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Abstract: An open problem impeding the use of deep learning (DL) models for forecasting land
cover (LC) changes is their bias toward persistent cells. By providing sample weights for model
training, LC changes can be allocated greater influence in adjustments to model internal parameters.
The main goal of this research study was to implement and evaluate temporal and spatiotemporal
sample weighting schemes that manage the influence of persistent and formerly changed areas. The
proposed sample weighting schemes allocate higher weights to more recently changed areas based
on the inverse temporal and spatiotemporal distance from previous changes occurring at a location
or within the location’s neighborhood. Four spatiotemporal DL models (CNN-LSTM, CNN-GRU,
CNN-TCN, and ConvLSTM) were used to compare the sample weighting schemes to forecast the
LC changes of the Columbia-Shuswap Regional District in British Columbia, Canada, using data
obtained from the MODIS annual LC dataset and other auxiliary spatial variables. The results indicate
that the presented weighting schemes facilitated improvement over no sample weighting and the
common inverse frequency weighting scheme for multi-year LC change forecasts, lowering errors
due to quantity while reducing overall allocation error severity. This research study contributes to
strategies for addressing the characteristic imbalances of multitemporal LC change datasets for DL
modeling endeavors.

Keywords: land cover change; spatiotemporal deep learning; geospatial data imbalance; sample
weights; inverse temporal distance weighting; spatiotemporal distance weighting; temporal
convolutional networks; recurrent neural networks; convolutional neural networks; land cover
data imbalance

1. Introduction

The abundance of openly available multitemporal remote sensing data continues to
expand, accelerating studies of land change and pursuits of data-driven modeling tech-
niques such as machine learning (ML) and deep learning (DL) [1]. These approaches have
circumvented the need to encode nonlinear relationships between numerous variables in
land change applications [2–4]. ML and DL methods are designed to learn patterns given
training data, labels, and a loss function [5]. In particular, DL methodologies applied to
multitemporal datasets have demonstrated favorable outcomes for LC classification and
forecasting [5–7]. For example, recurrent neural networks (RNNs) are useful for extrapolat-
ing from timeseries data [5,6], and their combination with convolutional neural networks
(CNNs) facilitates the extraction of spatial features from each timestep [7]. However, many
DL models are sensitive to data imbalances, exhibiting biases toward samples belonging
to majority groups characterizing the dataset [8–10]. Persistent areas dominate most land
cover datasets [11], presenting a large challenge for the application of DL methodologies
due to the relatively small amount of changed areas [12]. Therefore, mitigation of imbalance
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between changed and persistent areas is required for DL methodologies to be effective for
LC change forecasting.

Previous studies have applied sampling strategies and data augmentation techniques
to address the imbalance of changed and unchanged areas. For example, balanced sam-
pling schemes were implemented to provide ML models equal numbers of changed and
persistent samples using random sampling [13,14] and an iterative bootstrap sampling
approach [15]. However, DL models benefit from larger amounts of data [4], inspiring
geographic dataset augmentation procedures including adaptations of the synthetic mi-
nority over-sample technique (SMOTE) [16], transformations of data samples such as
rotations and flips [17], and synthetic sample generation with generative adversarial net-
works (GANs) [18]. Despite this, such approaches have not been adapted to the dynamic
characteristics of land change timeseries data, nor do they maintain directional spatial rela-
tionships in the case of manual transformations or the real-world spatiotemporal context
of geographic data samples. Other strategies aimed at mitigating data imbalance include
cost-sensitive methods such as sample weighting [9]. By allocating increased penalties to
significant or minority samples, the spatial phenomena of interest have greater influence
on the learned parameters of DL models [19]. Using sample weighting schemes, scarcer or
anomalous geographic phenomena can be allocated higher importance in model training
procedures without data-level manipulations.

Sample weights were previously explored to improve forecasts of underrepresented
peak air pollution concentrations [20], to increase the importance of nearby samples for
location recommendations [21], and to boost multi-class LC classification accuracy through
inverse frequency weighted categorical cross-entropy [22]. Temporal and spatiotemporal
distance decay were also implemented for modeling house prices with local regression
techniques [23] and video target tracking with spatiotemporal DL models [24] to diminish
the influence of locations or features based on both temporal and spatial proximity. While
variations of temporal and spatiotemporal sample weighting schemes were explored for
other model types and applications, it remains unknown how temporally and spatiotempo-
rally weighted samples would affect the capacity of spatiotemporal DL models to forecast
LC changes versus the commonly used inverse frequency weighting scheme.

The main objective of this research study was to propose and evaluate the potential
effect of temporally and spatiotemporally weighted samples for managing the imbalances
that inhibit DL model capacity to forecast LC changes. While it is acknowledged that per-
class disparities characterize a second dimension of imbalance impacting the capacity of DL
models to forecast LC changes [12], this research study focuses on LC changes overall. The
new sample weighting schemes are implemented with the intent of ensuring more recently
changed areas and changed locations with transitioning neighborhoods are more impactful
in model training. This is achieved through inverse distance weighting schemes which
allocate changed samples variable importance based on temporal and spatiotemporal
proximity. Meanwhile, all persistent LC samples are assigned lower importance. The
experimental cases compare four types of spatiotemporal DL models trained using the
proposed sample weighting schemes versus those trained with no sample weights and
inverse frequency weighted samples. The assessment uses change-focused measures to
highlight potential improvements associated with the proposed sample weighting schemes
for 5-year LC change forecasts. The goal is to determine if trends observed across all model
types are maintained for a multistep LC forecast.

2. Methodology
2.1. Study Area and Datasets

The study area selected for this research work was the Columbia-Shuswap Regional
District in British Columbia, Canada (Figure 1a). In 2016, the population of this region
was 51,366, and Salmon Arm was its largest city [25]. The MODIS dataset was utilized
to provide annual LC data at 500 m spatial resolution, covering 2001 to 2020 [26]. The
vast majority of the region was characterized by forests and shrublands, with these two
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LC classes spanning 45% and 40% of the area in 2001, respectively. Because per-class LC
changes are not the priority of this research study, eight aggregated LC classes were used
to preserve the characteristics of the region. The net change that occurred between 2001
and 2020 was 21,202 km2, with 2076 km2 of average annual change (Figure 1b).
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Figure 1. Study area of the Columbia-Shuswap Regional District, British Columba, with (a) land
cover for 2001 and (b) annual net land cover changes for the region from 2001 to 2020. Data are
displayed with the NAD 1983 BC Environment Albers projected coordinate system.

In addition to multitemporal LC data, static spatial variables provide auxiliary infor-
mation about drivers of land changes. Topographic variables provided are elevation and
slope [27,28], alongside accessibility variables derived by calculating the Euclidean dis-
tances to population centers [6], roads [7], railways [3], protected areas [7,29], agricultural
reserves [30], and lakes and rivers [29]. The ASTER global digital elevation model was
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acquired for the topographic variables [31] and the proximity variables were computed
with respect to data layers available from Statistics Canada [32,33]. All data layers were
resampled to the MODIS dataset using nearest neighbor interpolation for categorical layers
and bilinear interpolation for the continuous layers, since the LC dataset exhibits the coars-
est spatial resolution. The LC data and auxiliary variables are reprojected to the NAD 1983
BC Environment Albers projected coordinate system, preserving planar area measurements.
Data preprocessing procedures were completed in the ArcGIS Pro 2.9.1 software before
deriving samples and sample weights in the next steps described.

2.2. Capturing Neighborhood Effects in Land Cover Data Samples

Before developing sample weights, the training data samples were extracted with
respect to each cell of the study area. “Neighborhood effects” refer to the impact of changes
and structure of phenomena in the vicinity of a sample location [34]. The LC at a sample
location is highly dependent on the states and changes that occur around it, making
neighborhood effects important to consider in LC change forecasting [4]. To integrate
neighborhood effects in this research study, the LC composition surrounding each location
at every timestep was included in each data sample. Considering the raster geospatial
data layers described in Section 2.1, data samples were acquired for every cell comprising
the study region using a Moore neighborhood configuration. A Moore neighborhood
captures N cells provided a range parameter r, where N = (2r + 1)2 cells [35]. Samples
were obtained considering each cell as a central cell, with neighborhoods capturing cells
within range r from the central location across all timesteps. The neighborhood size can also
be referred to with respect to the areal dimensions captured by each sample, M × M, where
M refers to how many cells comprise the longest edge of the central cell’s neighborhood.

Data samples for the Columbia-Shuswap Regional District included both spatiotem-
poral LC and auxiliary spatial variables. The spatiotemporal LC obtained for each location
was of size T × M × M × C, where T signifies the number of timesteps, and C rep-
resents the number of LC classes. The spatial variables were provided in the form of
M × M × V, where V denotes the number of variables. The neighborhood dimensions used
in this research study were set to 9 × 9 (or r = 4 cells in every direction from the central
cell), according to other studies employing DL models [36–38] and findings suggesting
land changes are captured well when M is less than 5 km with 500 m spatial resolution
data [39]. Therefore, the 9 × 9 neighborhood captured the LC and spatial variables for a
20.25 km2 area around each cell in the study region.

2.3. Model Specifications

The models implemented in this research study included those adapted for the
spatiotemporal samples provided alongside auxiliary spatial variables as described in
Section 2.2. Specific DL models called recurrent neural networks (RNNs) are useful for
extracting patterns from sequential or timeseries data [37]. RNN implementations exhibit
different variations in architectures, including long short-term memory (LSTM) [40] and
gated recurrent units (GRUs) [41]. Temporal convolutional networks (TCNs) provide an
alternative to RNNs for sequence modeling, using convolutional neural networks (CNNs)
that operate on the temporal dimension of a geospatial dataset [42]. However, on their
own, these sequence modeling techniques do not extract spatial correlations within data
samples. Instead, capturing neighborhood effects first with traditional CNNs [43] and
providing the outputs to sequence models (i.e., LSTM, GRU, and TCN) implements hybrid
spatiotemporal models, which have been used to capture spatial and temporal patterns
of land change [7,44]. Despite demonstrated integrations, these hybrid models do not
capture explicit spatial and temporal relationships simultaneously. As such, convolutional
LSTM (ConvLSTM) was formulated to accommodate spatiotemporal relationships directly,
providing benefits over CNN-LSTM implementations [45].

The four spatiotemporal DL model types implemented in this research study were
CNN-LSTM, CNN-GRU, CNN-TCN, and ConvLSTM. Each model was equipped with two
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input branches, accommodating the spatiotemporal LC sequences and the auxiliary spatial
variables, respectively. This is similar to how 3D and 2D variables have been integrated in
DL models in other geographic applications [46]. The general structure of the branched
model implemented is shown in Figure 2.
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Figure 2. Overview of the basic branched model structure used to accommodate the 9 × 9 spa-
tiotemporal land cover sample sequences and the auxiliary spatial variables. The “spatial branch” is
implemented with CNN layers. The “spatiotemporal branch” implementation varies according to the
model type, characterized by CNN-LSTM, CNN-GRU, CNN-TCN, or ConvLSTM layers. Location x,
y in the land cover sample is denoted in red, indicating the central cell of the neighborhood.

For all model types, the spatial variable input branch (denoted as “spatial branch” in
Figure 2) was implemented with two sets of two convolution layers with 32, 32, 64, and
64 filters, respectively. After each set of two CNN layers, a 2 × 2 max pooling operation was
applied. Next, the spatiotemporal LC input branch (denoted as “spatiotemporal branch”
in Figure 2) was implemented according to the model type. The implementations for
CNN-LSTM, CNN-GRU, and CNN-TCN were adapted from previous studies [46,47]. To
implement the spatiotemporal branch of the model, spatial relationships from each timestep
of the LC data samples were first extracted using CNN. Two sets of two convolution layers
were followed by 2 × 2 max pooling operations, where the CNN layers were parameterized
by 32, 32, 64, and 64 filters, respectively, with the ReLU activation function. The outputs
of the CNN operations were flattened and provided to the temporal model component
characterized by LSTM, GRU, or TCN of the respective models. The CNN-LSTM and
CNN-GRU models each featured two recurrent layers of 32 and 128 neurons using the
tanh activation function, respectively, based on previous implementations [36]. The CNN-
TCN model featured two layers with 32 and 128 filters, with the ReLU activation function.
The ConvLSTM implementation had two ConvLSTM layers, featuring 32 and 128 filters,
respectively, with the ReLU activation function. The kernel size for all CNN and ConvLSTM
layers was set to 3 × 3, as seen in previous research studies [36,48]. Before concatenating
outputs of each model branch, a dropout factor of 10% was applied. Dropout regularization
randomly drops a specified percentage of neurons with the intent of preventing the model
from overfitting [49]. Lastly, the fully connected output layer featured nine neurons and
the Softmax activation function, which outputted the probability of each LC class label [17].
For all models, the LC and spatial variable data samples were provided with neighborhood
effects explained in Section 2.2. The LC data for each sample location were supplied directly
to the spatiotemporal input branch in the form of T × M × M × C, and auxiliary spatial
variable data were provided in the form of M × M × V to the spatial variable input branch.
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2.4. Categorical Cross-Entropy Loss

Supervised DL models were trained by optimizing weights of a network with respect
to some objective function or loss function [50]. Using the gradient descent (or stochastic
gradient descent) algorithm, the aim is to minimize or maximize the amount of error
between the real-world and projected value. Forecasting multi-class LC is formulated as
a classification problem, requiring an objective function equipped for this probabilistic
task. The categorical cross-entropy (CCE) is commonly used for classification problems,
facilitating learning of multiple classes by backpropagating error with respect to forecasted
values and real-world LC classes [51]. The CCE function computed with respect to sample
i is expressed as follows as per previous studies [22]:

CCEi = −
C

∑
c=1

ŷc log(yc),

where LC class labels are one-hot encoded vectors, denoted by ŷc and yc, where ŷc repre-
sents the real-world LC of class c, and yc represents the forecasted LC for the location. C
represents the number of LC classes.

In the computation of error with respect to the CCE function, every sample is given
the same amount of influence on model updates. By adding a weight factor to the CCE
function, samples can be given varying error penalties that consequently have differing
impacts on model weight adjustments during model training procedures [52]. This is
expressed as follows:

WCCEi = −
C

∑
c=1

ŷc log(yc)·wi,

where wi represents the sample weight of sample i. Values for wi assume the sample
weights described in the next section.

2.5. Calculating Temporal and Spatiotemporal Sample Weights

This research study provides three new LC sample weighting schemes to improve
model capacity to capture changes. The proposed temporal and spatiotemporal sample
weights were implemented to bypass the need for any manual assignment of cost values to
samples, which is challenging in many real-world applications [9]. The sample weighting
schemes were based on temporal and spatiotemporal proximity to changes, achieved
using the inverse distance weighting (IDW) approach [53]. For the task of LC change
forecasting, the aim was to first identify whether a location underwent a change, then
refine the sample weight based on whether the change happened recently or whether the
location’s neighborhood underwent a recent change. Accommodating temporal decay
addresses temporal heterogeneity by giving higher importance to recently changed cells,
thus decreasing the impact of changes that occurred long ago. For instance, notably larger
quantities of changed areas were observed between 2002 and 2003 (Figure 1b). Under
the proposed sample weighting schemes, locations that changed but remained persistent
following 2003 were weighted less than those that underwent changes more recently.
Additionally, even if the change occurred earlier, a sample of a formerly changed location
with an actively changing neighborhood was weighted with higher importance.

The effects of the three new sample weighting schemes are compared against un-
weighted samples and the widely used inverse frequency weighting scheme. Therefore,
the five sample weighting schemes implemented in this research study were as follows:

1. Unweighted (base case or “none”), where no sample weights were used;
2. Binary weights (BW), where a traditional inverse frequency weighting scheme used

the inverse frequency of changed versus persistent sample counts to assign
sample weights;

3. Temporal weighting scheme 1 (TW1), where the inverse temporal distance weight
was computed with respect to the most recent change of the central cell;
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4. Temporal weighting scheme 2 (TW2), where the inverse temporal distance weight
was computed with respect to the most recent change of the cell’s neighborhood;

5. Spatiotemporal weighting scheme (STW), where the inverse spatiotemporal distance
weight was calculated with respect to the most recent change that occurred within the
neighborhood of the central cell.

To compute the sample weights of the training data samples, changes were considered
within the temporal extent of 2001 to 2014 (Figure 1b). The three steps to implement the
weighting schemes are as follows:

Step 1. Identify whether a change has occurred at the sample location, or central cell
of the neighborhood (Figure 2). If the number of change incidents was one or greater from
2001 to 2014, the cell was considered as changed.

Step 2. Compute the inverse frequency weight according to the counts of persistent
and changed cells. Similar to another research study [54], the initial weights of the sam-
ples were calculated on the basis of their overall type. For LC data, the initial weight
of the changed samples was bci = P/(P + C), and the weight of persistent samples was
bpi = C/(P + C), where the number of changed cells is denoted by C, and the number of
persistent cells is denoted by P. Persistent samples were assigned non-zero weights because
they were still important to the learned model structure. Therefore, persistent sample
weights (wpi ) assumed the values of bpi and required no further updates. This concludes
the calculations required to implement the BW scheme, while temporal and spatiotem-
poral variation was added to changed sample weights in Step 3 for the TW1, TW2, and
STW schemes.

Step 3. With the effect of persistent cells managed in Step 2, the sample weight
calculations for the TW1, TW2, and STW schemes were applied to the changed sample
weights (wci ) as a function of the temporal and spatial variation occurring at the central
cell and within its neighborhood over time. To implement the temporal weighting schemes
(TW1 and TW2), the temporal distance from the most recent year of the training sample
was computed with respect to the most recent change at the central cell (dcc) and to the
year of the most recent change occurring in the neighborhood of the central cell (dcn),
respectively. For the spatiotemporal weighting scheme (STW), the spatiotemporal distance
was computed from the location and year of the latest central cell in a sample and the
location and year of the most recently changed cell in its neighborhood

(
dST

cn
)
. Table 1

shows the formulations of TW1, TW2, and STW. By expanding the weighting schemes to
consider changes taking place within a cell’s neighborhood, the TW2 and STW schemes
increased the weight of change samples with recent nearby transitions. This means that
more dynamic change samples had greater influence on model parameter adjustments
during the training procedure using the TW2 and STW schemes. The IDW power or
exponent parameter was set to one because the spatial resolution of this research study
was coarse and there were limited timesteps available, as well as to ensure weight values
associated with of historical changes were non-zero. The resulting sample weights are
presented in Figure 3. No manual adjustments or normalization techniques were applied
to the weights to further influence sample importance. Therefore, the maximum possible
weight values were constrained by Step 2, where the inverse proportion of changed and
persistent cells was calculated. This led to the maximal weight value of 0.9 (Figure 3).

Table 1. Sample weight scheme applied to samples identified as changed.

Sample Weight Scheme for
Changed Locations Formula Description

Binary weight (BW) wci = bci = P/(P + C) The inverse proportion of changed versus
persistent samples

Cell-change temporal weight (TW1) wci = bci ∗ 1
dcc

= bci ∗ 1
tn−tcc

Temporal distance (dcc) between most recent
year (tn) and the year of the most recent change

event of the central cell (tcc)
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Table 1. Cont.

Sample Weight Scheme for
Changed Locations Formula Description

Neighborhood-change temporal
weight (TW2) wci = bci ∗ 1

dcn
= bci ∗ 1

tn−tcn

Temporal distance (dcn) from the most recent
year (tn) and the year of change event occurring

in the neighborhood of the central cell (tcn)

Spatiotemporal weight (STW)
wci = bci ∗ 1

dST
cn

= bci ∗ 1√
(x−xcn)

2+(y−ycn)
2+(tn−tcn)

2

Spatiotemporal distance (dST
cn ) from the central

cell (x, y, tn) to the nearest changed cell in its
neighborhood (xcn, ycn, tcn)
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2.6. Model Assessment

The measures selected for evaluating model performance in this study focused on
LC changes instead of overall accuracy, since high accuracy values cannot be used to
express the capacity of a model to forecast changes [55]. Instead, the assessment included
figure of merit (FOM), producer’s accuracy (PA), and user’s accuracy (UA) [56], which
were identified as more appropriate for evaluating LC change forecasts. FOM provides a
measure of agreement between forecasted changes and real-world changes, calculated with
respect to “hits”, “misses”, “wrong hits”, and “false alarms”. Computations for PA and UA
involve subsets of the terms comprising the FOM measure. PA indicates the proportion of
area that a model forecasts correctly as changed with respect to real-world changes, whereas
UA suggests the amount of correctly forecasted changes versus all projected changes. The
correct changes (“hits”), missed changes (“misses”), incorrect changes (“false alarms”),
and correct persistence (“correct rejections”) components of agreement and disagreement
used to compute the FOM measure are also reported separately to showcase quantity and
allocation of changes [57].

To conduct an error analysis, the error due quantity, error due to allocation, and alloca-
tion error distance [58] were calculated for each model and sample weight combination.
Allocation error distance (AED) provides information about the severity of allocation errors,
where the distance between the real-world locations and locations of erroneous forecasts
were averaged with respect to each LC class [58]. Because LC class or category imbalance
was not addressed in this research study, AED was computed with respect to all alloca-
tion errors (AEDoverall), the largest classes (AEDlarge), the classes deemed “medium-sized”
(AEDmedium), and the smallest classes (AEDsmall). The purpose was to identify where the
most severe AEs stemmed from. The large class size category encompassed evergreen
forests, shrublands and savannas, and barren land, comprising 91.1% of the study area.
The medium class size category captured permanent snow and ice, water bodies, and
deciduous forests, covering 8.7% of the study area. The smallest classes were urban and
built-up lands and croplands, occupying less than 1% of the study area.

Python 3.9.1, GDAL 3.3, and Rasterstats 0.17.0 were used to implement the allocation
error distance approach conveyed in prior work [58] and the other change-focused mea-
sures. In this research study, the FOM measure was used to identify six top-performing
models based on the 2016 LC forecast. The performance of these models was then compared
across the multi-year LC change forecasts to determine if trends were maintained. The
mapped FOM components also supported a visual assessment for the forecasts produced
by the best-performing models identified with respect to their capacity to forecast changes.

2.7. Experiment Settings

The models were implemented to the specifications described in Section 2.3 with
Python 3.9.1 [59], the Keras API [60], TensorFlow 2.5.0 [61], and an open-source imple-
mentation of TCN (Keras-TCN 3.4.0) [62]. The CCE loss function described in Section 2.4
was employed in all models. To train the models, the batch size was set to 128, and the
Adam optimizer was used with an initial learning rate of 0.01 [7]. Early stopping and
learning rate reductions (using the “ReduceLROnPlateau” function from TensorFlow) were
utilized to ensure that model training ceased or that the learning rate was decreased when
performance gains were negligible [63].

In this study, the multi-year forecasts were generated using a “rolling-window”
strategy according to the implementation in previous work [64]. Instead, “sequence-
to-sequence” forecasting was demonstrated to circumvent the propagation of error across
projected timesteps [44], as this approach would reduce the already limited timesteps
available and lead to short sequences of MODIS LC data, which impeded DL models for LC
change forecasting in a prior study [65]. With the “rolling-window” strategy, a multi-year
LC change projection was produced using the previous forecast as the next timestep of
the testing sequence. The LC data spanning 2001–2014 were used to populate the training
dataset, while 2015 was withheld for model validation and 2016–2020 was used for model
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testing. Samples from the 2001–2014 training dataset were obtained using a rolling-window
approach based on a previous application [66], where 10 timesteps comprised the training
sequence, with the following timestep withheld as the training label. Therefore, the training
data sequences spanned tn, tn+1, . . . , tn+9, with tn+10 as the training label. Each data sample
comprised spatiotemporal LC data and static spatial variables with the neighborhood
specifications expressed in Section 2.2. Samples for every location are provided to train the
model with the sample weights described in Section 2.5 and shown in Figure 3. The four
model types were trained considering each sample weight scheme (none, BW, TW1, TW2,
and STW), where “none” refers to the experimental combinations or base case in which no
sample weighting scheme was applied.

3. Results
3.1. Multi-Year Change Assessment

The model assessment described in Section 2.6 was used to quantify the impact of
the proposed sample weighting schemes across the four model types. With respect to
the FOM measure obtained for 2016, the top six model and sample weight combinations
were CNN-TCNSTW, CNN-GRUSTW, ConvLSTMTW2, ConvLSTMSTW, CNN-LSTMTW1, and
ConvLSTMTW1 (Figure 4). Following the FOM values obtained by these model and sample
weight combinations, there was a 19.7% difference between the next model and sample
weight combinations (Figure 4) and a substantial drop in FOM values observed for the
base case (denoted as “none”). All sample weighting schemes facilitated improved FOM
measures over the base case for the 2016 LC change forecasts, regardless of model type. The
BW scheme was associated with consistently improved FOM values compared to the base
case, although the top combination using BW (CNN-GRUBW) was 27.6–32.6% lower than
the top six performers identified. In addition, the STW scheme was associated with higher
FOM values for three of the four model types (CNN-GRU, CNN-TCN, and ConvLSTM)
(Figure 4). FOM values obtained with the TW2 scheme also enabled improved performance
versus the BW scheme for the same three models. The TW1 scheme worked well for
CNN-LSTM and ConvLSTM, but reduced FOM values for CNN-GRU and CNN-TCN.
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Figure 4. Figure of merit (FOM) values obtained for each model type and sample weight combination
for the 2016 LC forecast. The model and sample weight combinations with the top six FOM values
are denoted with the prefix **.

After identifying the top six models with respect to FOM values computed for the
2016 forecasts, it was observed that these models maintained the highest FOM measures
over the 5-year projection (Figure 5a). Meanwhile, the FOM values remained low for the
base case, showing that no sample weights produce underperforming LC change models,
regardless of model type. The BW scheme maintained consistent effects on all model
types, although CNN-TCNBW and CNN-GRUBW showed a slight increase over time. In
contrast to the initial trends seen in Figure 4, ConvLSTMTW1 surpassed ConvLSTMSTW and
ConvLSTMTW2 after the 2017 projection, while CNN-TCNSTW, CNN-GRUSTW, and CNN-
LSTMTW1 continued to yield the highest FOM measures (Figure 5a). The PA measures
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computed with respect to changed areas followed the same trends (Figure 5b), showing that
the proportion of forecasted versus real-world changes was highest in forecasts obtained
from the top six model and sample weight combinations. In contrast, the UA showed
a trend dissimilar to those seen with FOM and PA measures (Figure 5c). The highest
UA measures were obtained by CNN-LSTMNone and ConvLSTMNone, showing that the
proportion of correctly simulated changes versus all projected change was high. The low
quantities of changes projected with no sample weights boosted UA measures over time,
as these measures were inflated by small amounts of projected LC change, as indicated by
“hits”, “false alarms”, and “wrong changes” for both 2016 and 2020 (Figure 6a,b). Notably,
ConvLSTMTW2 and ConvLSTMSTW exhibited higher UA measures than the other top six
models. This indicates that these combinations forecasted higher amounts of correctly
changed areas out of all forecasted changes and reduced incorrectly changed areas, despite
not attaining the maximal FOM or amount of hits (Figures 5c and 6). Overall, CNN-
TCNSTW yielded the highest amount of correctly changed area of all the 2020 LC change
forecasts (Figure 6). The highest quantity of hits or correctly changed area for each model
type was associated with TW1, TW2, and STW, except for CNN-GRUTW1. Additionally,
CNN-TCNSTW and ConvLSTMTW1 produced the highest number of false alarms of the top
six models.
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3.2. Multi-Year Error Analysis

The highest amount of EQ was observed for every model’s base case, in which no sam-
ple weights were used (Figure 7a). Meanwhile, three of the top six models (CNN-LSTMTW1,
CNN-GRUSTW, and CNN-TCNSTW) provided the lowest EQ for their respective model
types, showing that each projected more realistic quantities of changes. ConvLSTMTW1
preserved the lowest EQ for the ConvLSTM model type, while EQ values attributed to
ConvLSTMTW2 and ConvLSTMSTW gradually exceed those of ConvLSTMBW. Conversely,
the base case attained the lowest EA measures, corresponding to the minimal quantities
of false alarms and wrong changes observed (Figures 6 and 7b). Of the top six models,
CNN-LSTMTW1, CNN-GRUSTW, CNN-TCNSTW, and ConvLSTMTW1 forecasted the highest
amounts of changed area allocated incorrectly, while ConvLSTMSTW projected the lowest
EA for each step of the 5-year projection.
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Figure 7. Cumulative errors from 2016 to 2020 for (a) error due to quantity (EQ) and (b) error due to
allocation (EA). The model and sample weight combinations with the top six FOM values for the
2016 forecast are indicated by bold lines.

Considering the distance of erroneous allocations to real-world LC category locations,
the AEDoverall, AEDlarge, AEDmedium, and AEDsmall maintained similar trends across the
5-year forecast (Figure 8). AEDoverall and AEDlarge values showing the smallest or nearest
allocation errors were associated with the 2016 forecast by ConvLSTMTW2 (Figure 8a,b). For
AEDoverall, a notable deviation was observed for CNN-TCNBW, where the overall allocation
error severity exceeded the unweighted base case. The top six models produced overall
allocation errors generally closer to the real-world areas than the unweighted base case in
the projections for 2017–2020. The same trend was also noted for AEDlarge, except for the
2017 forecast produced by ConvLSTMTW1. However, it was observed that the erroneous
large class allocations were either corrected or were more agreeable with the real-world
2018 LC allocations, as the AEDlarge value decreased for the next timestep. It should be
noted that the spread of AEDoverall and AEDlarge values was not substantial, indicating
that overall allocation errors and allocation errors attributed to the largest LC classes were
marginal with respect to the spatial resolution of the dataset. The AEDmedium showed that
the top six models produced allocation errors nearer to the real-world classes than the
unweighted base case, except for the ConvLSTMSTW model (Figure 8c). While AEDsmall
values computed from the 2016 forecast were zero for ConvLSTMSTW and ConvLSTMTW2,
larger deviations were observed between 2018 and 2020. This implies agricultural or
built-up areas were forecasted far from their real-world allocations.
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3.3. Visual Assessment

For the visual assessment, CNN-TCNSTW and ConvLSTMSTW were considered be-
cause the first exhibited the highest FOM, while the latter forecasted the smallest number of
false alarms among the top six models. For the 2016 forecasts, the false alarms and misses
exhibited a “salt-and-pepper” appearance (Figure 9a,c). The CNN-TCNSTW exhibited a
few small clusters of false alarms in the west and southwest of the study region. However,
for the 2020 LC forecast, CNN-TCNSTW showed more distinctive clusters of false alarms
surrounded by correct changes. Areas that were persistent that were forecasted incorrectly
as changed appeared to be near to or at the locations that had higher sample weights
(Figures 3d and 9b). The 2020 forecast from ConvLSTMSTW showed smaller and fewer
clusters of false alarms. It was shown previously that misses contributed the most errors
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(Figure 6), and missed changes were shown to be visually consistent across both 2020
projections (Figure 9b,d).
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4. Discussion

The results obtained in this research study demonstrated that, regardless of the DL
model chosen, the proposed sample weighting schemes were beneficial for forecasting LC
changes. The TW1, TW2, and STW schemes generally showed improvement over the tradi-
tional BW scheme. In particular, the STW scheme improved the FOM measures compared
to the BW scheme across all model types explored. With respect to FOM values obtained
for 2016 LC forecasts, six model and weight combinations were identified: CNN-TCNSTW,
CNN-GRUSTW, ConvLSTMTW2, ConvLSTMSTW, CNN-LSTMTW1, and ConvLSTMTW1. It
was observed that the highest FOM measures associated with these six combinations were
maintained for the 5-year projection. Furthermore, the top six models attained the highest
PA measures. The UA measures highlighted some interesting trends among the weighting
schemes, notably for ConvLSTM. The gradually increasing UA observed for ConvLSTMSTW
with respect to cumulative forecasted changes indicated consistent increases in correct
changes versus all projected changes, while forecasting fewer false alarms or incorrect
LC transitions. Overall, STW was most beneficial for CNN-GRU and CNN-TCN across
all experiments, while TW1, TW2, and STW similarly benefited ConvLSTM models. The
TW1 scheme benefited CNN-LSTM most for all timesteps of the 5-year projection, and
the FOM values associated with ConvLSTMTW1 also surpassed those of ConvLSTMTW2
and ConvLSTMSTW after 2017. This aligns with the observation that sample weight values
and variations of TW1 and STW are more similar than those characterizing TW2 or BW
schemes (Figure 3). However, the similarities did not expound the approximate 2% dif-
ference between FOM measures of CNN-LSTM and CNN-GRU with the TW1 and STW
schemes (Figure 5a). This requires future investigation of model parameters, structure, and
regularization techniques with respect to the weighting schemes. TW2 was associated with
only one of the top six models (ConvLSTMTW2) and did not facilitate similar performance
to models trained with STW for the other model types. This may be because TW2 sample
weight values were more like those of the traditional inverse frequency weighting (BW)
scheme observed across the study area (Figure 3a,c).

Considering the types of errors associated with the top six models, CNN-TCNSTW
forecasted the highest amount of correctly changed areas while forecasting the most false
alarms for the 2016 projection. However, CNN-TCNSTW forecasted the second most false
alarms for the 2020 projection, superseded by ConvLSTMTW1 projecting the most persistent
area incorrectly as changed. If maximizing the agreement of changed areas for the 5-year
forecast was the sole objective, CNN-TCNSTW would have been regarded as the “best”
model and sample weight combination. Meanwhile, ConvLSTMSTW forecasted 86.3%
fewer false alarms with less error due to quantity (EQ) after 5 years, which was apparent in
the visual assessment (Figure 9). With respect to the AED measures, the expectation was
that all sample weighting schemes would help mitigate allocation error severity overall
and with respect to the largest classes, which was typically the case. The AED measures
indicated that the worst allocation errors were generally associated with medium and
small size classes, which makes sense because no techniques were used to address the LC
class imbalance problem and since optimizing per-class change allocations was not the
objective of this study. However, the AEDmedium indicated that the top six models generally
produced less severe allocation errors than the unweighted base case. The exception to this
trend was ConvLSTMSTW, suggesting that one or more of the medium-sized classes were
not well-allocated by this model. AEDsmall measures also indicated ConvLSTMSTW and
ConvLSTMTW2 forecast built-up or agricultural areas far from their real-world allocations.
This outcome was expected, as this second dimension of imbalance characterizing LC
datasets adds challenges for multi-class change forecasting with DL models. As such,
future research studies should investigate further combinations of sample weights with
class weights or the focal loss function [67] to reduce the quantity and allocation error
distance with respect to non-majority LC categories.

From the visual assessment, it was observed that the spatial variations of weights for
the STW scheme (Figure 3d) were associated with the agreeing and disagreeing allocations
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of LC changes forecasted with CNN-TCNSTW and ConvLSTMSTW (Figure 9). The CNN-
TCNSTW combination appeared more sensitive to the higher sample weight values in
some areas, which was more noticeable in the 2020 forecast (Figure 9b). For instance, the
projected hits and false alarms were typically seen clustered around locations with larger
sample weights (Figures 3d and 9b). This may suggest that persistent samples still require
reduced weights or undersampling strategies to manage their influence on learned model
parameters. This outcome may also hinge upon the model type, since the 2020 forecast
produced by ConvLSTMSTW appeared less influenced by areas where the sample weight
computed for the location was high. Conversely, in each resulting map, both sporadic and
clustered areas of missed changes existed at similar spatial locations for areas with low
weight values. However, given the appearance of more clustered hits and false alarms
in the 2020 projections (Figure 9b,d), the STW scheme may be beneficial for future works
seeking to manage properties like spatial variability [68].

The goal of this research study was to improve LC change forecasting with DL models
by proposing and evaluating a sample weighting scheme that integrated temporal and
spatiotemporal proximity from geographic timeseries data. The effect of sample weights de-
rived from temporal and spatiotemporal distance from recent changes was unexplored for
LC change forecasting with DL models, which are highly influenced by mostly persistent ar-
eas. It is also acknowledged LC change rates are typically small [69]. Missed changes were
the most common error attributed to all model and sample weighting scheme combinations
(Figure 6). Yet, previous modeling endeavors attained 3.38% correct changes using 15-year
temporal resolution data [27]. Therefore, 1.05% of correctly changed areas achieved by the
CNN-TCNSTW for the 5-year projection may have been somewhat comparable. Addition-
ally, the FOM measure had a positive linear relationship with net observed changes [56].
For example, a land change model with 10-year temporal resolution obtained an FOM
value of 9%, with less than 5% of the study area undergoing changes during that time
period [28]. This corroborates the values obtained in this research study, in which CNN-
TCNSTW attained an FOM value of 7.8% with only 3.8% of the region undergoing changes
from 2016 to 2020. Future work should consider further optimization of models and sample
weighting schemes for datasets with finer spatial resolutions, expanded neighborhoods,
longer LC sequences, and noisy datasets. Climatic variables are also important drivers of
LC change [70] and should also be integrated to further enhance model capacity to forecast
changes alongside the sample weighting schemes. Additional adjustments to computed
sample weights may also be beneficial, as previous work identified that low weights were
negligible in their effect on model training procedures [20]. Lastly, combinations of data
augmentation [16] and the removal or undersampling of persistent samples [14] may be
beneficial alongside the proposed sample weighting schemes. Nevertheless, the risk of
removing potentially important LC data samples remains an open problem.

5. Conclusions

This research study explored the potential of proposed inverse temporal distance and
inverse spatiotemporal distance sample weighting schemes for LC change forecasting with
spatiotemporal DL models and multitemporal LC data available for the Columbia-Shuswap
Regional District of BC. The rationale for training sample weighting was to decrease the
influence of samples that underwent changes long ago while increasing the influence of
changed samples that underwent more recent changes at the central location or within its
neighborhood. With temporally and spatiotemporally weighted LC change samples, model
forecasts showed consistent improvements in FOM and FOM components of agreement
and disagreement versus the unweighted base case (“none”) and the traditional inverse
frequency weight (BW) schemes. While allocation errors remain an outstanding problem for
the DL models, the proposed sample weighting schemes reduced the average distance of
allocation errors to real-world LC categories overall and with respect to large and medium-
sized LC classes. Based on the findings of this research study, the proposed sample
weighting schemes enabled markedly better performance compared to using unweighted
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samples for LC change forecasting with spatiotemporal DL models. Of all sample weighting
schemes, STW was consistently associated with improved FOM and PA measures for all
model types versus the traditional BW scheme. It is recommended to explore, analyze, and
further adjust the TW1, TW2, and STW sample weighting schemes with respect to other
datasets and spatiotemporal DL model configurations in future studies.

Given the typically slow and scarce nature of LC change events that impede direct
applications of DL models, this research study contributes to advancing strategies used to
mitigate data imbalance for LC change forecasting and other geographic phenomena. It
was previously unknown how temporal and spatiotemporal sample weighting schemes
contribute to DL model capacity to forecast LC changes. As such, this research study intro-
duced simple sample weights based on temporal and spatiotemporal proximity to change
events, demonstrating improvements in DL model capacity to forecast LC changes. This
was accomplished without randomly discarding potentially useful examples or augment-
ing synthetic or transformed samples that defy real-world spatial context and relationships.
This research study can benefit any DL modeling endeavor that deals with LC data or
imbalanced geographic timeseries data. With increasingly available open-source data-
driven modeling approaches featuring sample weight parameter options, cost-sensitive
learning techniques can be achieved without complex programmatic modifications. The
new sample weighting schemes can also contribute to improving non-timeseries DL mod-
els or ML models more generally by allocating less significance to older samples ob-
tained for geographic applications such as projecting urban growth, forest change, or
agricultural expansion.
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