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Abstract: Satellite retrieval can offer global soil moisture information, such as Advanced Microwave
Scanning Radiometer-Earth Observing System (AMSR-E) data. AMSR-E has been used to provide
soil moisture all over the world, with a coarse resolution of 25 km × 25 km. The coarse resolution of
the soil moisture dataset often hinders its use in local or regional research. This work proposes a new
framework based on the random forest (RF) model while using five auxiliary data to downscale the
AMSR-E soil moisture data over North China. The downscaled results with a 1 km spatial resolution
are verified against in situ measurements. Compared with AMSR-E data, the correlation coefficient
of the downscaled data is increased by 0.17, and the root mean squared error, mean absolute error,
and unbiased root mean square error are reduced by 0.02, 0.01, and 0.03 m3/m3, respectively. In
addition, the comparison results with Multiple Linear Regression and Support Vector Regression
downscaled data show that the proposed method significantly outperforms the other two methods.
The feasibility of our model is well supported by the importance analysis and leave-one-out analysis.
Our study, which combines RF with spatiotemporal search algorithms and efficient auxiliary data,
may provide insights into soil moisture downscaling in large areas with various surface characteristics
and climatic conditions.

Keywords: downscaling; soil moisture; AMSR-E; random forest; North China

1. Introduction

Soil moisture plays a considerable part in the process of global water and energy
balance [1], affecting many fields, such as hydrology, meteorology, and agriculture. The
characteristics of soil moisture change can reflect many physical and chemical properties
of soil, and soil moisture also has a significant impact on terrestrial ecosystems. Nowa-
days, soil moisture monitoring has been widely used in drought monitoring [2,3], water
resources assessment [4,5], crop yield estimation [6], weather forecasting, and hydrological
simulation [7,8]. Therefore, obtaining accurate and high-resolution soil moisture data is of
great significance for ecosystem balance research and coping with climate change [9,10].

In the past few years, drought disasters in North China have been increasing and
have become one of the most serious natural disasters. The rapid growth of industrial,
irrigation, and domestic water consumption has led to a sharp increase in water resource
consumption, which in turn has led to more serious droughts in northern China [11]. It is
significantly urgent to improve our understanding of the spatial and temporal variations
of soil moisture and quantify the drought situation. However, research on soil moisture
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downscaling in northern China is inadequate. Therefore, it is necessary to establish a set of
regional soil moisture data with high spatial resolution in North China.

In recent years, the development of remote sensing technology has provided conve-
nience for the acquisition of soil moisture [12]. At the same time, microwave remote sensor
is a reliable method to estimate soil moisture (SM) [13], as the microwave is very sensitive to
SM changes, less affected by different weather conditions [14], and can realize all-weather
and all-coverage Earth observations. At present, a variety of satellite soil moisture prod-
ucts are available, such as Advanced Microwave Scanning Radiometer-Earth Observing
System (AMSR-E) [15], Soil Moisture Active Passive (SMAP) [16], and Soil Moisture and
Ocean Salinity (SMOS) [17]. The SM data provided by these products is efficient in some
large-scale applications [18]. However, for small-scale research, the spatial resolution of
these products is too coarse, basically tens of kilometers [19,20], which is not adequate for
capturing the spatial heterogeneity of SM. Therefore, these products are very limited in
some regional- and local-scale research [21]. Meanwhile, the 1-km spatial resolution has
become a common high resolution in many SM downscaling studies [22].

To solve the problem of the rough spatial resolution of satellite remote sensing data,
plenty of methods have been presented to improve their resolution. At present, the re-
search focused on downscaling methods and applications can be roughly divided into the
following three categories: (1) model-based methods [23], (2) methods based on multi-
source satellite remote sensing data fusion [24], and (3) methods using geo-information
data [22,25]. Each category can be subdivided into several categories according to specific
conditions. Model-based methods are divided into statistical models [26] and land sur-
face models. Based on the land surface models, there are deterministic downscaling [27],
statistical downscaling [28], and data assimilation [29]. No matter what kind of model-
based method, we need to consider whether the model can be applied to a wider range
of research. Furthermore, the model needs a lot of input parameter data, and obtaining
this data is difficult, which makes the application have many limitations. The methods
based on multi-source satellite data fusion are divided into two methods according to
the different fusion data: the fusion method of active and passive microwave data [30]
and the fusion method of optical/thermal and microwave data [31]. Earlier scholars have
made a lot of attempts and found that the combination of active and passive microwave
remote sensing data can obtain more accurate results. Nevertheless, the active microwave
data is expensive and needs detailed terrain, vegetation, and other information, so it is a
challenge to use and popularize it on a large scale [30]. The downscaling methods using
geo-information data are mainly based on the spatial distribution relationship between
soil moisture and other land surface variables, such as terrain, soil attributes, and vegeta-
tion characteristics [32]. On this basis, the geo-statistical or fractal interpolation model is
constructed. In this method, terrain is often used as an auxiliary information source [33].
This method can infer fine-scale changes in soil moisture from the relationship between soil
moisture and available auxiliary variables. However, when establishing geo-statistical or
analytical interpolation models, a large number of in situ observations need to be used. At
the same time, these models have obvious regional characteristics, which obviously limit
their applicability [25].

With the improvement of computer performance and the development of artificial
intelligence technology, machine learning methods have been introduced into the study
of soil moisture downscaling. Machine learning is a kind of data analysis method, which
enables computers to learn from data intelligently to find hidden patterns of phenomena [1].
Many studies have shown that compared with other machine learning methods, the random
forest (RF) algorithm is more suitable for satellite product downscaling [34,35]. Since the RF
model can describe nonlinear correlation and adopt the ensemble method, it becomes more
flexible through randomization. At the same time, this method does not require many in
situ data to participate in the model. Although the RF model requires some high-resolution
auxiliary data, these data are relatively easy to obtain. However, the application of RF in
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large areas is insufficient, and RF is also very sensitive to surface characteristics and driving
parameters, especially in arid and semi-arid areas.

Based on the above issues, this study explores how the random forest method works
under large-scale and complex conditions combined with effective parameters. The purpose
of our study was to propose 1 efficient method to downscale the soil moisture data of
AMSR-E over North China from 25 to 1 km. Our study combines RF with spatiotemporal
search algorithms and the effective auxiliary data, which is easy to obtain and relate to soil
moisture. We evaluated the downscaled results with in situ observations. The proposed
downscaling method was furthermore compared with other commonly used downscaling
methods and several methods of earlier studies. Section 2 details the methods and data
used in this paper. The results of the study are described in Section 3. The discussion part is
given in Section 4. The discussion section provides the importance analysis of explanatory
factors, leave-one-out analysis, comparison of different methods, and limitations of the
study. The conclusion is given at the end of the article (Section 5).

2. Materials and Methods
2.1. Study Area

Figure 1 shows the elevation and dry humidity classification map of the study area. The
location of the selected ground stations in this study is also shown in the figure. The study
area is North China, between longitude 32◦ N and 42◦ N and latitude 93◦ E and 123◦ E, with
an area of about 14,900 km2. It includes Shandong, Hebei, Ningxia, Gansu, Shanxi, Shaanxi,
Beijing, and Tianjin. The climate zone in this region has a large span, including temperate
monsoon climate, subtropical monsoon climate, plateau mountain climate, temperate
continental climate, warm temperate semi-humid and semi-arid monsoon climate, etc. The
land use types are complex, with about 18 land use types. The altitude of this area ranges
from −2 to 5516 m.

Figure 1. (a) Elevation and (b) dry humidity classification map of the study area. The black spots are
the locations of the selected ground stations in this study.
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2.2. Study Data

The spatial downscaling process of soil moisture data based on passive microwave
satellite remote sensing data must be supported by the image information of relevant
surface features. The image information is provided by the data with higher spatial
resolution. In this study, the Moderate Resolution Imaging Spectroradiometer (MODIS),
DEM, and precipitation data with higher spatial resolution were used to support the spatial
downscaling based on AMSR-E data. At the same time, the ground station data was
selected to verify the results. The data used in this study, its specific description, and spatial
resolution are shown in Table 1.

Table 1. List of remote sensing soil moisture data and auxiliary data used in this study.

Datasets Description Spatiotemporal
Resolution

LPRM-AMSR_E Soil moisture (SM) 25 km/daily
MOD11A1 Land surface temperature (LST) 1 km/daily
MOD13A2 Normalized difference vegetation index (NDVI) 1 km/16 d
MCD43C3 Surface albedo (ALB) 0.05◦/daily
SRTM DEM Elevation 90 m/-
prec_ITPCAS-CMFD Precipitation 0.1◦/daily

2.2.1. AMSR-E Soil Moisture Data

AMSR-E was developed by the National Aeronautics and Space Administration
(NASA) and the Japan Aerospace Exploration Agency (JAXA). AMSR-E was carried on
the Aqua polar orbit of NASA Earth Observation System (EOS) and launched in May 2002.
AMSR-E measures the brightness temperature of vertical and horizontal polarization at 6
frequencies of 6.9, 10.7, 18.7, 23.8, 36.5, and 89.0 GHz.

In this study, level 3 soil moisture data of AMSR-E in 2009 were selected and devel-
oped based on the Land Parameter Retrieval Model (LPRM), with a spatial resolution
of 25 km [36]. The product was available free of charge from NASA’s official website
(http://search.earthdata.nasa.uov/search, 19 November 2020).

2.2.2. MODIS Data

Vegetation index, Albedo, and land surface temperature have been extensively used
in the downscaling of remote sensing soil moisture data in many studies [37,38]. These
parameters are available from Moderate Resolution Imaging Spectroradiometer (MODIS).
MODIS on Terra and Aqua satellites is a large space remote sensing instrument developed
by NASA. At present, it has been widely used for monitoring various environments,
including ocean, land surface, and so on. In this study, three MODIS products were used,
including the normalized difference vegetation index (NDVI), land surface temperature
(LST), and Albedo.

LST was obtained from MODIS daily product MOD11A1, and NDVI was acquired
from 16 day vegetation index product MOD13A2. The spatial resolution of both is 1 km.
The Albedo was obtained from the daily Albedo product MCD43C3 with a resolution of
0.05◦. These data were acquired from the Land Process Distributed Active Archive Center
(LP DAAC) (https://lpdaac.usgs.gov/, 30 April 2021).

2.2.3. DEM

In many studies of soil moisture downscaling, elevation is considered to be one of the
most effective topographical features [39,40]. Therefore, we used this variable to downscale
the AMSR-E SM data in our proposed approach.

Digital elevation model (DEM) data was acquired from NASA’s Space Shuttle Radar
Topography Mission (SRTM). The data has a spatial resolution of 90 m and is one of the
most used DEM data.

http://search.earthdata.nasa.uov/search
https://lpdaac.usgs.gov/
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2.2.4. Precipitation Data

The most direct way for the atmosphere to affect land soil moisture is through precipi-
tation [41]. Many regional- and global-scale studies have confirmed the tele-connection
between precipitation and soil moisture variability [42].

The precipitation data is the China meteorological forcing dataset (CMFD) from the
national Qinghai Tibet Plateau science data center, which is a set of near land surface
meteorological reanalysis data. CMFD is made with the Princeton reanalysis data, GEWEX-
SRB radiation data, GLDAS and TRMM precipitation data as the background field, and the
conventional meteorological observation data [43,44]. The data set was provided by the
National Tibetan Plateau Data Center (http://data.tpdc.ac.cn, 20 April 2021).

2.2.5. In Situ Soil Moisture Observations

To evaluate the accuracy of downscaled soil moisture, field measurement data from 7
locations in 2009 were collected. Field measurements at seven sites were obtained from
the Chinese Ecosystem Research Network (CERN) and the Watershed Allied Telemetry
Experimental Research (WATER) project. The data set was provided by the National Tibetan
Plateau Data Center (http://data.tpdc.ac.cn, 26 April 2021). Each site was equipped with
a set of quadratic net radiometers (CNR1 and CNR4) that collected atmospheric down-
welling and up-welling longwave radiation. In total, 6 layers of soil moisture sensors
were arranged at depths of 0.05, 0.1, 0.20, 0.40, 0.80, and 1.20 m, respectively. Detailed
information of the 7 sites is exhibited in Table 2.

Table 2. Information of the field sites.

ID Site Land-Cover Elevation Longitude Latitude

1 Guantan Forest 2835 m 100.25 E 38.53 N
2 Maliantan Grassland 2817 m 100.30 E 38.55 N
3 Yingke Cropland 1519 m 100.42 E 38.85 N
4 Daxing Cropland 20 m 116.42 E 39.62 N
5 Guantao Cropland 30 m 115.12 E 36.51 N
6 Miyun Orchard 350 m 117.32 E 40.63 N
7 Yucheng Cropland 23 m 116.57 E 36.83 N

2.3. Methods
2.3.1. Random Forest Model

The RF model [45] is an improved decision tree model, which makes decisions by
averaging multiple regression trees [46]. The model is nonlinear and insensitive to outliers.
Compared with other machine learning methods, the RF model is more widely used in
the downscaling of SM data [47]. The major idea of the RF model is to build the nonlinear
function relationship between various input parameters and output soil moisture:

SM = fRF(C) + ε (1)

where the left SM is soil moisture data, and C is an input vector representing various input
parameters; fRF is the nonlinear function that establishes the relationship between input
parameters and output SM.

RF establishes several decision trees in the training stage, and then calculates the
average prediction value of these trees as the output of the method. RF models can divide
the input feature space into a lot of regression trees, called a forest, in which each tree is
generated by guided samples. One boot sample contains approximately two-thirds of the
training samples, and one-third of the remaining data is used to validate each tree. The
result of RF is the average prediction result of each decision tree, as follows:

f (SM|C) = 1
n ∑n

i=1 fi(SM|C) (2)

http://data.tpdc.ac.cn
http://data.tpdc.ac.cn
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where n is the number of regression trees, f (SM|C) is the ensemble decision tree, and
fi(SM|C) is the sub-decision tree of the original soil moisture (SM) given the bootstrapped

data from the training input variables (C).

2.3.2. Soil Moisture Downscaling Framework

In order to downscale AMSR-E soil moisture data, we used known high-resolution data
sets closely related to soil moisture, including LST, NDVI, Albedo, DEM, and precipitation.
Atmospheric auxiliary variables (LST, Albedo, and precipitation) can maintain the temporal
variations of the downscaled SM. The geophysical auxiliary variable DEM is used to capture
the spatial variations and patterns of the downscaled SM. The other auxiliary variable,
such as NDVI, is also included to illustrate the impact of vegetation variations on the
spatiotemporal pattern of the downscaled SM.

In this study, we used the RF models to develop a downscaling framework. The
foundation of this method is explained in detail in the Section 2.3.1. The major contribution
of this study is to propose a new method that incorporates the above five effective auxiliary
data into the RF models to improve the estimation of soil moisture at a finer resolution.

A reliable spatial and temporal window size is the basis of the success of the presented
method, as too large of a window may lead to over-fitting problems in the regression model.
In this study, we used an adaptive spatiotemporal window size determination method.
Two key parameters are used to decide the window size: the temporal day number and
the spatial window size. The initial value of the spatial window size needs to be given
first. When the corresponding conditions are met, the model will automatically search until
termination. More details regarding this strategy can be found in our previous studies [48].

Figure 2 shows the process of the proposed method. The following three steps show
the construction of the soil moisture downscaling method proposed in this paper:

Step 1: Firstly, we prepared the required data, including AMSR-E, MODIS (LST, NDVI,
Albedo), DEM, precipitation data, and in situ measurements. To establish the downscaling
model, the upscaling data of LST, NDVI, Albedo, DEM, and precipitation were consistent
with AMSR-E, 25 km.

Step 2: The RF models were established by using the upscaled data and AMSR-E
data. In the RF model mentioned in Section 2.3.1, C was LST, NDVI, Albedo, DEM, and
precipitation. After modeling, the model was evaluated and analyzed. The SM relationship
model built by the proposed method was applied to 1-km resolution variables to obtain
high-resolution SM data at 1-km resolution:

C = (LST, Albedo, NDVI, precipitation, DEM) (3)

Step 3: The downscaled results were verified with in situ measurements and compared
with other downscaling methods, namely Multiple Linear Regression (MLR) and Support
Vector Regression (SVR).



ISPRS Int. J. Geo-Inf. 2022, 11, 101 7 of 18

Figure 2. Flowchart of SM downscaling in this study.

2.4. Evaluation

Statistical indexes were used to conduct the quantitative analysis of the original SM
and the estimated SM, and to compare the different downscaling methods. This study used
the correlation coefficient (R) [49], root mean squared error (RMSE) [50], mean absolute
error (MAE) [51], and unbiased root mean square error (ubRMSE) in the paper. The
calculation formulas are as follows:

R =
∑
(
Xi − X

)(
Yi −Y

)√
∑
(
Xi − X

)2(Yi −Y
)2

(4)

RMSE =

√
∑n

i=1(Xi −Yi)
2

n
(5)

MAE =
1
n ∑n

i=1|Xi −Yi| (6)

ubRMSE =
√

RMSE2 − BIAS2 (7)

where n is the number of observations, and Xi and Yi are the original and estimated
SM, respectively.

In addition to the above commonly used indicators for soil moisture downscaling, this
study also used the fractions skill score (FSS) [52] to evaluate the spatial agreement between
the original data and downscaled data. The FSS was given by the following equation:

FSS = 1−
MSE(n)

MSE(n)re f
(8)

where n is the window size and MSE is mean square error.
The value of FSS ranges from 0 (total mismatch) to 1 (perfect prediction). In most

cases, an FSS value greater than 0.5 is a good predictor [53].
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3. Results
3.1. Correlation Analysis between Soil Moisture and Variables

As mentioned earlier, Albedo, NDVI, LST, and precipitation data were used as input
variables in the RF-based SM relationship model. According to previous downscaling
studies [39,54], these variables are closely related to SM.

This study analyzed the correlation between the used variables and SM according
to the linear regression relationship, as shown in Figure 3a. In the whole study area,
the correlation between SM and available variables is relatively high. Among them, the
correlation between NDVI and SM is the highest, about 0.53. This is because NDVI can
describe vegetation growth [55] and soil background conditions. The correlation between
precipitation and SM is also high, about 0.40, relating to the fact that precipitation is the
most obvious way for the atmosphere to affect SM [41]. Albedo and LST are also highly
related to SM, which are −0.46 and −0.23, respectively. Albedo and LST are important
variables in monitoring and SM downscaling due to their controlling role in surface energy
exchange [56]. Overall, the results show the practicability of using these parameters in soil
moisture downscaling.

Figure 3. (a) The correlation between soil moisture and each parameter factor is the correlation
coefficient (R) calculated according to the linear regression between the used variables and AMSR-E.
The red bar is the average value, and the black line is the standard deviation. (b) The integrity of
each parameter.

The data was collected in 2009. When observing AMSR-E data, we found that the
integrity of the data on the 10th was relatively high. Therefore, we selected the 10th of
each month in 2009. Notice that the dataset used in this study is not very complete. The
integrity of each scene data is counted here, as shown in Figure 3b. It can be observed
that the integrity of precipitation, NDVI, and Albedo is relatively high; part of AMSR-E is
missing; and LST data is the most missing. The correlation between LST and AMSR-E is
not particularly high, which may also be related to its high degree of deletion.

3.2. Spatial Distribution of Soil Moisture
3.2.1. Spatial Distribution of AMSR-E and Downscaled Soil Moisture

Figures 4 and 5 show the spatial distribution of AMSR-E soil moisture and the down-
scaled soil moisture, respectively. It can be found that, spatially, the soil moisture in the
south is higher and that in the north is lower. In terms of time, the soil moisture is higher in
November, December, and January, and lower in June, July, and August. Because of strong
evapotranspiration in summer, the soil moisture is lower in summer and higher in winter.
The downscaled results retain similar spatial patterns in the AMSR-E observations in most
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areas. At the same time, the spatial details of AMSR-E observations are also improved.
The spatial distribution characteristics of the soil moisture after downscaling are generally
consistent with the AMSR-E.

Figure 4. Spatial distribution map of AMSR-E soil moisture on the 10th of each month.

Figure 5. Spatial distribution map of the RF downscaled soil moisture on the 10th of each month.

Comparing the images before and after downscaling, it can be seen visually that the
downscaled image is much clearer and more detailed than the AMSR-E image. Overall,
the performance of the downscaled data is relatively good, but it is overestimated or
underestimated in some places. Specifically, the downscaled image is underestimated in
the south with high soil moisture and overestimated in the north with low soil moisture.
This is because machine learning methods tend to reduce the range of soil moisture data. In
general, the visual consistency between the RF downscaled SM and the original AMSR-E
SM is great.

3.2.2. Difference between Downscaled Data and Soil Moisture of AMSR-E

To analyze the difference between AMSR-E and downscaled data, the box charts of
2 kinds of data in 12 months and the box charts classified by soil dry humidity were checked.
Figure 6a shows the box diagram of AMSR-E and RF downscaled data for 12 months. It
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is observed that the differences between the 2 datasets are small in most months, and the
values of the 2 data are basically kept within 0.1–0.6. Soil moisture is lower in June, July,
and August, and higher in November, December, and January. As mentioned earlier, due
to strong evapotranspiration in summer, soil moisture is lower in summer and higher in
winter. At the same time, the RF results are generally high and overestimated. Earlier
studies have shown similar results [57,58], probably relating to the fact that some high-
resolution auxiliary data are added to better capture surface information and describe
detailed information after higher resolution.

Figure 6. (a) Box chart of AMSR-E and the RF downscaled data for 12 months; (b) box diagram
of AMSR-E and the RF downscaled data after classification by dry humidity (AMSR-E in red and
downscaling data in blue).

Figure 6b compares the two datasets after classified statistics according to dry humidity
classification. In the seven dry moisture soil types, there is little difference between the two
data. Meanwhile, it can be found that the RF results are generally high and overestimated;
however, underestimation occurs in the over-wet region.

To further analyze the difference before and after downscaling, we subtracted the
AMSR-E data from downscaled data to obtain the difference diagram. Figure 7 shows the
difference between downscaled data and AMSR-E data, with FSS values at the bottom
left of the graph. It is observed that the differences in most regions are relatively small.
The places with underestimated phenomena are generally located in the south area with
higher soil moisture. The overestimated phenomenon is located in the central and northern
areas. This is consistent with earlier studies [1,46,59], which illustrate that machine learning
methods tend to reduce the range of the target data. Therefore, the method will reduce the
value of the high soil moisture area in the original AMSR-E data and increase the value of
the low soil moisture area. The FSS values for all months are greater than 0.5, which shows
good consistency of the data before and after downscaling. In general, the differences
between the RF downscaled data and the original AMSR-E data are small, implying that
the RF downscaled data and AMSR-E data have similar spatial patterns.



ISPRS Int. J. Geo-Inf. 2022, 11, 101 11 of 18

Figure 7. Difference between downscaled data and AMSR-E data (FSS values are shown at the bottom
left of the graph).

3.3. Evaluation with In Situ Measurements

In order to prove the effect of RF downscaling, we verified AMSR-E and the RF
downscaled data with ground station data, respectively. Figure 8 shows the verification
results of the AMSR-E and RF downscaled data with ground station data. It is observed
that the performance of R, RMSE, MAE, and ubRMSE after downscaling is better than
those of the AMSR-E. Among them, the R of the RF downscaled data is higher. The R
of AMSR-E is 0.02, and the R of the RF downscaled result is 0.19. The RMSE, MAE, and
ubRMSE of downscaled data are lower. The RMSE, MAE, and ubRMSE of AMSR-E are 0.20,
0.15, and 0.19 m3/m3, respectively. The RMSE, MAE, and ubRMSE of the RF downscaled
results are 0.18, 0.14, and 0.16 m3/m3, respectively. Therefore, compared with AMSR-E
data, the verification results of the RF downscaled data with in situ measurements are
better and closer to the ground soil moisture. The large differences mainly occur in areas
where the in situ soil moisture is large. This may be due to the lesser capacity to capture
the evapotranspiration information well, thereby overestimating soil moisture. In general,
it shows that the RF downscaling algorithm is reasonable and effective.

Figure 8. The verification results of (a) AMSR-E, (b) RF downscaled data with in situ measurements.
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4. Discussion
4.1. Importance Analysis of Explanatory Factors

Analyzing the importance of the five input explanatory factors (Albedo, DEM, NDVI,
LST, and precipitation) to the downscaled SM results is critical to understand the impact of
participating variables on the performance of the proposed RF method. The importance of
these variables is described by the mean and standard deviation. We used the importance
score, a key index provided by the RF algorithm [57], to analyze the contribution of each
variable in the proposed method.

As shown in Figure 9, DEM is identified as the most important variable with an
importance value of 0.29, because it can capture the spatial patterns and variations of the
downscaled SM [1]. Albedo and NDVI have significant effects on RF modeling, and the
importance values are 0.24 and 0.21, respectively, since they can reflect the surface energy
flux and vegetation state [60]. The LST has importance with a value of 0.13 relating to the
control effect of SM on land surface energy exchange [56]. Precipitation has the same results
as LST, because precipitation is a vital parameter directly leading to variations in SM [46].
In general, the results show that it is reasonable to use these auxiliary data for soil moisture
downscaling, demonstrating the certain impact of explanatory factors on RF modeling.

Figure 9. The importance of explanatory factors determined by the model. The red bar is the mean
value and the black line is the standard deviation.

4.2. Leave-One-Out Analysis

Leave-one-out analysis was further conducted to verify the rationality and superiority
of our model. Specifically, with this approach, the downscaling model was implemented
after removing one input variable. Then, the downscaled results were verified with in
situ observations. Figure 10 shows the verification results diagram of the leave-one-out
approach. The first is the verification results of all parameters participating in random
forest downscaling, followed by the verification results of the downscaled results with
in situ data after removing these variables (Albedo, DEM, NDVI, LST, and precipitation,
respectively). The numbers on the histogram are processed to better show their differences.
The results of the random forest with all parameters involved are the best, and RMSE and
MAE of RF are the lowest. Without precipitation and NDVI data, RMSE and MAE are
increased significantly. Therefore, precipitation and NDVI have the greatest impact on the
model results, followed by the Albedo, DEM, and LST data. Compared with the RF results,
the RMSE and MAE of no-precipitation increased by 0.026 and 0.012 m3/m3, respectively.
No-LST had the least impact on the results, and its RMSE and MAE increased by 0.018 and
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0.007 m3/m3, respectively. Therefore, the addition of these five parameters can improve
the performance of our proposed method and obtain better downscaling results.

Figure 10. Verification results of the leave-one-out approach (the first is the verification results that
all parameters participate in random forest downscaling, followed by the verification results after
removing the corresponding parameters).

4.3. Comparison of Different Methods

To further verify the accuracy of the proposed downscaling approach, our study
selected several methods that are often used in downscaling research to compare with the
proposed RF method. Here, we compare the proposed RF method with Multiple Linear
Regression (MLR) [61] and Support Vector Regression (SVR) [62]. The verification results
of the downscaled data of these three methods with in situ observations were obtained. It
is found from Figure 11 that the proposed RF method has the best results and significantly
outperforms the other two methods. The RMSE and MAE of RF are lower than those of the
other two methods, with an RMSE and MAE of 0.181 and 0.134 m3/m3, respectively. The R
of RF is higher with a value of 0.261. At the same time, the performance of MLR is better
than SVR, with lower RMSE and higher R.

Figure 11. Comparison of three methods (RF is the proposed method, MLR is Multiple Linear
Regression, and SVR is Support Vector Regression).

The reason for the above results may be that the MLR model is suitable for simple linear
regression. The MLR is prone to over-fitting [63] and is not suitable for large-scale research.
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The kernel function of the SVR model plays a vital role in the modeling process [64], but the
type of kernel function and other parameters need to be selected artificially in the operation
of the model. Hence, this problem may affect the final accuracy and prediction ability of
the model and makes the accuracy poor. The RF model has randomness, which makes the
model more stable and more generalized in the process of learning and application. The
randomness of RF also reduces the occurrence of over-fitting to a great extent. Moreover,
there are fewer artificially determined parameters in the operation process of the model,
which avoids the interference of human factors.

The proposed method is compared with methods from several earlier studies. Four
commonly used machine learning approaches [47] are first used for comparison. The poly-
nomial fitting method [55], which is a popularly used method, is added for the comparative
analysis. In addition, the UCLA downscaling method that was proposed by Kim and
Hogue [65] is also used in the comparison. The study area, data used, and the correspond-
ing accuracy of each method are shown in Table 3. This study confirms that the proposed
approach can be compared with other methods, or even better. The proposed method
selected five kinds of effective auxiliary data and used an adaptive spatiotemporal window
determination strategy. Compared with other methods, it is more suitable for application
to complex large areas.

Table 3. Comparison of different methods for downscaled SM against in situ soil moisture measure-
ments (CART is classification and regression trees, KNN is K-nearest neighbors, BAYE is Bayesian
regression, and RF is random forest).

Methods Study Area Data Used R/R2 RMSE
(m3/m3)

Reference
Studies

CART
Heilongjiang, Jilin,

and Liaoning
Provinces, China

ESA CCI,
MODIS

0.135 0.076

[47]
KNN 0.13 0.074
BAYE 0.081 0.075

RF 0.191 0.073

UCLA
method

Southern Arizona,
USA

AMSR-E,
MODIS 0.27 0.051 [65]

Polynomial
fitting

method

AACES field,
Australia

SMOS,
MODIS 0.14–0.21 0.09–0.17 [55]

Proposes
method North China AMSR-E,

MODIS 0.19–0.26 0.18 -

4.4. Limitations of the Study

This study successfully downscaled the AMSR-E data with 25 km resolution to 1 km;
however, there are still some shortcomings. First, the study area focused on North China,
where there are not many ground stations and verification data. Therefore, the verification
results obtained have certain limitations. In future work, more field data can be collected for
verification. Second, AMSR-E was selected for the original soil moisture data in this study.
The quality of the original data may also affect the results of downscaling. We can use other
high-quality data in the future. This study used some common statistical metrics to validate
the results. More validation metrics, such as Empirical Orthogonal Functions (EOF) and
SPAtial EFficiency metric (SAPAEF) [53,66,67], can be used in future work. In this study,
downscaling soil moisture data were rarely applied. Future work can apply downscaling
soil moisture data more widely [68–70] and combine it with other directions [71,72]. Finally,
the proposed method in this study is mainly based on the random forest. Considering
that the use of one method may cause errors, multiple methods can be assembled for
downscaling in the future.
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5. Conclusions

This study proposed an efficient framework based on the RF model to downscale
AMSR-E soil moisture over North China from its original resolution of 25 km to a better
resolution of 1 km. This study used an adaptive spatiotemporal window determination
strategy and five auxiliary data (LST, NDVI, Albedo, precipitation, and DEM). The par-
ticipating variables are closely related to soil moisture and were acquired from a satellite
remote sensing dataset and ground-based observations. The downscaled image was better
able to describe the details of soil moisture, and showed a consistent spatial pattern with
the original AMSR-E SM. The main conclusions are given as follows.

(1) The overall R, RMSE, MAE, and ubRMSE between the downscaled SM produced
by the proposed model and in situ measurements are 0.19, 0.18, 0.14, and 0.16 m3/m3,
respectively. These results are better than those of the original AMSR-E SM, with R of 0.02,
RMSE of 0.20 m3/m3, MAE of 0.15 m3/m3, and ubRMSE of 0.19 m3/m3, respectively. This
means that the proposed downscaling algorithm is reasonable and effective.

(2) DEM, Albedo, precipitation, and LST show high importance for SM downscaling,
indicating their efficiency as key variables closely related to SM changes. These results also
show that the inclusion of all input variables leads to the best downscaling accuracy. At
the same time, these variables combined with machine learning and spatiotemporal search
algorithms can be applied to complex large areas.

(3) The proposed RF method significantly outperforms the MLR and SVR. The down-
scaled data acquired from the proposed downscaling method were also compared with
MLR and SVR. The verification results with in situ measurements showed that the proposed
approach is better than the other two methods. The R, RMSE, and MAE between the RF
downscaled SM and in situ measurements are 0.261, 0.181, and 0.134 m3/m3, respectively.
They are better than the results of the MLR and SVR. The R, RMSE, and MAE of the MLR
downscaled SM are 0.217, 0.201, and 0.164 m3/m3, respectively. The R, RMSE, and MAE of
the SVR downscaled SM are 0.063, 0.213, and 0.159 m3/m3, respectively.

In summary, this study successfully generated 1 km × 1 km SM data over North
China, meeting the need for drought monitoring, hydrological modeling, and some related
research. The merit of the proposed method is that there is no limit to land surface
conditions, such as semiarid or humid areas. In the meantime, this method can be applied
to large areas with various climate and surface characteristics. Future work will focus
on collecting other SM data and more in situ observations, and using ensemble machine
learning algorithms.
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