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Abstract: Urban street space is a critical reflection of a city’s vitality and image and a critical com-
ponent of urban planning. While visual perceptual information about an urban street space can
reflect the composition of place elements and spatial relationships, it lacks a unified and comprehen-
sive quantification system. It is frequently presented in the form of element proportions without
accounting for realistic factors, such as occlusion, light and shadow, and materials, making it difficult
for the data to accurately describe the complex information found in real scenes. The conclusions
of related studies are insufficiently focused to serve as a guide for designing solutions, remaining
merely theoretical paradigms. As such, this study employed semantic segmentation and information
entropy models to generate four visual perceptual information quantity (VPIQ) measures of street
space: (1) form; (2) line; (3) texture; and (4) color. Then, at the macro level, the streetscape coefficient
of variation (SCV) and K-means cluster entropy (HCK) were proposed to quantify the street’s spatial
variation characteristics based on VPIQ. Additionally, we used geographically weighted regression
(GWR) to investigate the relationship between VPIQ and street elements at the meso level as well
as its practical application. This method can accurately and objectively describe and detect the
current state of street spaces, assisting urban planners and decision-makers in making decisions
about planning policies, urban regeneration schemes, and how to manage the street environment.

Keywords: street space; information entropy; machine learning; visual perception; spatial change;
spatial heterogeneity

1. Introduction

Streets are an integral part of cities and citizens often perceive the urban landscape
through them. Several disciplines conduct intensive research on streets because of their
multifaceted characteristics [1], especially for studies on urban greenery [2,3], walkabil-
ity [4,5], urban morphology [6,7], and urban perception [8,9], where they demonstrate
ideal research value and potential. Urban street perception has usually been studied using
manual surveys [10–14]. However, it is difficult to rely on data obtained from manual
surveys for urban modeling due to the limitations of human cognition and economic condi-
tions. Under the call of smart urbanism, using modern information and communication
technology (ICT) to analyze urban data to assist in decision-making and planning will have
significant competitiveness [15,16], which is one of the reasons for the surge in the number
of studies in the field of smart cities in recent years [17]. The rise of artificial intelligence
(AI) tools such as machine learning (ML) and deep learning (DL) provides a new direction
for the realization of smart cities [18,19]. Open platform interfaces provided by companies,
such as Google [20], Tencent [21], and Baidu [22], also facilitate the acquisition of big data
in cities. Therefore, using street view images to study urban street space perception and
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using artificial intelligence algorithms for data modeling has become one of the paradigms
from the perspective of smart cities. This study is also guided by this paradigm, processing
Baidu Street View (BSV) through machine learning methods and quantifying urban street
perception with information entropy. Thus, exploring the visual perception of street space
is useful for understanding the relationship between street elements and urban appearance,
describing the built environment, or evaluating space quality, providing scientific guidance
for urban planning and construction, and environmental planning.

As a widely recognized approach to urban development research, machine learning
bridges the gap between artificial intelligence and urban governance [23]. Scholars can
use machine learning algorithms to investigate the deeper laws underlying big data in
order to explain various complex phenomena in today’s urban development process [24].
With the help of such intelligent applications, urban management and policy-making are
gradually being transformed into an interdisciplinary and diverse intelligence system [25].
Deeplabv3+ has been increasingly applied in urban science [26–28]. Semantic segmenta-
tion techniques for deep learning can batch process images and extract data, such as the
proportion of greenery, vehicles, pedestrians, and buildings [29–31], and thus make the
research results more interpretable [32–35]. They make it possible to describe the urban
built environment through visual perception information [21,35–37], and argue that the
ambiguity of visual information in the urban environment requires additional attention in
quantitative urban appearance research [35]. Based on this, Verma enriched the perception
system by exploring the development of audiovisual perception models [38], and some
studies used visual entropy or partial street elements to measure the complexity of street
interfaces [9,39]. Researchers have carried out large-scale perception studies, proposing
guiding theories for the creation of street spaces [8,40], introducing neural network algo-
rithms to classify sample images, or refining evaluation systems to obtain more accurate
perceptual models [41,42], giving ways to improve the quality of urban street spaces based
on human health and well-being at the functional level [22,31,42], and establishing links
between street elements and urban microclimates [6,43]. Alternatively, at the appearance
level, some visual perceptual characteristics can be used to propose methods for assessing
streets’ spatial quality [30,44,45] while considering the influence of spatial heterogeneity at
the local scale [46,47]. Current research is increasingly focused on developing methods or
models for measuring the environment via machine learning to aid urban environmental
planning and management [48–50].

Previous research established the feasibility of using streetscape images to perceive
urban street space and established a solid foundation for future research, which can be
expanded in two directions based on shared methods and findings. (1) To account for the
“information quantity” involved in visual perception, deconstructed vision methodology
was incorporated, which is based on determining the proportions of each street element
while considering occlusion between street elements, light and shade, color, material, and
shape, allowing for a more comprehensive representation of complex factors in realistic
scenes. In addition to improving the traditional algorithm used for calculating visual
entropy to quantify the amount of information in street spaces in previous research, this
updated algorithm reflects the advantage of delving deeper into fundamental data, allowing
the enhanced visual perception index to be better suited to human perception, as well
as efficiently describing and quantifying street space more precisely; (2) extending the
theoretical paradigm of guiding design established in previous research provides guidance
suggestions for the fine-grained creation of space, which not only provides a macro-level
description of the visual perception of urban streets, but also directly contributes to the
street renewal design process. Therefore, the quantification of visual perception information
remains critical for future research.

To accomplish these two objectives of extended research, we propose a model that can
quantify the visual perceptual information quantity (VPIQ) of street spaces as well as their
spatial variation. First, we calculated the VPIQ of street images using information entropy
and semantic image segmentation. We measured street space variation based on the VPIQ’s
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coefficient of variation and clustering entropy. The geographically weighted regression
(GWR) model also allowed us to obtain the characteristics of street elements that affect
local road segments with fine granularity. This method can provide objective descriptions
and impact characteristics of street space visualization from macro and meso perspectives.
Additionally, it can serve as a reference for urban renewal policies and customizing street
design solutions.

This paper introduces the study area, data acquisition, and processing processes in
Section 2. Section 3 addresses three sections: (1) four measures of VPIQ in street space based
on information entropy and semantic segmentation; (2) methods for measuring spatial
variation in streets based on VPIQ; and (3) methods for exploring the impact of VPIQ in
streets using GWR. Section 4 presents the results of the street space change measurement
and GWR model. Section 5 will discuss and conclude each of the two sections of Section 4.

2. Materials
2.1. Study Areas

This study was conducted in the sub-regions of the Hubin, Qingbo, and Xiaoying
streets in the Shangcheng District of Hangzhou, China. This area is adjacent to the West
Lake Scenic Area and is the old city of Hangzhou’s core area (Figure 1). It contains elements
such as commercial streets, business buildings, old and newly constructed residential areas,
railway stations, underground lines, scenic spots, and various support facilities; it also
presents strong diversity and reflects, to a certain extent, the style and function of a city.
This area provided an ideal basis for this study.
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Figure 1. Schematic diagram of research area and panoramic image generation.

2.2. Data Preparation

We obtained 1179 street view images taken in September 2017 from the Baidu Maps
Developer Platform (https://lbsyun.baidu.com/, access on 26 December 2021) at a distance
of 40 m from streets, covering street view sampling. We built the street view image
acquisition task in Python via the request library based on the uniform resource locator
(URL) provided by the platform’s panoramic still image application programming interface
(API). Considering data privacy and security issues [17], we applied the quota of personal
application keys (AK) to the platform only 100 times per day, and therefore we used
multiple AK to acquire all street view images. Baidu uses confidential processing (Gaussian
blurring) for human faces and license plate numbers captured in all images, which is
suitable for the public publication of academic research. The horizontal and vertical field of
view (FOV) range of the camera used by the Street View sampling vehicle for data collection
is 80◦–140◦. When the pitch angle of the camera is 0◦, the field of view is approximately
the same as a person’s normal field of view. So, we set the pitch angle to 0◦ when crawling
the Street View images. The horizontal view angle is spliced into a panoramic view
image through 0◦, 90◦, 180◦, and 270◦, which can simulate the street view of pedestrians

https://lbsyun.baidu.com/
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with different orientations (Figure 1). These images were then cleaned of duplicates and
imprecise rendered images. The resolution of each image was 1024 × 512 (pixels), and
the image size was 1024 × 335 (pixels) after cropping out the sampled car images and
scaling equally according to different algorithms. The sampling point distribution is shown
in Figure 1.

The POI data were obtained from Gaode Map (an online map company in China),
and after filtering out anomalous data outside the study area, there were 9,968 records
containing 15 categories.

3. Methods

The relationships between the calculated indicators involved in all the steps are shown
in Figures 2 and 3.
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3.1. Quantification of the VPIQ Measure

The expert/design approach deconstructs vision (form, line, texture, and color) by ex-
tracting the landscape’s formal features [51,52] to assess its characteristics (e.g., consistency,
variety, vividness, and harmony), but this approach has been affected by excessive subjec-
tive interference [51]. However, because the use of biophysical features to describe scenery
is systematically associated with visual landscape perception [53], this method of extract-
ing abstract parameters from scenery is appropriate for studying the visual perception
of landscapes.

According to the definition of “visual entropy”, a landscape’s visual effects are more
varied and provide the human eye with more visual information when the entropy is
higher. As a result, we incorporate the method of measuring landscape morphological char-
acteristics into expert/design theory in order to decompose visual information from four
perspectives: form, line, texture, and color, to quantify the visual perception information
contained in the street space. Second, this study was based on an objective description of
the visual information. This emphasizes the need for objective measurement over eval-
uation. This implies that visual information does not have the function of evaluating
goodness but must be cognitively integrated with actual urban street planning and design
requirements. (Figure 2).

3.1.1. Form

The appearance and combination of various street elements provide pedestrians with
varying degrees of visual information. Rather than directly counting the percentage of street
elements in the street view image, the form information defined in this paper concentrated
on all the independent color blocks in the categorically labeled image obtained by semantic
segmentation (Figure 2), obtained their perimeter and area using OpenCV, and calculated
the information entropy of the entire image to determine how much visual information
the scene’s form provided. The significance of this calculation is that it accounts for the
segmentation effect on the visual interface caused by mutual occlusion of street scenes
(e.g., the segmentation of buildings and pavements by tree branches and utility poles),
and previous studies have shown that scene occlusion has a significant impact on street
interface calculation [54–56]. See Figure A1 in Appendix A for a detailed illustration.

As a result, we performed semantic segmentation of street view images using Python’s
Deeplabv3+ algorithm framework and the CitySpaces dataset, and then used the OpenCV
tool to implement the aforementioned calculation method, and the amount of form infor-
mation was formulated as:

HCB = −
n

∑
i=1

CiPi
Si

log Pi (1)
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where n is the total number of color blocks in the image and Pi is the proportion of the i-th
block in the image. The HCB is the form information quantity under consideration of the
visual segmentation factor.

The richness of the types of street scenes was then added to the calculation. The
semantic segmentation algorithm counts the proportion of different colors (i.e., types of
street elements), which is used to calculate the complexity of the variety by formulating as
follows:

HCO = −
n

∑
i=1

Pi log Pi (2)

where n is the total number of colors (street element classification) in the picture and Pi is
the proportion of the i-th color in the picture.

3.1.2. Line

Object edges, light and dark boundaries, etc. are all manifestations of line information,
similar to the way a scene is recorded with pen drawing. First, the Canny edge detection
algorithm was used to separate the outline and background of the scene, keeping the lines
and removing other details. The Canny algorithm is a widely recognized edge detection
algorithm in current research [57,58]. Then, the fractal dimension of the processed image
was calculated. Among the methods for calculating fractal dimension, the box-counting
dimension method is highly recognized in the planning-related fields [58]. The image was
first covered with a grid matrix, where the grid side length is ε and the grid number is
N(ε), when the grid is shrunk enough to record all εn and N(εn) changes, based on log(1/εn)
and log (N(εn)), a scatter plot was drawn and the slope HLI of the fitted line was recorded
(Figure 2), which is the box-counting dimension of the graph, and its expression is:

HLI = lim
ε→∞

log(N(εn))

log(1/εn)
(3)

3.1.3. Texture

Texture information measures the variation of light and darkness on an object’s surface
due to unevenness, and this variation is represented as the level of grayscale values in a
grayscale image, which can be viewed as a one-dimensional matrix recording different
grayscale values. Two-dimensional entropy is commonly used in the field of communi-
cation engineering to calculate texture information rather than one-dimensional entropy
because it can record the spatial distribution properties of each grayscale pixel in an im-
age [59–61]. We traversed each pixel and the eight pixels surrounding it using a 3 × 3 grid
and denoted the grayscale value of the pixel by i and the mean of the grayscale values of
the eight surrounding pixels by j, which was noted as a binary group (i, j). Python was
used to perform histogram equalization on the sample image to aid in the extraction of the
object’s texture. The probability of occurrence of (i, j) in the image was then calculated and
incorporated into the information entropy formula as follows:

j =
∑8

k=1 j(k)
8

(4)

HTE = −
255

∑
i=0

255

∑
j=0

Pij log Pij (5)

where i is the gray value of the i-th pixel in the picture (i ∈ [0, 255]), j is the neighborhood
gray value (j ∈ [0, 255]), and Pij is the probability of the binary group (i, j) appearing in
the picture.
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3.1.4. Color

Color is a primary aspect of visual perception, and elements such as vegetation,
vehicles, buildings, roads, and other infrastructure influence the amount of information
available through their varying colors. The amount of color information in a scene can be
used to quantify color richness.

We referred to Han’s method for calculating the color of street scenes [62] which
involved reading the RGB values from the images in MATLAB and projecting the three
values into a three-dimensional coordinate system to form an RGB color cube (Figure 2).
Pixel points with RGB coordinates within the specified range were filtered, and the pixel
point’s maximum RGB value was extracted as the color metric. The range of values for
each color using the spherical equation is shown in Figure 2. The obtained color metric was
substituted into the equation to compute the information entropy, yielding the following
equation for the color information measure:

HC = −
n

∑
i=1

CiPi log Pi (6)

where Ci is the color metric of pixel i, Pi is the probability of the gray value of pixel i
occurring in a grayscale image, and Hc is the image’s color information value.

To obtain a more accurate representation of a scene’s color distribution, we inde-
pendently counted the colors in each corner of the color cube and calculated the color
information values for the six colors Hc_B (blue), Hc_G (green), Hc_C (cyan), Hc_M (ma-
genta), Hc_R (red), and Hc_Y (yellow). Considering that the weather and time difference
of each street view image can affect the image brightness, we adopted the RGB histogram
method to batch correct the image brightness (Appendix B, Figure A2).

3.2. Exploring Spatial Variation Using VPIQ in Street Space

Historically, planning and design have frequently been conducted on a street-by-street
basis. Thus, this section examines the spatial variation in the streetscape from a macro
perspective, at both the street’s general and internal levels, using the VPIQ values of the
street space as a statistical unit.

3.2.1. Visual Variation in the Overall Single Street Space

Hc_SUM was calculated by aggregating the VPIQ values for 77 streets in the study
area and adding HCB, HCO, HLI, HTE, Hc_G, Hc_M, Hc_R, Hc_Y, Hc_B, and Hc_C. In
order to avoid the influence of different weather conditions in each street view image, when
calculating Hc_B and Hc_C, the sky part was replaced with black pixels (RGB value is 0)
according to the semantic segmentation results. Then, the above operators were normalized
to make them comparable. Finally, the weight of each operator was determined by the
fuzzy comprehensive evaluation method, and the VPIQ total value Hc_SUM was obtained
by weighting.

Fuzzy Comprehensive Evaluation (FCE) is based on the membership degree the-
ory of fuzzy mathematics, which transforms qualitative evaluation into quantitative
evaluation, that is, it uses fuzzy mathematics to make an overall evaluation of things
or objects that are constrained by various factors. First, we clarified the problem and
established 3 hierarchical structures, including the target layer, the criterion layer with
4 factors, the sub-criteria layer and the scheme layer with 10 factors. We constructed
judgment matrix A = (aij)n × n, i,j = 1, 2, . . . , n, where aij often takes values as shown in
Table 1, and then performed hierarchical single sorting, that is, finding the maximum
eigenvalue of judgment matrix A, the approximate value λmax, and its corresponding
characteristic equation AW = Wλmax to solve the corresponding eigenvector, and then
normalized its eigenvector Wi and checked the consistency. Finally, according to the total
ranking of the layers, the combination consistency test was carried out, and the ranking
result calculates the relative importance weight of each factor of the scheme layer to the
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target layer. According to the relevant research in the literature, the adoption frequency
of 10 indicators was used to calculate the indicator weights by using Yaahp software,
which supports the fuzzy comprehensive evaluation method and is highly integrated
with the existing AHP functions.

Table 1. Judgment matrix aij constant value table.

The Impor-
tance of Bi

Compared
to Bj

Absolutely
Important

Very
Important

Comparatively
Important

Slightly
Important

Same
Important

Slightly
Minor

Comparatively
Minor

Very
Minor

Absolutely
Minor

aij 9 7 5 3 1 1/3 1/5 1/7 1/9

The streetscape coefficient of variation (SCV) is then calculated for each street to
measure the overall dispersion of the VPIQ for each street, which is formulated as:

SCV =
σi
µi

(7)

where σi is the standard deviation of street i and µi is the expected value of Hc_SUM in
street i. The degree of dispersion caused by the Hc_SUM increases with SCV size, making
the visual differences more obvious. To determine the degree of variation in the visual
perception of street space, SCV should be used in conjunction with other indicators because,
generally speaking, pedestrians do not visit a street from beginning to end (Figure 4).
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3.2.2. Visual Variation within a Single Street Space

We used the normalized variables HCB, HCO, HLI, HTE, Hc G, Hc M, Hc R, and Hc
Y as feature values, and used the PCA algorithm in Python’s sklearn package to reduce
the dataset’s dimensionality. The dataset was then clustered using the K-means algorithm,
which can categorize street scenes with similar forms, lines, textures, and colors and assign
category labels [63]. After obtaining the results, the clustering entropy HCK for the label
counts by street is formulated as follows:

HCK = −
k

∑
i=1

Pi log Pi (8)
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where k is the total number of clustered labels and Pi refers to the proportion of the i-th
category of labels present in the current street. We divided the streetscape into several
categories based on the composition of the VPIQ sub-metrics, and then used HCK to
measure the complexity of the streetscape categories contained in each street. This helped
us to understand the degree of variation in the current street space, and the more discrete
the clustered labels present in a street, the more diverse the visual perception of the street. It
can measure changes within the street at a finer granularity and is therefore more accurate
when combined with SCV to determine the nature of each street space (Figure 4).

3.2.3. The Relevance of Spatial Variation to Street Elements

This section examines the bivariate Pearson correlations between each street element
and SCV and HCK. Considering the street as the statistical unit, we combined the mean
VPIQ value for each street (Sum_avg) with the normalized number of sampling points, that
is, the street relative length (RLS).

3.3. Exploring the Factors Influencing the Correlation between Spatial Information Values and
Street Elements

Given the layout characteristics of urban streets, spatial heterogeneity is critical [47,64].
To obtain a fine-grained view of the VPIQ in street space, we investigated the spatial het-
erogeneity of Hc_SUM in the urban street environment from a mesoscopic perspective by
employing a geographically weighted regression (GWR) model to investigate the relation-
ship between the total value of spatial information and the proportion of each element of
street space, as well as the POI information surrounding each street image sampling point.

3.3.1. Geographically Weighted Regression

Although the topological relationships of urban streets are heavily influenced by
manual intervention, local associations persist in space and are influenced by peripheral
factors [65], which is why we chose the GWR model to investigate the local relationships
between VPIQ and each influencing factor. Before this, we used ordinary least squares
(OLS) to investigate global regressions that did not consider geographical attributes to
verify the superiority and necessity of the GWR model. The OLS and GWR equations are
as follows:

yi = β0 + ∑
j

β jXij + εi (9)

yi = β0(ui, vi) + ∑
j

β j(ui, vi)Xij + εi (10)

where yi represents the dependent variable, βj is the regression coefficient of the indepen-
dent variable Xij, εi is the residual error, and (ui,vi) represents the spatial coordinates of
location i. GWR adds spatial information (ui,vi) to the OLS equation, allowing each variable
to possess geographical attributes. The preceding steps were performed using IBM SPSS 26
and ArcGIS 10.2.

3.3.2. Selection and Implementation of Independent Variables

As an independent variable, we used the proportion of the 19 categories of street
elements after semantic segmentation. Given that having too many variables would impair
regression model accuracy, we condensed these 19 categories into six categories (Table 2),
excluding eight variables with a mobile component owing to lack of reliability in the
study results [66], and this study concentrated on the stable presence of street elements.
However, because the above data are purely visual, POI point data were added to quantify
the businesses located near the sampling points [67].
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Table 2. Composition and simplified results of street element variables with POI data variables.

Street Elements POI Data

Original Categories Simplified Categories Original Categories Simplified Categories

Reserved
Variables

Building Building_A Transportation Facilities
TransportationVegetation Vegetation_A Road

Sky Sky_A Car Service
Pole

Infrustructure_A

Hotels
ResidenceTraffic light Real estate communities

Traffic sign Recreation

Entertainment
Fence Restaurants
Wall

Barrier_A
Tourist Attractions

Terrain Shopping
Road

Road_A
Life Services Life

Sidewalk Company

Public
Finance

Business Building
Medical

Government Agencies
Excluded
variables Person, Rider, Car, Truck, Bus, Train, Motorcycle, Bicycle

We collected data on all POI points within the study area and condensed the original
15 categories into five (Table 2). All sampling points within the study area were then
divided into distinct areas using Tyson polygons, allowing all POI points to be projected
onto a grid corresponding to each sampling point. The number of POI points within each
grid was counted by category and their degree of functional mixing was computed, which
can be formulated as

Hc_LA = −
5

∑
i=1

Pi log Pi (11)

where Pi is the proportion of POI points in category i of all POI points in the grid.

4. Results
4.1. Results of the Spatial Variation of Streets Measured Using VPIQ

This subsection examines the methods and results of explaining spatial variation in
streets using VPIQ, developing the analysis in two dimensions: one from the street as a
whole, measuring the intensity of changes in the total value of VPIQ, and another from
within the street, examining the diversity of composition among the VPIQ sub-indicators.
Finally, combining these two methods, we discuss the changes in street space.

4.1.1. Overall Performance of the Single Street VPIQ

In Section 3.2.1, Hc_SUM was calculated according to the FCE method, and its weight
was determined by the results presented in Table 3 after the research team had repeatedly
compared and referred to previous studies. Then, the streetscape coefficient of variation
(SCV) of Hc_SUM was calculated for 77 streets, and the maximum value was approximately
ten times the minimum value, indicating that the variation in VPIQ is more significant
between streets.

4.1.2. Internal Performance of the Single Street VPIQ

This section demonstrates the performance of local visual perception on a single street
using the clustering algorithm. First, we used principal component analysis (PCA), which
reduced the original data matrix from eight to three dimensions while retaining 95% of the
original data’s information, then we used the K-means algorithm to add clustering cluster
labels to the data. The optimal number of clusters was determined by “elbow method”,
utilizing the yellowbrick package in Python to determine, as illustrated in Figure 5, that
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the dataset clusters optimally when K = 6. To visualize the distribution, we projected
k-means labels onto the map (Figure 6a). The clustering algorithm revealed that the
VPIQ classification of the streetscape sampling points was more pronounced, with more
streetscape images in the local area classified in the same category, not just on the same
street, indicating a degree of correlation in the streetscape VPIQ within the local area.

Table 3. Using the FCE method to determine the weight results of Hc_SUM sub-indicators.

Target Layer Criterion Layers and Weights Scheme Layers and Weights

Hc_SUM

Form information 0.355
HCB 0.304
HCO 0.051

Line information 0.145 HLI 0.145
Texture information 0.145 HTE 0.145

Color information 0.355

Hc_B 0.030
Hc_C 0.091
Hc_G 0.170
Hc_M 0.011
Hc_R 0.023
Hc_Y 0.030
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4.1.3. Coupling Results

The Pearson correlation analysis between the SCV and HCK in SPSS is shown in
Figure 7. HCK was significantly correlated with Sum_avg, RLS, building area, walls,
roads, streetlights, traffic signals, and buses. Among them, Sum_avg, building area, and
walls were negatively correlated, indicating that when a greater proportion of these street
elements was present, the VPIQ of the street space tended to be more consistent, resulting
in a more balanced visual experience when visiting the same street. However, SCV was
significantly correlated with the relative length of the street, buildings, vegetation, and
sky. Only vegetation was positively correlated, indicating that streets with significant
fluctuations in the total value of VPIQ (larger SCV) due to spatial variation may have a
higher rate of green vision. This suggests that visual perception is more sensitive to street
green space and requires strict control of the amount of vegetation.
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In addition, we mapped Sum_avg onto this map (Figure 6b). Sum_avg indicates
whether the visual perception of the current street is complex, and thus, when combined
with HCK and SCV, can provide a more detailed description of the street environment’s
current state. On Nanshan Road, for example, where Sum_avg is low but SCV and HCK
are both high, this indicates that the current street has more diverse spatial variations but a
less informative visual perception, resulting in a less confusing street interface. This reflects
the efforts of urban planners and managers to enhance visitor experience while retaining
control over street appearance.

4.2. Analysis of Factors Influencing the Value of Spatial Information
4.2.1. OLS Results

We began by performing a global regression on the data using OLS and recording the
variance inflation factor (VIF) for each variable to determine whether any variables were
multicollinear. Table 4 summarizes the identified variables and their descriptive statistics
and regression results. With all variables passing the covariance diagnostic (VIF < 7.5) and
residuals following a normal distribution (Appendix A), the corrected Akaike information
criterion (AICc) was −3926, with R2 = 0.534 and adjusted R2 = 0.532, indicating that the
independent variables explained 53.2% of the variation. The variable sky_A was omitted
because it cannot be artificially controlled and would result in spurious correlations [46], or
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because the sky itself has a poor representation of texture and color information, semantic
segmentation is unable to identify clouds, and the system did not consider the sky as
interpretable in the regression interpretability. The remaining six independent variables
that can have a significant effect on Hc_SUM were building_A, barrier_A, road_A, in-
frustructure_A, vegetation_A, and Hc_LA. Their correlation coefficients were all negative
correlation (Coef < 0), indicating that visual complexity decreases as the area of the first
five variables increases or as the surrounding businesses of the sampling points diversify.
The results above are global regression results that do not include geospatial attributes. In
the following section, we compare them to the GWR results.

Table 4. Description of the explanatory variables and regression results for OLS and GWR.

Independent
Variable

Description
OLS GWR

Coef t p VIF Mean std 25% Median 75%

Building_A
The proportion of

architectural elements
in the picture

−0.043 −0.675 0.500 1.627 −0.070 0.275 −0.469 −0.082 0.287

Vegetation_A
The proportion of

vegetation elements in
the picture

−1.017 −28.881 0.000 *** 1.405 −1.077 0.152 −1.368 −1.089 −0.827

Hc_LA

The degree of mixing of
business functions

around the
sampling point

−0.025 −2.766 0.006 ** 1.004 −0.017 0.035 −0.044 −0.019 0.011

Infrustructure_A

pole, traffic light, traffic
sign, fence elements

take up the proportion
of the picture

−0.975 −3.059 0.002 ** 1.031 −1.325 1.431 −2.699 −1.280 0.159

Barrier_A
wall, terrain elements
take up the proportion

of the picture
−1.099 −4.745 0.000 *** 1.211 −0.096 1.092 −0.901 −0.149 0.754

Road_A

road, sidewalk
elements take up the

proportion of
the picture

−1.186 −6.331 0.000 *** 1.262 −1.357 0.782 −2.055 −1.430 −0.780

Constants 2.047 54.351 0.000 ***
R2 0.534 R2 0.736

Adjusted R2 0.532 Adjusted R2 0.710
AICc −3926 AICc −9780

** Represents the significance of the regression coefficient at the 0.01 level. *** Represents the significance of the
regression coefficient 0.001 level.

4.2.2. GWR Results

The GWR model takes six variables except the sky as independent variables, and the
results indicated that R2 = 0.736 and adjusted R2 = 0.710, respectively. This was better
than the OLS model (adjusted R2 = 0.532). Additionally, the AICc (GWR) = −9780, which
is lower than the OLS model (AICc = −3926). Therefore, the GWR model is preferable
for investigating the factors affecting Hc_SUM, and Table 4 summarizes the GWR results.
Additionally, we investigated the spatial autocorrelation of Hc_SUM, which was deter-
mined by calculating the global Moran’s I (Moran’s I) and using it to select the Manhattan
distance that was most appropriate for the city–street relationship. Moran’s I = 0.373 and a
z-score of 15.66 were obtained, with a p-value of 0.001, indicating that the VPIQ was less
than 1% likely to randomly generate this clustering pattern in space, thus rejecting the null
hypothesis and satisfying the spatial statistics.
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5. Discussion
5.1. Interpretation and Significance of Spatial Variation Measured with VPIQ

We show all the variables involved in the fifth part in Table 5.

Table 5. Description of variables in the discussion.

Name Description

HCB Form information quantity
HLI Line information quantity
the Texture information quantity
Hc Color information quantity
VPIQ HCB, HCO, HLtheHTE, Hc (Hc_G, Hc_M, Hc_R, Hc_Y, Hc_B, and Hc_C)

Hc_SUM The total value of visual perception information quantity (VPIQ) based on Fuzzy
Comprehensive Evaluation (FCE)

SCV The fluctuation range of Hc_SUM in a street

HCK K-means clustering is performed based on 10 VPIQ indicators, and the diversity
of clustering categories in each street is calculated

Sum_avg The average value of Hc_SUM in each street
RLS Relative length of streets

Although HCK and SCV showed a significant positive correlation, there were still
many streets with high and low distributions of SCV and HCK. Thus, this section discusses
four scenarios based on a combination of two measures, HCK and SCV, which correspond to
the four different types of streets in the study area. Policy constraints indicated restrictions
on the nature of business and land use, landscape referred to the arrangement of street
elements at the street interface.

In the case of a street with high HCK and SCV (Figure 8a), this type of road reflects a
lack of control over street planning, core elements, and consistent style, which should be
considered in subsequent urban design. According to the correlation analysis and the actual
scenario, this street type has an uncoordinated configuration of elements, frequently with
an asymmetrical ratio of buildings to vegetation, resulting in a decrease in the proportion
of buildings or an increase in the proportion of vegetation, as predicted by the correlation
analysis. Thus, the form of vegetation has a greater visual impact than the pure greenery
proportion [40]. Simultaneously, the layout of street furniture and facilities is more disorga-
nized and unmanaged, resulting in a cluttered street interface and amplification of local
indicators values of form (HCB) and lines (HLI), such as Zhonghezhong Road East, Wunsa
Road, Renhe Road, and Changsheng Road. Nanshan Road is unique in that it connects
the city to the scenic area, requiring its landscape to adapt to the surrounding landscape’s
changing nature. Although both SCV and HCK levels were elevated, Sum_avg remained
low, indicating that the overall landscape was still under policy constraint. Consequently,
such roads must be evaluated in segments based on site characteristics.

Streets with a low HCK and SCV (Figure 8b) are generally well-managed or subject
to policy constraints and have a uniform appearance, but they can become too stagnant if
they are too long (high RLS) or have a low Sum_avg. Although these roads vary in terms
of scale, facilities, and adjacent businesses, they all feature attractive streetscapes, complete
building façades, and a high degree of VPIQ, which corresponds to the Pearson test results.
Because of the negative correlation between buildings and HCK and SCV, and the fact
that the majority of these streets have a building ratio less than the mean of 20.53 percent
and a harmonious relationship with the vegetation ratio, HCK and SCV were low overall.
Streetlights and traffic signals are largely concealed by vegetation, and the proportion of
street elements obstructing vision decreases, creating a more uniform overall feeling, as
observed on Qingchun Road, Qingin Street, and Wushan Road. However, while Sum_avg
is lower on Huimin Road, visual perception is more uniform but monotonous.
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Streets with a high HCK and a low SCV (Figure 8c) typically indicate a change in a
street section’s local appearance as a result of a change in the site’s nature, a change in
the primary business, or an unusual street condition. The extent to which this change is
beneficial must be determined in context. The impact of land use, such as a road crossing
a green space, results in a change in neighborhood appearance, a change in the type
of business, such as a commercial street surrounding a residential street, or an unusual
condition, such as the presence of a large-scale construction site. Overall, the relationships
and proportions of these streets are stable, and they all have an intact interface, which
results in low SCV. However, these changes result in localized visual perception fluctuations,
which increase HCK, and appropriate additions of street furniture and structures can be
considered to maintain the architectural interface [66]. Jiangcheng Road, Qingtai Street,
Yan’an Road, and Jianguo Middle Road are examples of such roads.

Streets with low HCK and high SCV (Figure 8d) are typically smaller-scale urban
roads with relatively stable businesses and styles; as a result, they have a low HCK, but
because they intersect with some major arterial roads with numerous tall buildings, tall
buildings appear at road intersections. Instead of being as rich in texture and color as other
buildings, these buildings are shaded by vegetation and have fewer divisions, resulting in
a decrease in the 10 VPIQ indicators overall, but little change in the overall proportion, as
seen in the area of Ma Shi Street–You Sheng Guan Road. However, in an older residential
area, local sections may lack shops and vegetation, as evidenced by insufficient building
setbacks or monotonous fences in institutional compounds, such as those on University
Road and Labor Road, which may be considered for community space renewal.

We must contextualize the Pearson correlation analysis results in terms of actual
space creation. For example, building proportion and wall proportion are negatively
correlated with HCK, which does not imply that simply reducing the building or wall
interface will result in larger changes in HCK. However, streets with higher HCK tend
to have lower building and wall proportions, thus enriching their façades and increasing
texture (HTE) and color information (Hc), while keeping the area of the building and wall
interface unchanged, can also improve HCK. Additionally, the differing form and location
of streetlights and traffic lights can affect their dividing effect on the streetscape, thereby
altering the original proportion of morphology and line information. When policy permits
or there is reasonable demand, the road surface can be appropriately widened, or the plant
configuration of the traffic separation zone can be enhanced to alter the road’s form (HCB)
and line information (HLI). All of these measures have the potential to alter the VPIQ of
street spaces.

In summary, streets with a high SCV are more likely to have anomalies, which usually
indicate that the street interface is confusing or incomplete, whereas HCK interpretation is
based on the actual situation to determine the reasonableness of the current street interface.
If SCV and HCK are both high or low when combined with Sum_avg, this determines
whether the current road requires improvement. The importance of using the VPIQ to
measure consistency is that it allows urban planners and management decision-makers to
quickly understand the current status of each street in data form and consider how to tailor
constructive planning solutions based on planning policies and demand positioning.

5.2. Significance and Application of Factors Affecting VPIQ

Each of the explanatory variables is discussed in terms of how it affects Hc_SUM and
how this information is understood and applied. This calculation is based on the GWR
model output, which provides planners with more detailed measurement results. This
demonstrates how different sections of the same street are differently affected by these
factors. Consequently, it can serve as a reference for more refined design solutions. The
relationship between the influence of each explanatory variable and Hc_SUM in the GWR
is shown in Figure 9.
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In the case of Building_A (Figure 9b), a negative correlation area typically indicates that
the mass or style of the building is somewhat controlled, and thus contributes less visual
information. For example, large commercial complexes and office buildings with a uniform
façade in the Hubin sub-region will be more minimalist than city streets with brightly
colored signs [68], resulting in a lower Hc_SUM. By contrast, positively correlated areas are
frequently defined by disparate building masses, richer façades, and increased obscuration
and division by other street elements, allowing architectural elements to contribute more
visual information, as evidenced by the abundance of shopfront signage and windows in
Wuliu Xiang historic district. Therefore, the regression result of Building_A can measure
the contribution of buildings in this area to the amount of visual perception information.
When the street interface is too chaotic, it can be judged that the building façade needs to
be simplified or enriched according to the positive and negative factors and the size of the
building_A variable in the current area or combined with other variables to obtain a more
comprehensive construction strategy.

According to the quartiles of the GWR regression coefficients (Figure 9c), Barrier_A
(mean = −0.096) has a greater influence on Hc_SUM than Building_A (mean = −0.070),
whereas the segmentation of the city spaces dataset indicates that fences and some street
furniture are likely to be classified as walls or terrains, indicating that these elements are
sufficiently important in the streetscape composition. The positive correlation indicates
that these areas have more structures built by residents and businesses, and that these
structures with street furniture have more diverse forms (high HCB) and lines (high HLI) or
distinctive textures (high HTE), and thus have a significant positive effect on Hc_SUM [66],
such as the northwest corner of Hubin sub-region, Qingbo sub-region, and Huancheng
East Road, Pi Shi Lane, and Ma Shi Street in Xiaoying sub-region The negative correlation
is most likely due to the presence of construction sites or institutional walls in the study
area, which are typically bland in form (low HCB) and monotonous in texture (low HTE)
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and color (low Hc), and thus contribute little to Hc_SUM. Therefore, the positive and
negative correlations of the GWR model in the Barrier_A variable reveal the visual impact
of the fence and street furniture in the current area, the management of street furniture and
structures in the positive correlation area, and the lost space needs outside the courtyard
fence in the negative correlation area receive attention.

In the case of Road_A (Figure 9d), there is a predominantly negative correlation
(mean = −1.357) in the study area, which is due to vehicle shading and the road’s lack of
distinct texture (HTE) and color (Hc), but also because streets with large areas typically have
more open space and are further away from elements such as buildings and vegetation,
diluting the texture and color details. The road traffic condition may be improved in
the positive correlation area, the interval distance moderates the traffic flow on the road,
creating the effect of separation, and an open work fence separates the road in the middle,
increasing the form (HCB) and line information (HLI). As a result, streets with high Road_A
values should pay more attention to the creation of backbone elements, such as buildings
and vegetation, while for areas with strong negative correlation, the visual impact of their
traffic conditions should also be considered in the design scheme.

The mean value of the regression coefficient in Infrustructure_A (Figure 9f) demon-
strated a strong negative correlation (−1.325). This appears to contradict the perception
that streetlights and fences divide the streetscape, increasing Hc_SUM. However, in reality,
most streetlights are obscured by vegetation, and fences are obscured by vehicles. These
elements lack rich color (high Hc) and texture information (high the), while traffic signals
only take up an insignificant proportion of the streetscape. It implies that road facilities,
such as Jiefang Road and Yan’an Road, do not contribute as much to Hc_SUM as theoret-
ically predicted. Rather, elements, such as light poles on streets in positively correlated
areas, such as Huan Cheng Dong Road, Qing Tai Street, and the area surrounding Ping
Hai Road-Qing Yin Street, are typically not obscured by trees. Streets in positively related
areas should pay attention to the relationship between street facilities and the surrounding
environment. If the current environment is too chaotic, it is necessary to reasonably choose
the shape and volume of facilities to avoid adding unnecessary visual information, while
streets in negatively related areas can consider enriching the appearance of street facilities
by using artistic materials, shaped fences, streetlights, etc. if they have the need to enhance
visual vitality.

Vegetation_A (Figure 9g) exhibits a strong negative correlation with the overall value
(−1.077), indicating that it mainly plays a more covering role in the streetscape. Addition-
ally, the sampling was mostly cloudy, resulting in a dull vegetation color (low Hc). The
shadows cast by tall buildings obscured vegetation’s texture (low HTE) and color (low Hc),
as well as its monotony, or it was too dense to block the sun, as in the Pinghai and Nanshan
roads. Some streets with less vegetation, such as Pi Shi Lane, also exhibited a negative
correlation. Excessive or insufficient vegetation can affect Hc_SUM, and previous research
has reached the same conclusion [39]. Light is a significant factor in the visual perception of
vegetation, and designers should pay attention to whether the vegetation in the streets of
the areas with strong negative correlation affects the vision too much, and promptly prune
the vegetation, appropriately replant colorful foliage plants, or consider the greening of the
building façade.

The regression coefficient for Hc_LA (Figure 9h) is less significant (mean = −0.017)
than that for Building_A, most likely because of some overlap in the information explained
by the two variables. The positive correlation is more pronounced in areas with a diverse
mix of businesses and prominent building façades. The variety of buildings, windows, and
signs along the street contributes a wealth of visual information. As can be seen, a diverse
mix of businesses frequently results in a more visually appealing street interface [68],
increasing visual information; for instance, in the commercial area of the Hubin sub-region,
the entirety of Jiefang Road, the railway station, and Wuliu Xiang areas. In contrast,
business density is generally sparse and homogeneous in negatively related areas, such as
the southern section of Nanshan Road, the northern section of Zhonghezhong Road, and
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the northeast corner of Xiaoying Street. The regression results of Hc_LA can reflect to some
extent whether the business dynamics of the location match with the street appearance,
so as to measure the reasonableness of the store appearance and street interface. Areas
with strong positive and negative correlation will be extra sensitive to the matching of
street business positioning and style atmosphere, and should be used as a reference in the
pre-planning stage.

The GWR model enables urban planners and decision makers to gain a more detailed
understanding of the factors and characteristics that influence the change in Hc_SUM
in a local area. Because the same street elements frequently have varying effects on the
Hc_SUM of different street sections, the GWR model will aid in the development of specific
plans by designers to focus on street elements that require additional attention to achieve
targeted results.

5.3. Summary

This study followed the urban planning and design process, beginning with a macro-
level discussion of the interpretation and significance of street spatial variation measure-
ments, revealing their two primary functions: detection and reference, which aid in quanti-
fying the current situation and planning development. This was followed by a meso-level
discussion on how each street element in a local area affects the VPIQ, highlighting street
elements that require additional attention in design and possible problems. The VPIQ
model is applicable throughout the process of urban planning and design and provides
scientific guidance.

6. Conclusions

The purpose of this study is to propose a method for quantifying the amount of visual
perceptual information in street spaces (VPIQ) and to apply it to Hangzhou, China’s old
city, adjacent to West Lake. We demonstrated the feasibility of using the VPIQ to quantify
spatial variation in street spaces and to interpret the visual perception influenced by street
elements through empirical analysis. This will increase the efficiency and accuracy of the
environmental control and spatial creation processes for urban streets.

Given that different positions evaluate the VPIQ measure differently, both in terms of
macro-level streetscape control and meso-level perception of neighborhood street scenes,
the approach presented here requires flexibility in its application by urban decision makers
and planners. After the development of a plan for road space creation based on the results
of spatial variation measurements, the GWR model continues to guide the selection of
street elements to be considered when developing a design plan.

The following research limitations exist in this study for objective reasons: (1) the
weather conditions caused inconsistent sky elements in streetscape images, obstructing the
measurement of blue and cyan color information; (2) API limits the efficiency of streetscape
image acquisition, increasing the difficulty of conducting large-scale studies.

As a result, future work will focus on the following topics: (1) utilizing image color
correction techniques to ensure the integrity of color measurements; (2) expanding data
access to include streetscape images from new towns and suburbs in future studies, thereby
making the model sufficiently universal; (3) developing new algorithms to replace tradi-
tional algorithms for calculating texture and color information to avoid loss of accuracy and
maximize research efficiency; (4) including time series in the calculation of spatial variation
to simulate pedestrian perception.
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Figure A1. Taking the occlusion and segmentation of buildings by vegetation as an example, compare
semantic segmentation statistics and HCB calculation methods.

Appendix B. Image Brightness Correction Display

The principle is to judge the color distribution of an image by obtaining histograms of
RGB channels for each street view. Generally speaking, the higher the R, G, and B values
(the upper limit is 255), the more likely it is that the image will have higher brightness. The
two quantile values are then set as the upper and lower limits of the RGB values in the main
part of the image. Then, the values outside the quantile value interval were removed, and
then the quantile value interval was stretched to 255 × 0.1 to 255 × 0.9 (to avoid pixel value
overflow), thereby correcting the image brightness. For images of sufficient brightness, a
judgment condition of not correcting the brightness of the image was added. In order to
easily identify the sky part, we used the original image in the “before” part.
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