy. For the
bare soil and vegetation-covered areas, the model with the highest accuracy of each was
applied to the image of the corresponding area. The inversion results of bare soil and
vegetation-covered areas were merged to obtain the SOMC distribution of the whole area.

Furthermore, we adopted the R2, the root mean square error (RMSE), and the residual
prediction deviation (RPD) to evaluate the SOMC characterization ability of the inversion
model constructed by the optimal SIs. In general, a well-established model usually has a
high R2 and RPD, and a low RMSE [23,39]. According to the research of Yuan et al. [49],
the RPD values are divided into five levels to interpret the model performance, RPD < 1.4
(unacceptable), 1.4 ≤ RPD < 1.8 (fair), 1.8 ≤ RPD < 2.0 (good), 2.0 ≤ RPD < 2.5 (very good),
and RPD ≥ 2.5 (excellent). Their calculation formulas are as follows:

• R2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − y)2 , (2)

• RMSE =

√
∑n

i=1(yi − ŷi)
2

n
, (3)

• RPD =

√
∑n

i=1(yi − y)2/n

RMSE
, (4)

where yi is the actual value, the y is the mean value of yi, ŷi is the fitted value, and n is the
number of samples.

Table 4. The formulas of the traditional SIs.

Index Type Abbreviation Formula Properties References

Soil SI

SOC1 1
∑700nm

400nm R
SOMC [22]

SOC2 1
(R600nm−R400nm)/(600−400) SOMC [22]

SOC3 1
(R2200nm−R2138nm)/(2200−2138) SOMC [22]

NSMI R1800nm−R2119nm
R1800nm+R2119nm

Soil moisture [50,51]

Vegetation SI

CAI R2000nm+R2200nm
2 − R2100nm Cellulose Absorption [52–54]

NDLI log(1/R1754nm)−log(1/R1680nm)
log(1/R1754nm)+log(1/R1680nm)

Lignin concentration [53,55–57]

MSI R1610nm
R868nm

Leaf water content [58,59]
SATVI R1610nm−R665nm

R1610nm+R665nm
× 2− R2190nm

2 Total vegetation cover [58,60]

3. Results
3.1. Descriptive Statistics of Samples

Table 5 illustrates the statistics of SOMC of soil samples in Shuyang County. The
SOMC exhibits a range from 10.27 to 47.80 g/kg. The mean value and the standard
deviation are 25.17 and 7.88 g/kg, respectively. The moderate coefficient of variation is
31.32%. These samples are further categorized into bare soil and vegetation-covered areas.
The minimum SOMC of samples from both regions are similar, and both are moderate
variations. However, the maximum SOMC in the vegetation-covered area can reach
47.80g/kg, which is much higher than that in the bare soil area. Moreover, the mean of



ISPRS Int. J. Geo-Inf. 2022, 11, 111 9 of 23

SOMC in the vegetation-covered area is about 3.00 g/kg greater than that in the bare
soil area.

Table 5. The statistics of soil organic matter content (SOMC) in Shuyang County.

All Samples Samples in Bare Soil
Areas

Samples in
Vegetation-Covered

Areas

Number of samples 92 38 54
Range (g/kg) 10.27–47.80 10.27–34.40 10.96–47.80
Mean (g/kg) 25.17 23.45 26.36

Standard
deviation(g/kg) 7.88 6.65 8.49

Coefficient of
variation (%) 31.32 28.36 32.22

3.2. Spectral Characteristics of the Pixel Reflectance of the Sample Sites

Based on the processed images, the reflectance spectra of the pixels at 92 sampling
points were extracted. In the bare soil area, it can be seen from Figure 4a that the reflectance
spectrum decreases with the increase in SOMC in the entire 400–2500 nm range. In the
range of 500–600 nm, the slope of the curve decreases with the increase in SOMC. There is
a spectral absorption in the range of 2150–2250 nm. These are consistent with the results of
previous studies. Bartholomeus et al. [22] found that in the 400–700 nm range, there was a
flatter spectral profile at higher SOMC, and Jin et al. [23] found that there was a spectral
absorption at 2200 nm. On the whole, the extracted reflectance spectral curves can clearly
depict the soil spectral variation patterns at different SOMCs.
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In the vegetation-covered area, as shown in Figure 4b, the reflectance spectrum de-
creases with the increase in SOMC in the range of 1100–2500 nm. In previous studies,
Bartholomeus et al. [53] also found that in the range of 2000–2200 nm, with the increase in
SOMC, cellulose also increased, resulting in low reflectance in this spectral region. In gen-
eral, the extracted reflectance spectral curves can well demonstrate the vegetation spectral
variation patterns at different SOMCs.

3.3. Correlation between Transformed Spectra and SOMC

Because complex spectral transformations such as the second-order differential may
introduce more noise into the image [39], these bands need to be removed (as shown in
Table 6). In OR, RR and SRR, most of the bands removed are due to the low spectral
response or atmospheric absorption of the sensor, and the total number of low-quality
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bands is 36. However, after differential transformation, the number of low-quality bands is
significantly increased. Among these, FDR is the least increased. The number of low-quality
bands in SDR reaches 147, increasing the most, and its image quality is relatively poor. The
correlations between SOMC and the transformed spectra are shown in Table 7.

Table 6. The wavelength range and the number of low-quality bands of each transformed spectrum.

Spectral Transformation Type Wavelengths of Bands of Low
Quality (nm) The Number of Bands Removed

OR/RR/SRR
395–456; 1006–1014; 1122–1156;

1341–1442;
1795–1947; 2484–2501

36

FDR

395–559; 585–637; 679; 748–1089;
1122–1156;

1207–1308; 1341–1442; 1475–1526;
1660–1762;

1795–1947; 1981; 2014–2082;
2233–2384; 2484–2501

125

RFDR

395–473; 550–662; 748–757; 774;
791–808; 885; 920;

996–1022; 1122–1156; 1341–1442;
1475–1510; 1762–1947; 1981;

2014–2031; 2132–2250; 2334–2401;
2434–2501

86

SRFDR

395–508; 524–559; 576–637;
748–1089; 1122–1156; 1190–1308;

1341–1442; 1475–1526; 1660–1712;
1762; 1795–1947; 1981; 2014–2082;

2216–2401; 2450–2501

127

SDR

395–456; 473–671; 696–1073; 1106;
1122–1156;

1207–1291; 1341–1442; 1492–1745;
1795–1947; 1998;

2031–2216; 2249–2367; 2434–2501

147

Table 7. Correlation with SOMC after different spectral transformations.

TRs Nb.1
Bare Soil Region Vegetation-Covered Area

Nsb 2 Maximum |ρ| WLsb 3 (nm) Nsb 2 Maximum |ρ| WLsb 3 (nm)

OR 130 0 52 0.558 *** 533–610,
696–1106 (722)

RR 130 0 62 0.573 *** 524–1106 (722)

SRR 130 0 56 0.563 *** 524–636,
696–1106 (722)

FDR 41 3 0.350 * 662, 1459, 1779 6 0.502 ***
687, 696, 1106,

1173, 1190,
132445

RFDR 80 2 0.370 * 2048, 2317 3 0.381 ** 687, 1694, 1745

SRFDR 39 5 0.462 ** 654, 662, 671,
1459, 1779 5 0.477 *** 516, 1106, 1173,

1324, 1745

SDR 19 6 0.493 **
1173, 1190,
1308, 1425,
1762, 1779

4 0.462 *** 1173, 1190,
1762, 1779

1 Nb stands for the number of available bands. 2 Nsb stands for the number of sensitive bands. 3 WLsb stands for
the wavelength of the sensitive band. Value: Wavelength of the maximum correlation coefficient. * Correlation is
significant at 0.05 level. ** Correlation is significant at 0.01 level. *** Correlation is significant at 0.001 level.

In the bare soil area, OR, RR and SRR do not have the bare soil spectra that have
significant correlations with SOMC, whereas differential transformations can obtain some
sensitive bands (|ρ| > 0.320, p < 0.05). The first-order differential transformation on the
basis of OR, RR and SRR can effectively improve the correlation with SOMC. For spectra
after differential transformations of different orders, the results show that the higher the
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order, the higher the correlation with SOMC, indicating the differential transformation
is an effective means to improve the correlation with SOMC for soil spectra. As shown
by the overall results of the different transformations, it can be found that these sensitive
wavelengths are mainly concentrated around 660, 1459 and 1779 nm, which is consistent
with the studies of Jin et al. [23], Wang et al. [39] and Guo et al. [61].

In the vegetation-covered area, OR, RR and SRR can improve the correlation with
SOMC and increase the number of sensitive bands (|ρ| > 0.268, p < 0.05). However,
the first-order differential transformation based on RR and SRR will decrease the correla-
tion with SOMC and reduce the number of sensitive bands. For spectra after differential
transformations of different orders, the results show that the higher the order, the smaller
the correlation with SOMC. It can be seen from the overall results of different transfor-
mations that these sensitive wavelengths are mainly concentrated around 680 nm and
1745–1779 nm, which are consistent with the sensitive wavelengths obtained in the studies
of Bartholomeus et al. [53], Zhang et al. [26] and Fourty et al. [55]. Considering the correla-
tion with SOMC and the image quality, OR, RR, FDR and RFDR were chosen to calculate
the SIs.

3.4. Correlation between SIs and SOMC

Sixteen types of SIs were calculated by four transformed spectra (OR, RR, FDR and
RFDR) and four index formulas (DI, RI, NDI and DSI). All available bands of the trans-
formed spectra were substituted into the calculation. Then, their correlations with the
SOMC of soil samples in bare soil and vegetation-covered areas were analyzed. The
correlation coefficient matrix diagrams are shown in Figures 5 and 6. In addition, the
maximum correlation coefficient (|ρ|max) between each type of SI and SOMC in bare soil
and vegetation-covered areas is listed in Tables 8 and 9. Considering the performance of
various types of SIs in the bare soil area and vegetation-covered area, |ρ| greater than
0.600 was utilized as the threshold to obtain the optimal SIs.

Table 8. The maximum correlation index of different types of SIs in the bare soil area.

Type Number of SIs with |ρ|>0.6 |ρ|max Index Formula Corresponding to |ρ|max

OR

DI 1 0.612 *** R1459nm − R2014nm
RI 6 0.627 *** R654nm/R679nm

NDI 5 0.626 *** (R654nm − R679nm)/(R654nm + R679nm)
DSI 0 0.548 *** √

R1543nm − R2216nm

RR

DI 3 0.614 *** 1/R1493nm − 1/R2014nm
RI 6 0.623 *** (1/R679nm)/(1/R654nm)

NDI 5 0.626 *** 1/R654nm−1/R679nm
1/R654nm+1/R679nm

DSI 0 0.426 ** √
1/R559nm − 1/R671nm

FDR

DI 0 0.518 *** R′662nm − R′1779nm
RI 0 0.488 ** R′1190nm/R′2216nm

NDI 1 0.603 *** (
R′662nm − R′2216nm

)
/
(

R′662nm + R′2216nm
)

DSI 0 0.555 ***
√

R′662nm − R′1779nm

RFDR

DI 0 0.488 ** (1/R2048nm)
′ − (1/R2081nm)

′

RI 0 0.587 *** (1/R765nm)
′ /(1/R1291nm)

′

NDI 2 0.625 *** (1/R1106nm)′−(1/R2048nm)
′

(1/R1106nm)′+(1/R2048nm)
′

DSI 0 0.494 **
√
(1/R1728nm)

′ − (1/R2301nm)
′

** Correlation is significant at 0.01 level. *** Correlation is significant at 0.001 level.
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Table 9. The maximum correlation index of different types of SIs in the vegetation-covered area.

Type Number of SIs with |ρ|>0.6 |ρ|max Index Formula Corresponding to |ρ|max

OR

DI 0 0.576 *** R722nm − R2468nm
RI 19 0.604 *** R525nm/R2267nm

NDI 3 0.601 *** (R525nm − R2250nm)/(R525nm + R2250nm)
DSI 0 0.569 *** √

R722nm − R2468nm

RR

DI 84 0.634 *** 1/R722nm − 1/R1291nm
RI 0 0.587 *** (1/R525nm)/(1/R1510nm)

NDI 3 0.601 *** 1/R525nm−1/R2250nm
1/R525nm+1/R2250nm

DSI 83 0.639 *** √
1/R551nm − 1/R1998nm

FDR

DI 0 0.575 *** R′671nm − R′1173nm
RI 0 0.490 ** R′1173nm/R′1627nm

NDI 0 0.489 *** (
R′705nm − R′1173nm

)
/
(

R′705nm + R′1173nm
)

DSI 0 0.581 ***
√

R′671nm − R′1173nm

RFDR

DI 0 0.421 ** (1/R1745nm)
′ − (1/R2301nm)

′

RI 0 0.393 ** (1/R868nm)
′ /(1/R1577nm)

′

NDI 0 0.468 *** (1/R688nm)′−(1/R1745nm)
′

(1/R688nm)′+(1/R1745nm)
′

DSI 0 0.348 **
√
(1/R1241nm)

′ − (1/R1627nm)
′

** Correlation is significant at 0.01 level. *** Correlation is significant at 0.001 level.
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In the bare soil area, it can be seen from Figure 5 and Table 8 that for the same types
of spectral transformation, NDI can maximize the correlation between SOMC and three
types of transformed spectra (RR, FDR and RFDR). In addition, RI can also achieve a high
correlation between SOMC and three types of transformed spectra (OR, RR and RFDR).
In four index formulas, DSI has the lowest correlation with SOMC. Among the four types
of SIs constructed based on RR, there are 14 SIs with a correlation greater than 0.6 with
SOMC, followed by 12 SIs based on OR. For the same index formula, the indices calculated
from OR and RR generally have higher correlations with SOMC than FDR and RFDR. In
the bare soil area, OR-RI has the highest correlation with SOMC at the combination of 654
and 679 nm (OR-RI(654,679)), with |ρ| as high as 0.627.

In the vegetation-covered area, it can be seen from Figure 6 and Table 9 that for the
same types of spectral transformation, DSI can obtain the highest correlation between
SOMC and two types of transformed spectra (RR and FDR). In addition, DI also attains
a high correlation between SOMC and three types of transformed spectra (RR, FDR and
RFDR). Among the four types of SIs constructed based on RR, the number of SIs with a
correlation greater than 0.6 with SOMC is as many as 180, far more than other spectra. For
the same index formula, the indices calculated from OR and RR have significantly higher
correlations with SOMC than FDR and RFDR. In the vegetation-covered area, RR-DSI has
the highest correlation with SOMC at the combination of 551 and 1998 nm (RR-DSI(551,1998)),
with |ρ| as high as 0.639.

Because the values of OR-NDI and RR-NDI are opposite to each other, and the wave-
lengths used are the same, it is sufficient to choose one of them. When modeling, the
optimal SIs obtained by OR-NDI were adopted. Therefore, there are 24 optimal SIs for the
bare soil area and 189 for the vegetation-covered area.
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3.5. Application of the Optimal SIs
3.5.1. Characterization of SOMC in Soil Samples

According to Tables 8 and 9, OR-RI(654,679) and RR-DSI(551,1998) have the highest corre-
lation with SOMC in bare soil and vegetation-covered areas, respectively (the letter ’V’ is
added to RR-DSI(551,1998) as a prefix (V-RR-DSI(551,1998)), which represents the optimal SI
in the vegetation-covered area). These two indices were selected to construct LR models
and compare them with other traditional indices (Table 4). The correlations of SOMC and
different SIs are shown in Figure 7.
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In the bare soil area, the R2 of the model constructed by OR-RI(654,679) is 0.398, much
larger than the R2 of the models constructed by other indices. In the vegetation-covered
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area, the R2 of the model constructed by V-RR-DSI(551,1998) is 0.408, whereas the other
indices are all less than 0.2. In general, the OR-RI(654,679) and V-RR-DSI(551,1998) proposed in
this study well characterize SOMC in bare soil and vegetation-covered areas, respectively.

3.5.2. Recognition of SOMC Levels in Soil Samples

According to the linear relations shown in Figure 7, SOMC in the bare soil area was
calculated by OR-RI(654,679), whereas SOMC in the vegetation-covered area was calculated
by V-RR-DSI(551,1998). After the SOMCs of bare soil and vegetation-covered areas were
merged, SOMC of the whole cultivated land in Shuyang County was obtained. Based on
the numerical distribution of SOMC, the calculated and measured SOMC was similarly
divided into five levels by the equal interval method, as shown in Figure 8.
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On the whole, the SOMC levels in the cultivated area of Shuyang County are consistent
with the trend shown by SOMC of the soil samples (Figure 8a). They all display that the
spatial distribution of the SOMC level in Shuyang County is high in the northeast, low in
the northwest and intermediate in the south. The areas with the highest SOMC level are
concentrated in vegetation-covered areas in the northeast, where most areas exceed 30 g/kg.
The lowest SOMC level is found in bare soil areas in the northwest, mostly below 15 g/kg.
The detailed image (Figure 8b) shows that the results calculated using OR-RI(654,679) and
V-RR-DSI(551,1998) can well recognize soil samples with different SOMC levels.

3.5.3. Estimation of SOMC in Soil Samples

As mentioned in Section 3.4, 24 soil SIs and 189 vegetation SIs were employed in the
prediction model. The modeling data of bare soil and vegetation-covered areas are divided
into 10 folds for cross-validation, respectively. PCA with a 99.99% explanatory variance
rate was used for dimensionality reduction and a new set of variables was generated for
modeling. Among the eight inversion models introduced in Section 2.4.3, the linear SVM
and least-squares boosting tree algorithms obtained the highest prediction accuracy in bare
soil and vegetation-covered areas, respectively.

The prediction accuracy of SOMC based on the soil-vegetation combined prediction
is shown in Figure 9. Overall, the predicted results have a good linear relationship with
the SOMC of samples. The R2, RMSE and RPD of the soil-vegetation combined prediction
results are 0.775, 3.72 g/kg and 2.12, respectively, suggesting the model is very good.
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Specifically, the RMSE of bare soil and vegetation-covered samples is 4.59 and 2.96 g/kg,
respectively. Most scatters are very close to the 1:1 line, especially in the vegetation-covered
area. About 88.04% of the predicted results are distributed within the expected error (80%
precision lines). It can be seen that the optimal SIs proposed in this study have a great
potential in predicting SOMC in both bare soil and vegetation-covered areas.
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4. Discussion
4.1. Image Quality of Transformed Spectra and SIs

Previous studies have shown that spectral transformation and index calculation of
the original reflectance spectrum can improve the correlation between the spectrum and
SOMC. For example, Wei et al. [7] improved the correlation between soil reflectance and
SOMC by integer-order differential spectral transformations. This is also confirmed by the
results of this study. As shown in Table 7, the OR of soil has no significantly correlated
bands with SOMC, whereas the correlation coefficient between SDR and SOMC is greater
than 0.450, which is significant at the 0.01 level.

However, the satellite imaging process is often affected by atmospheric absorption,
sensor instability and other factors [62], which inevitably leads to a certain degree of noise
contamination in the data (such as Gaussian noise, stripe noise [63], impulse noise, deadline
noise and mixed noise) [64]. With the increase in the complexity of spectral transformation
and the number of bands involved in the calculation, the uncertainty of image quality also
increases. In this study, the image quality after single-band transformation, such as the
reciprocal and square root, is better than after first-order differentiation. As the order of the
differential transformation increases, the image quality decreases. This is mainly due to the
increase in the bands involved in the calculation (as shown in Figure 10). Similar results
have been reported in previous studies. For example, Wang et al. [39] found that exploiting
the image spectral information by higher-order fractional derivatives was disadvantageous.

Therefore, in this study, in addition to calculating the correlation between reflectance
and SOMC, the image quality of transformed reflectance was also taken into account
during the construction of SIs. The bands with heavy noise were removed. In order to
reduce the influence of noise on prediction results, simple SIs based on single-band spectral
transformation should be used first.

In addition, this study was mainly based on the autumn AHSI/ZY1-02D data of
Shuyang County. The optimal SIs obtained are suitable for the images of bare soil types of
cambisols, regosols and luvisols, and the images of the rice-growing season in the Yangtze
River Delta. Therefore, the application performance of the optimal SIs in different regions,
vegetation growing seasons and soil types data remains to be further studied.
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4.2. Advantages of Constructing SIs Separately in Bare Soil Area and Vegetation-Covered Area

Bare soil and vegetation co-exist in most cultivated land. However, the spectral
response mechanisms of the two are different. Therefore, the SIs based on bare soil and
vegetation-covered areas were constructed separately. In this study, the sensitive spectral
wavelengths of SOM in the bare soil area are concentrated at 550–600 nm, 650–700 nm,
1100–1200 nm, 1450–1500 nm, around 2000 nm, and 2200–2300 nm (Figure 5), which are
the absorption positions of soil parameters such as soil moisture, iron and SOM. These
sensitive wavelengths can also explain the interaction between SOM and soil moisture
and iron oxides to a certain extent. In the vegetation-covered area, the distributions of
sensitive wavelengths are 500–600 nm, 700–750 nm, 1100–1300 nm, and 1900–2350 nm
(Figure 6). The absorption at 1120–1200 nm and 1940–2100 nm is mainly caused by lignin,
cellulose, moisture and other parameters of plants. These findings are consistent with the
studies of Hong et al. [65] and Lu et al. [66]. The direct mechanism of SOM on the spectrum
of bare soil pixels relies on the stretching and vibration of chemical bonds [19]. In the
vegetation-covered area, SOM affects the vegetation growth, cellulose, lignin and other
physicochemical parameters, and further affects the vegetation canopy spectrum. In bare
soil and vegetation-covered areas, the distribution of sensitive wavelengths to SOMC is
quite different, indicating the necessity of constructing SIs separately.

The |ρ| of the optimal SI with the highest correlation obtained in the bare soil area
is 0.627 (OR-RI(654,679)), and that in the vegetation area is 0.639 (V-RR-DSI(551,1998)). For
comparison, index construction and correlation analysis were also conducted for all sample
points together. Figure 11 illustrates the correlation between SOMC and SIs constructed by
different combinations of spectral transformations and index formulas. It can be seen that
the highest correlation coefficient is 0.501 (p < 0.001), which is lower than the correlation
coefficient of the indices constructed separately, revealing the advantage of constructing
SIs separately.
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4.3. The Impacts of Soil Types and Cultivated Land-Use Type on SOMC

The soil types in the cultivated land of the study area are shown in Figure 1b, and are
mainly cambisols, regosols and luvisols. According to the Harmonized World Soil Database
(version 1.1) provided by FAO, there was no significant difference in topsoil organic carbon
content among these three types of soil. Based on the results of the distribution of SOMC
levels obtained by OR-RI(654,679) and V-RR-DSI(551,1998) (Figure 8a), the statistical results of
SOMC of different soil types are shown in Table 10. The average values of the three soil
types are 24.39, 24.39 and 24.05 g/kg, respectively, and the difference among them is very
small, which is consistent with previous studies [33].

Table 10. The statistics of SOMC in different soil types.

Soil Type Area Proportion
(%)

The Minimum
Value of SOMC

(g/kg)

The Maximum
Value of SOMC

(g/kg)

Average SOMC
(g/kg)

Cambisols 70.28 7.02*10−4 49.42 24.39
Regosols 9.38 0.03 45.51 24.39
Luvisols 5.67 2.61*10−3 45.44 24.05

Other soil
types 1 14.68 7.16*10−3 48.75 23.41

1 Other soil types include greyzems, anthrosols, gleysols, fluvisols, nitisols and arenosols.

The land-use types of cultivated land in the study area mainly include paddy fields,
dry land and nurseries (Figure 1c). Based on the results of the distribution of SOMC levels
obtained by OR-RI(654,679) and V-RR-DSI(551,1998) (Figure 8a), the statistical results of SOMC
of different cultivated land-use types are shown in Table 11. Figure 12a–c show SOMC
distribution in the paddy field, dry land and nurseries, respectively.

Table 11. The statistics of SOMC in different land-use types.

Land-Use Type The Minimum Value
of SOMC (g/kg)

The Maximum Value
of SOMC (g/kg)

Average SOMC
(g/kg)

Paddy field 1.00*10−3 49.42 25.34
Dry land 0.02 48.75 23.23
Nursery 0.11 45.43 21.73

All 1.00*10−3 49.42 24.23

It can be seen from Figure 12 that the SOMC values of the three land types are all
normally distributed. Overall, SOMC is the highest in paddy fields, followed by the
dryland, and is lower in nurseries. In the paddy field, the SOMC is most concentrated
at 25–26 g/kg. In the dryland, SOMC is most concentrated at 23–24 g/kg, whereas the
SOMC in the nursery is most concentrated at 21–22 g/kg. The maximum values of SOMC
distribution in the paddy field, dry land, and nursery are 49.42, 48.75, 45.43 g/kg, and the
average values are 25.34, 23.23, 21.73 g/kg, respectively. There have been similar reports
in previous studies. The studies of Bird et al. [67] and Huang et al. [68] showed that a low
mineralization rate and the high humification coefficient of fresh organic matters in flooded
soils resulted in SOC content in paddy soil that was 11–56% higher than that in dry land
soil. Gao et al. [69] found that transforming paddy fields into nurseries would lead to a
decrease in SOC.

West et al. [70] and Wiesmeier et al. [71] mentioned that different land-use types would
significantly affect the carbon storage capacity of the soil and the distribution of SOMC,
which is also confirmed in this study. The results also show that the SIs proposed in this
study can effectively indicate the spatial distribution of SOMC in Shuyang County.
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5. Conclusions

The AHSI data of the newly launched ZY1-02D satellite provides an important data
source for soil quality monitoring. To quickly achieve an SOMC assessment on a large scale,
in this study, the SOM SIs suitable for this satellite were constructed. The optimal SIs that
are the most sensitive to SOMC in bare soil and vegetation-covered areas were analyzed.
Moreover, the application performance of these indices was evaluated. The conclusions
obtained are as follows:

1. In the bare soil area, the SIs constructed based on OR and RR have higher correlations
with SOMC. For the same transformed spectrum, the SIs calculated by RI and NDI
have the highest correlations with SOMC, followed by DI. Among all the constructed
SIs, OR-RI(654,679) has the highest correlation with SOMC, and the correlation coef-
ficient is −0.627. In the vegetation-covered area, the correlations between SOMC
and the SIs based on RR are higher than those of other transformed spectra. Among
the different index formulas, the correlations between the SIs calculated by DSI and
DI and SOMC are higher than those of RI and NDI. The correlation coefficient be-
tween V-RR-DSI(551,1998) and SOMC is −0.639, which is the highest among all the
calculated SIs.
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2. The results show that the optimal SIs can be used to present the spatial distribution
trend of SOMC and recognize SOMC levels. Based on the optimal SIs, the SOMC
predicted by the model has a good linear relationship with the actual SOMC of
samples. The R2, RMSE and RPD of the soil-vegetation combined prediction results
are 0.775, 3.72 g/kg and 2.12, respectively.

Overall, the optimal SIs constructed in this study are stable, simple to calculate, and
can be used as essential parameters for SOMC estimation, showing great potential in SOMC
prediction using AHSI/ZY1-02D data. In addition, the application performances of the
optimal SIs in different regions, vegetation growing seasons and soil types remain to be
further studied.
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