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Abstract: The article aims to propose a new way of estimating the ambient and immobile urban
population using geotagged tweets and age structure, and to test how they are related to urban crime
patterns. Using geotagged tweets and age structure data in 37 neighborhoods of Szczecin, Poland,
we analyzed the following crime types that occurred during 2015–2017: burglary in commercial
buildings, drug crime, fight and battery, property damage, and theft. Using negative binomial
regression models, we found a positive correlation between the size of the ambient population and
all investigated crime types. Additionally, neighborhoods with more immobile populations (younger
than 16 or older than 65) tend to experience more commercial burglaries, but not other crime types.
This may be related to the urban structure of Szczecin, Poland. Neighborhoods with higher rates of
poverty and unemployment tend to experience more commercial burglaries, drug problems, property
damage, and thefts. Additionally, the count of liquor stores is positively related to drug crime,
fight-battery, and theft. This article suggests that the age structure of the population has an influence
on the distribution of crime, thus it is necessary to tailor crime prevention strategies for different
areas of the city.

Keywords: crime analysis; geotagged tweets; ambient population; immobile population;
age structure

1. Introduction

Each crime incident is geographic in nature. It is committed at a certain place and
time. The offender usually comes to the place of his/her commission from other places,
and he/she also has a permanent or the most frequent place of residence, e.g., a place
of residence, work, or study [1]. These places may be identical or adjacent to each other.
Time and place play fundamental roles in understanding and explaining crime patterns.
The spatiotemporal differentiation is one of the distinctions of crime pattern studies and
a premise for research on this issue. In order to study crime patterns, various efforts
have been made by scholars not only in criminology, but also geography, sociology, and
social sciences at large. Geography of crime in the geography field and environmental
criminology (also known as crime science) in the criminology field specifically focus on the
location of crime incidents.

Theories from environmental criminology are helpful in understanding temporal and
spatial crime patterns. The routine activity theory argues that crime is the result of the
direct contact of three elements in space and time: a motivated offender, a suitable target,
and the absence of the capable guardian [2,3]. It suggests that the people’s routine activities
contribute to possible intersections in time and space with a potential offender, and when it
happens, the probability of crime increases drastically [2].
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Crime pattern theory also shows that the distribution of population in time and
space is important to crime pattern studies. This theory suggests that the locations of
crime incidents are not accidental, rather, they have clear spatio-temporal patterns. This
theory highlights the activity spaces and routes connecting them. These activity spaces
include (1) nodes–e.g., residences, shopping centers, workplaces, schools, recreation and
entertainment areas, places to meet friends, etc., (2) paths connecting these nodes, and (3)
edges, which are boundaries dividing areas with various forms of management, rulership,
or functions. Moving along the paths between the nodes, the criminal’s awareness spaces
are created. The space of action is reflected in the offender’s consciousness in the form
of a cognitive space map. According to this theory, a motivated offender has contact
with a relatively small part of the city areas in the course of routine everyday activities.
From perceived and realized nodes, paths, and edges, he/she selects appropriate objects
or victims of crime in a multi-stage decision-making process. The distribution of crime
in a city depends on its spatial structure, transport system, and street networks, and is
shaped by the distribution of crime generators, attractors, and detractors [1,4]. Moreover,
the city crime problem usually concentrates in relatively small areas, as the Law of Crime
Concentration and Iron Law of Troublesome Places suggest [5–9]. In many cities, the downtown
area or central business districts would fall in this category because of the concentration of
population and opportunities.

Thus, the problem of obtaining information about the real-time or close-to-real-time
location of the population is one of the key pieces of information in crime pattern research.
Publicly available census information does not reflect the actual whereabouts of the popula-
tion as it does not take into account the phenomenon of daily movements of the citizens [10].
As many studies have pointed out, increased mobility and mobile range can change the
dynamic distribution of the population, which in turn, influences the crime pattern [11–15].
Such a population measure issue can be even more acute when using it to measure crime
and other socioeconomic factors. One frequently used crime indicator is the crime rate,
which is calculated by dividing the number of recorded crimes in a certain area by the
population of that area. Similar indicators are practically used in various socioeconomic
phenomena studies, e.g., GDP per capita, poverty rate, unemployment rate, etc. However,
there are also problems when determining the actual residing population. For large areas,
such as countries or regions, census data are generally taken every 10 years. Such censuses
are not always available in all regions, and the census data can become obsolete because of
the long measure gap, which could distort the results. Data from the current population
registration kept by the government are commonly used in such studies, especially in
European countries. Their credibility depends on the quality of administration and the
provisions of the registration obligation. Considerable migratory movements, especially
periodic residents like college students, tourists, and those on business trips, further make it
difficult to determine the actual residing population. In countries with weak administration
and a low level of civil discipline, such registers are not kept, and the count of actually
residing population can only be estimated.

The above-stated data quality concerns may also influence smaller areas, such as
cities and their neighborhoods. Thus, the emerging measures which can capture the high
mobility of residents are getting more attention: yearly (holidays and other longer periods
without work), weekly (weekdays/weekends), and even daily (day/night and hours of
day or night) population distribution measures become available. The earliest attempts
to determine the number of people during the day and at night for individual districts
were conducted as follows: the nighttime population was taken based on the registered
population in the district. While the daytime population is the combination of the number
of newcomers during the day (based on the number of jobs, services, education, places in
hotels, and the load on public transport/car traffic) and the registered population in each
district. Such estimates have been used in many studies on the spatial differentiation of
crime and other phenomena in cities [16–19].
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Further, capturing the location of individuals has recently become possible due to the
rapid expansion of social media platforms like Twitter. Twitter posts with specific spatial
information, also known as geotagged tweets, have been found to be useful in indicating
the real distribution of the population [11–14]. This makes it possible to predict people’s
behavior by analyzing the location of tweets [20] and verifying the theory of human be-
havior [21]. Tweets also offer a possibility of conducting large-scale research, where both
local and non-local communities may participate in the data collection and brainstorm-
ing processes [22]. The analysis of tweets’ contexts makes it possible to understand the
users’ age and profession based on the evidence of their hobbies, expenses, and leisure
locations [23]. Researchers interested in dynamic population patterns also conduct research
based on tweets because, in addition to the above-mentioned information, tweets may also
contain real-time location information [24].

Geotagged tweets contain information about people’s actual location at a given time.
This opens new possibilities for geography of crime studies, e.g., predicting future crime
patterns [25,26]; preventing crime in short- and medium-term periods [27]; detecting the
ambient population for crime analysis [12,28–30]; analyzing crime’s intraday variations
and the spillover effect of the ambient population [31]; detecting emerging crimes, traffic
accidents, emergencies, and hazards, etc. [32,33]; studying the importance of Twitter as
a platform for the crime news dissemination [34]; assessing how social media influence
the number of different types of crime [35]; helping people to report suspicious activities
or crimes [36]; providing security alerts for the real-time detection of phishing tweets
and security alert proposal [37]; assessing how major events influence crime patterns in
cities [13,38]; studying crime related to prejudice or intolerance towards the issues related
to national origin, sentiment, religion, race, etc. [39–41]. Gerber (2014) found that the
addition of Twitter-derived variables improves prediction performance for 19/25 crime
types more than the model of solely historical crimes [25]. This study demonstrates the
benefits of tweets for crime prediction. Bendler and colleagues (2014) used the amount
of point of interest (POI) as the independent variable to simulate crime patterns in San
Francisco and added the count of tweets into the model [35]. Ristea and colleagues (2017)
used tweets count as an explanatory variable to test the crime-tweets relationship [42].
Lan and colleagues had done serial studies to test the crime–tweets relationship and
suggested the reliability of tweets as a feasible dynamic population measure [12,31,43].
Hipp and colleagues (2018) also found that tweets can help explain the presence of crime in
California [11].

However, as suggested by previous studies, geotagged tweets generally show the
dynamic distribution of the population with higher mobility as they are the major Twitter
users [11,23,44–50]. Consequently, only using geotagged tweets to study crime patterns
may overlook the population with limited mobility, e.g., those who are very young (younger
than 16) and are elderly (older than 65). This study fills this gap by using two data sources
to include both the ambient and immobile populations in crime analysis. The first source
of data is geotagged tweets, as a measure of the ambient population who have increased
mobility during the day as they commute and move a lot (Group 1) [23]. The second source
of data is census data which are used to locate the immobile social groups (not tweet as
much) such as children (age ≤ 15) and the elderly (age > 65), who usually stay in their
residential neighborhoods (Group 2). As routine activity theory argues, crime happens
when a motivated offender meets a suitable target/victim at space and time, while no
capable guardian is onsite [2]. Crime pattern theory also emphasizes space’s importance
by arguing that the overlapped activity spaces of both offender and victims are riskier [1].
Therefore, both the mobile population (Group 1) and the immobile population (Group 2)
are possibly involved in crime in their residential neighborhoods; additionally, the mobile
population (Group 1) are also possibly involved in crime in the neighborhoods they frequent
and visit [11–13,31]. Thus, we feel it is necessary to fill this gap and consider both groups
to assess different ways ambient and immobile population distributions influence urban
crime patterns.
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2. Research Purpose and Questions

Our goal is to provide information on the real location of the population by combining
the location information of the mobile and immobile social groups in a city. More impor-
tantly, we want to check which social group, mobile or immobile, is more vulnerable to
crime and to what types of crime. In order to achieve these goals, in this study we provide
answers to the following research questions:

(1) How can one estimate the size of the ambient population in individual neighborhoods
of a large city?

(2) What is the relationship between the size of the ambient population (Group 1) and
different types of crime, with socioeconomic characteristics controlled?

(3) What is the relationship between the size of the immobile population (Group 2) and
different types of crime, with socioeconomic characteristics controlled?

These questions reflect the level of originality and the novelty of the approach used
in this study. It is crucial to distinguish between two groups of the population, with
varying degrees of risk of crime: mobile and immobile. This was done using two different
estimation methods: the number of tweeds posted in a given neighborhood, which is
rarely used in the region. On this basis, the ambient population was estimated. Another
innovation is taking into account not only ambient and immobile population relations in the
research, but also socioeconomic characteristics that are important for crime opportunities.
It is also worth emphasizing the significant number of crime types being analyzed.

3. Data and Methodology

We collected 3-year crime data in Szczecin, Poland (2015–2017), including (1) burglary
in commercial buildings, (2) drug crime, (3) fight and battery, (4) property damage, and
(5) theft. Following established practices in the field, we combined 3 years of data to
overcome the limitation of the small number of incidents in each year [51–54]. This is
acceptable due to the spatial distribution of crime in a city being stable over years [5,53,55].
Szczecin is the capital of the West Pomeranian Voivodeship in northwestern Poland. It is a
major seaport as it is near the Baltic Sea and the German border. In 2015, it had a population
of 404,712, and this number slightly declined to 404,000 in 2017. The size of the city is 301
km2, and it is composed of 37 neighborhoods. The city lies on the delta of the Oder River
and is known as the “Paris of the North”, because of the characteristic star-shaped layout
of streets and squares [56].

Burglaries in commercial buildings (2228) are distributed throughout the inhabited
area of the city (Figure 1). They are mostly concentrated in the downtown area (the central-
western area just west of the Oder River), which results from the fact that there are many,
usually small, commercial and busy facilities in this area. They are usually located on the
ground floors of mix-used buildings and in small pavilions which are typically easy to
break into because of the lack of security measures. Large commercial and service centers,
of which there are about ten in Szczecin, are well guarded by closed-circuit television
(CCTV) and security measures, so they are not frequent targets of commercial burglaries.
Such information comes from local law enforcement officers and scholars.
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Figure 1. Burglaries in Commercial Buildings in Szczecin, 2015–2017 (n = 2228).

Drug crime incidents (2060) occur throughout the entire inhabited area of the city but
are clearly concentrated in the central part of downtown and an area north of it known for
its high overall crime rate (Figure 2).

Fights and batteries (1709) have a similar spatial distribution. A high concentration
occurs in the central part of downtown. This is related to the fact that there is a significant
concentration of alcohol distribution points in this area (catering outlets, alcohol shops,
grocery stores, etc.). As local residents and law enforcement officers indicate, alcohol
consumption strongly influences this type of crime. Apart from that, the downtown area
has a sizable number of people who are known to be bad-tempered (Figure 3).
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Figure 3. Fights and batteries in Szczecin, 2015–2017 (n = 1709).

Property damages (1844) have a similar distribution too, which results from the
conditions of the population described above. The concentration of this crime type in the
downtown area is even more obvious (Figure 4).
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The most common type of crime–theft (10,100)—is almost everywhere across the entire
inhabited areas of the city, and the concentration of these crime incidents in the downtown
area is not as dominant. This is due to the fact that the victims of the theft are individuals,
and they can be mobile (Figure 5).
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We collected tweets from 2015 to 2017 in the same city through TweetScraper, a Python
script built on Scrapy without using Twitter’s APIs [57]. Scrapy is an open-source and
collaborative framework for extracting data from websites [58]. According to the tool
description, TweetScraper mimics the Tweet Search on a web browser and can bypass the
Twitter API’s 1% limit, enabling it to crawl all publicly available tweets. Clearly, the spatial
distribution of tweets (Figure 6) is remarkably similar to the aforementioned crime types,
especially thefts (Figure 5).
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We use the neighborhood of the city as the unit of analysis, and there are 37 neigh-
borhoods in total. The neighborhood is the finest unit of sociodemographic data which is
available in this city. Therefore, though we can collect point-level crime data and tweets,
we have to aggregate them to the neighborhood level to compare them with age structure
and other sociodemographic factors. The dependent variables are the counts of each crime
type. The independent variables are twofold: (1) tweet count as an ambient population
measure [11,12,14,31,43], and (2) young (≤15) and elderly (>65) population as a measure
of people with limited mobility, hereafter referred to as the immobile population [59].
The control socioeconomic variables are population density, population assisted by the
Municipal Family Assistance Center, unemployed population, demographic load index (an
age-structure indicator calculating the percentage of non-productive age population), and
count of liquor stores in 2015 [52,60–65].

Table 1 shows descriptive statistics of variables. Five dependent variables are counts
of burglary in commercial buildings (commercial burglaries), drug crime, fight and battery
(assault), property damage (vandalism), and theft. Two major independent variables are
the tweets-derived ambient population and the immobile population (population under
age 16 or older than 65). Additional control variables are population density (a measure of
population concentration), population assisted by the municipal family assistance center
(people in poverty), unemployed population (people who are not employed), demographic
load index (shows the burden to the society by the unproductive population), and the count
of liquor stores (known to be related to many violent and property crime types) [52,60–65].
The control variables in this study are additional independent variables that are not of
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direct interest to this study’s goals but are controlled because they have been tested by
previous studies to influence crime patterns. We include them to make sure the crime–
tweets relationship and the crime–age structure relationship are not accidental. For each
of these five dependent variables, two models are fit, one with the ambient population
(tweets) and controls, another with the immobile population (≤15 or >65) and controls.
Consequently, 2 × 5 = 10 models are fit.

Table 1. Descriptive statistics.

Variables (2015–2017) Minimum Maximum Mean Std.
Deviation

Dependent

Burglary in
commercial buildings 4 161 60.22 40.09

Drug crime 1 345 55.68 74.03
Fight and battery 3 313 46.19 57.74
Property damage 4 201 49.84 46.33

Theft 9 1369 272.97 268.86

Independent
Ambient population

(Tweets) 6 2322 723.14 688.43

Immobile population
(≤15 or >65) 292 8094 3269.57 2328.62

Control

Population density 33 27,389 4570.83 5831.37
Population assisted by
the Municipal Family

Assistance Center
11 950 281.24 250.35

Unemployed
population 51 1083 312.78 237.58

Demographic load
index 31.10 66 45.10 8.82

Count of liquor stores 3 279 54.70 52.77

To use a traditional linear regression model, the dependent variable needs to follow
the normal distribution. However, as Law of Crime Concentration and Iron Law of Troublesome
Places suggest: few places are responsible for most of the crime, and most places do not
experience any crime, so the distribution of crime is always skewed [5,6,8,9]. As evidenced
in Figures 1–5, crime patterns in Szczecin are also clustered. This clearly violates the basic
assumption of linear regression; thus, Poisson or negative binomial regression should
be used [66–68]. The Poisson regression model may be used for count data like crime
incidents. However, to use Poisson regression, the dependent variable’s mean needs to
be equal to the variance, which is often not satisfied in crime data. Therefore, following
the general practice in crime studies, we use the negative binomial regression model to
assess the relationship between crime and the ambient population versus the immobile
population (≤15 and >65). The negative binomial regression model has been widely used
in criminology studies because it does not assume homogeneity of variance and does not
require normal distribution of the dependent variable [67]. The unit of analysis is the
neighborhood (N = 37). The negative binomial regression model is:

yi ∼ NB
[
exp

(
∑ βkxik

)
, α
]

(1)

where NB stands for negative binominal, yi is the crime count in the ith (i = 1, . . . , n)
neighborhood, xik is the kth explanatory variable for neighborhood i, βk (k = 0, 1, . . . , p) are
the coefficients, and α is the parameter of overdispersion [68].

4. Results and Discussion

Table 2 shows the results of negative binomial models for five different crime types. As
specified in the methodology section, each of these five crime types is fit with two different
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models: one with the ambient population (tweets), and one with the immobile population
(≤15 or >65). All models also contain necessary control socioeconomic variables, and
the sample size of each model is 37. The tweet-based ambient population measure has a
positively significant relationship with all five crime types: commercial burglary (β = 0.53,
p < 0.05), drug crime (β = 0.44, p < 0.01), fight-battery (β = 0.34, p < 0.01), property damage
(β = 0.36, p < 0.05), and theft (β = 0.09, p < 0.01). This means that if the neighborhood has
more ambient population, the risks of these crimes tend to be higher. These five types of
crime are all closely related to the dynamic distribution of population on and near streets:
commercial burglary happens in commercial facilities and commercial facilities where
people frequent [69]; drug crime (including distributing, dispensing, possessing, dealing
drugs), fight-battery, property damage (vandalism), and thefts tend to happen on streets
and near streets where people visit [12,70–73].

Table 2. Results of negative binomial regression models.

Standardized Coefficient (* 10−2)

Burglary in
Commercial

Buildings
Drug Crime Fight and Battery Property Damage Theft

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model
10

Ambient population (Tweets) 0.53 * 0.44 ** 0.34 ** 0.36 * 0.09 **
Immobile population with

(≤15 or >65) 2.07 *** 1.07 1.13 1.56 0.37

Population density −0.29 −0.5** 0.21 0.1 0.02 −0.08 0.29 * 0.19 0.01 −0.02
Population assisted by the

Municipal Family Assistance
Center

−0.07 1.3* 0.74 1.59 * 0.56 1.4 0.08 1.16 −0.02 0.24

Unemployed population 1.75 *** −1.49 0.01 −1.73 0.1 −1.68 0.98 ** −1.43 0.2 *** −0.37
Demographic load index 0.34 −0.16 0.23 −0.01 0.18 −0.06 0.26 −0.02 0.02 −0.05

Count of liquor stores −0.42 0.52 0.47 0.96 * 0.91 * 1.36 ** 0.51 0.98 0.13 0.26 *

Significance level: * < 0.05, ** < 0.01, *** < 0.001. Each models has a constant.

The immobile population (≤15 or >65), however, is only significantly related to com-
mercial burglaries in a positive manner. A probable reason for this is in Szczecin, residential
and commercial structures are highly mixed, and neighborhoods have more residential
dwellings and commercial facilities. In addition, the less mobile populations tend to use
only shops and service establishments close to their place of residence. Coincidently, of-
fenders of commercial burglaries are also mainly residents of a given area, and they tend to
target small premises that are poorly protected [74,75].

Regarding the control variables, population density is negatively related to commercial
burglaries in Szczecin. This may suggest that areas with smaller population density
experience more commercial burglaries. A potential explanation is that burglars tend to
avoid super busy areas as the risk of being identified is higher because more people are
nearby, and commercial facilities in those areas typically utilize more security measures
to prevent burglaries [76,77]. Areas with more population in poverty and unemployed
tend to experience more commercial burglaries, drug problems, property damage, and
thefts as suggested in previous studies [70,78–80]. Additionally, the count of liquor stores is
positively related to drug crime, fight-battery, and theft, which parallels well with existing
literature [81–83].

It is necessary to acknowledge the limitations of social media data like tweets. As
previous studies have discovered, tweets may not represent the whole picture of the census
population in an area. This is because Twitter users are relatively young, urban residents,
and mobile users [44,48,49]. Additionally, only 15% of internet-using adults use Twitter,
and most of them are young adults [84,85]. Thus, analyses based on tweets should not
overstate claims about the representativeness of the data. Nevertheless, these limitations
do not undermine the discoveries of this study, as we use the tweet count as a measure for
the population who are more mobile. Results suggest that the distribution of mobile and
immobile populations is correlated with the patterns of different crime types. Due to data
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limitations, we are only able to conduct this study in Szczecin, Poland. More tests should
be done in other European countries, or even other parts of the world in order to further
improve the discipline and advance knowledge. Further, we use the neighborhood as the
study unit because that is the finest unit of sociodemographic data we could obtain in this
area. As suggested by a previous study, the study unit size may influence the results due to
the modifiable areal unit problem (MAUP) [31]. Thus, if data are available, more tests may
be needed at even finer spatial units, e.g., track, block group, and blocks, in order to see
whether such relationships persist across different spatial scales.

5. Conclusions

The main goal of the article has been achieved. The adopted method of estimating
the ambient population based on geotagged tweets turned out to be effective, justified,
and providing of fruitful research, as suggested in various previous studies. The same
applies to the estimation of the immobile population from age structure. Using both
mobile and immobile social groups creates a new perspective for researching crime in cities.
Utilizing negative binomial regression models, a positive correlation is found between the
size of the ambient population and all investigated crime types (burglary in commercial
buildings, drug crime, fight and battery, property damage, and theft). While the distribution
of immobile social groups is only related to commercial burglaries. Areas with more
population in poverty and unemployment tend to experience more commercial burglaries,
drug problems, property damage, and thefts. Additionally, the count of liquor stores
is positively related to drug crime, fight-battery, and theft. As found in this study, the
residents’ age structure may influence crime patterns in the city. Thus, when analyzing and
preventing crime, the dynamic distribution of people with different mobile abilities needs
to be considered.

As discussed in the earlier section, more tests in other regions and at different spatial
scales are recommended. Comparison studies among different cities across countries can
also be beneficial using the same method. This procedure, commonly found in experimental
sciences, is seldom used in the social sciences. However, it should be taken into account that
in different socioeconomic conditions, the control variables may have different meanings
and require different interpretations. The overall level of crime in a country or region is also
relevant in such surveys. In Poland it is relatively low, in Szczecin it is average compared to
the rest of the country, and the most serious crimes with the use of weapons and murders
are practically isolated cases.

The assumption that age structure and mobile ability need to be systematically considered
in crime analysis studies should also be verified in other cities, but with a similar population
age structure, level, and lifestyle. In more affluent countries, young people and the elderly are
generally more mobile thanks to individual and collective means of transportation.

In future studies, it should be checked as well whether the applied methods of esti-
mating the number of mobile and immobile populations reflect their real mobility. Such an
experimental study, using detailed lists of residents obtained, for example, from property
owners and CCTV cameras, could verify the assumptions of this method and indicate the
level of possible error.
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64. Majka, A.; Zając, D. Factors Influencing the Development of Non-Agricultural Business Activities in Rural Eastern Poland. Acta
Sci. Polonorum. Oeconomia 2019, 18, 43–52. [CrossRef]

65. Grshybowskyj, J.L.; Smiianov, V.A.; Myronyuk, I.M.; Lyubinets, O.V. Ten Indicators Which Characterize Medical-Demographic
Processes in Adjacent Regions of Ukraine and Poland. Wiad. Lek. 2019, 72, 868–876. [CrossRef]

66. Nagin, D.S.; Land, K.C. Age, criminal careers, and population heterogeneity: Specification and estimation of a nonparametric,
mixed Poisson model. Criminology 1993, 31, 327–362. [CrossRef]

67. Osgood, D.W. Poisson-based regression analysis of aggregate crime rates. J. Quant. Criminol. 2000, 16, 21–43. [CrossRef]
68. Chen, J.; Liu, L.; Xiao, L.; Xu, C.; Long, D. Integrative analysis of spatial heterogeneity and overdispersion of crime with a

geographically weighted negative binomial model. ISPRS Int. J. Geo-Inf. 2020, 9, 60. [CrossRef]
69. Butler, G. Commercial burglary: What offenders say. In Crime at Work; Springer: Berlin/Heidelberg, Germany, 2005; pp. 29–41.
70. Zhou, H.; Liu, L.; Lan, M.; Zhu, W.; Song, G.; Jing, F.; Zhong, Y.; Su, Z.; Gu, X. Using Google Street View imagery to capture micro

built environment characteristics in drug places, compared with street robbery. Comput. Environ. Urban Syst. 2021, 88, 101631.
[CrossRef]

71. Weeks, M.R.; Grier, M.; Romero-Daza, N.; Puglisi-Vasquez, M.J.; Singer, M. Streets, drugs, and the economy of sex in the age of
AIDS. Women Health 1998, 27, 205–229. [CrossRef]

72. Taylor, D.; Eddey, D.; Cameron, P. Demography of assault in a provincial Victorian population. Aust. N. Z. J. Public Health 1997,
21, 53–58. [CrossRef] [PubMed]

73. Poyner, B. Design against Crime: Beyond Defensible Space; Butterworths London: London, UK, 1983.
74. Bernasco, W.; Kooistra, T. Effects of residential history on commercial robbers’ crime location choices. Eur. J. Criminol. 2010, 7,

251–265. [CrossRef]
75. Sohn, D.-W. Do all commercial land uses deteriorate neighborhood safety?: Examining the relationship between commercial

land-use mix and residential burglary. Habitat Int. 2016, 55, 148–158. [CrossRef]
76. Schmalleger, F. Criminology, 5th ed.; Pearson: Upper Saddle River, NJ, USA, 2018.
77. Tseloni, A.; Thompson, R.; Grove, L.; Tilley, N.; Farrell, G. The effectiveness of burglary security devices. Secur. J. 2017, 30, 646–664.

[CrossRef]
78. Zhou, H.; Liu, L.; Lan, M.; Yang, B.; Wang, Z. Assessing the Impact of Nightlight Gradients on Street Robbery and Burglary in

Cincinnati of Ohio State, USA. Remote Sens. 2019, 11, 1958. [CrossRef]
79. Valdez, A.; Kaplan, C.D.; Curtis, R.L., Jr. Aggressive crime, alcohol and drug use, and concentrated poverty in 24 US urban areas.

Am. J. Drug Alcohol Abus. 2007, 33, 595–603. [CrossRef]
80. Unnever, J.D. Direct and organizational discrimination in the sentencing of drug offenders. Soc. Probl. 1982, 30, 212–225.

[CrossRef]
81. Gruenewald, P.J.; Freisthler, B.; Remer, L.; LaScala, E.A.; Treno, A. Ecological models of alcohol outlets and violent assaults: Crime

potentials and geospatial analysis. Addiction 2006, 101, 666–677. [CrossRef] [PubMed]
82. Gorman, D.M.; Speer, P.W.; Gruenewald, P.J.; Labouvie, E.W. Spatial dynamics of alcohol availability, neighborhood structure and

violent crime. J. Stud. Alcohol 2001, 62, 628–636. [CrossRef] [PubMed]
83. Zhu, L.; Gorman, D.M.; Horel, S. Alcohol outlet density and violence: A geospatial analysis. Alcohol Alcohol. 2004, 39, 369–375.

[CrossRef] [PubMed]
84. Widener, M.J.; Li, W. Using geolocated Twitter data to monitor the prevalence of healthy and unhealthy food references across the

US. Appl. Geogr. 2014, 54, 189–197. [CrossRef]
85. Smith, A.; Brenner, J. Twitter Use 2012; Pew Research Center’s Internet & American Life Project: Washington, DC, USA, 2012;

Volume 4, pp. 1–12.

http://doi.org/10.22630/ASPE.2019.18.1.5
http://doi.org/10.36740/WLek201905126
http://doi.org/10.1111/j.1745-9125.1993.tb01133.x
http://doi.org/10.1023/A:1007521427059
http://doi.org/10.3390/ijgi9010060
http://doi.org/10.1016/j.compenvurbsys.2021.101631
http://doi.org/10.1300/J013v27n01_13
http://doi.org/10.1111/j.1467-842X.1997.tb01654.x
http://www.ncbi.nlm.nih.gov/pubmed/9141730
http://doi.org/10.1177/1477370810363372
http://doi.org/10.1016/j.habitatint.2016.03.007
http://doi.org/10.1057/sj.2014.30
http://doi.org/10.3390/rs11171958
http://doi.org/10.1080/00952990701407637
http://doi.org/10.2307/800519
http://doi.org/10.1111/j.1360-0443.2006.01405.x
http://www.ncbi.nlm.nih.gov/pubmed/16669900
http://doi.org/10.15288/jsa.2001.62.628
http://www.ncbi.nlm.nih.gov/pubmed/11702802
http://doi.org/10.1093/alcalc/agh062
http://www.ncbi.nlm.nih.gov/pubmed/15208173
http://doi.org/10.1016/j.apgeog.2014.07.017

	Introduction 
	Research Purpose and Questions 
	Data and Methodology 
	Results and Discussion 
	Conclusions 
	References

