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Abstract: The geographical feature extraction of historical maps is an important foundation for
realizing the transition from human map reading to machine map reading. The current methods for
building block extraction from historical maps have many problems, such as low accuracy and poor
scalability. Moreover, the high cost of annotating historical maps further limits its applications. In this
study, a method for extracting building blocks from historical maps is proposed based on the deep
object attention network. Based on the OCRNet framework, multiple attention mechanisms were used
to improve the ability of the network to extract the contextual information of the target. Moreover,
through the optimization of the feature extraction network structure, the impact of the down-sampling
process on local information and boundary contours was reduced, in order to improve the network’s
ability to capture boundary information. Subsequently, the transfer learning method was used to
jointly train the network model on both remote sensing datasets and few-shot historical map datasets
to further improve the feature learning ability of the network, which overcomes the constraints of
small sample sizes. The experimental results show that the proposed method can effectively improve
the extraction accuracy of building blocks from historical maps.

Keywords: historical maps; building block; feature extraction; object attention; transfer learning

1. Introduction

Historical maps preserve the natural landscape and the traces of human activity on the
Earth’s surface for an extended period [1,2]. Such maps are valuable for historical and cul-
tural heritage, and they provide an essential source for the description and communication
of geographical features and their spatial relationships. Thus, historical maps are of great
reference value for analyzing regional developments and changes. With the continuous
development of digital technology, many countries have digitized paper historical maps
and established different types of digital historical map archives to better preserve and uti-
lize these historical documents (https://ngmdb.usgs.gov/topoview/viewer/ (accessed on
12 November 2022), https://www.oldmapsonline.org/ (accessed on 12 November 2022),
http://www.map-cn.com/ (accessed on 12 November 2022), https://www.swisstopo.
admin.ch/en/maps-geodata-online.html (accessed on 12 November 2022)). Although
these digital historical maps are available to the public and can be easily read and un-
derstood by humans, an enormous amount of geographic information is locked in the
images, which makes it challenging to perform quantitative calculations and spatial analy-
sis through automatic machine reading [3]. In geographic feature extraction, each pixel is
assigned with the accurate classification label (e.g., roads, waters, building blocks, and map
annotations) such that computers can autonomously “read” the maps. As an important
artificial facility, the building is an essential place for people’s life and activities. The
automatic extraction and identification of building block features from historical maps
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has the following challenges due to the limitations of the era and mapping technology
(Figure 1). (1) The sizes and styles of building blocks vary, but they can be simplified either
as single buildings or as blank areas with boundaries. Thus, the multi-scale expression
of features is a great challenge. (2) Building blocks can overlap and nest with each other,
which increases the difficulty of filtering and screening boundaries. (3) Building blocks can
be covered by other map contents, which interfere with the texture features of the building
blocks. (4) Finally, the integrity of building blocks can be affected due to stains, creases,
and map damage.
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Figure 1. Exemplar challenges in a sample historical map for feature extraction: challenge 1: the
shadows represent single buildings and the other has only building boundaries (blue box); challenge
2: building blocks overlap and nest with each other (green box); challenge 3: building blocks are
covered by other map contents (yellow box); challenge 4: creases and damage (red box).

With the rapid development of deep learning techniques in the field of computer vision,
Convolution Neural Networks (CNNs) have been widely applied in the field of geospatial
information processing [4–6]. Compared with common images, building blocks account
for only a small part of historical map images (Figure 2). Thus, local information may be
missing, or the boundaries of the building blocks may be blurred due to down sampling in
the training process [7], which affects the extraction results. The majority of the existing
CNNs are composed of a series of sub-networks in high-resolution, low-resolution, and
subsequent high-resolution sequences (e.g., ResNet [8], GoogLeNet [9], and VGGNet [10]).
The network structure affects the ability to extract the features of building blocks to a certain
extent. In addition, many public datasets are available for the semantic segmentation of
natural images, such as ImageNet [11], COCO [12], and Cityscapes [13], which greatly
increases the accuracy of semantic segmentation. In comparison, the benchmark datasets
for the semantic segmentation of historical maps are relatively rare. Therefore, improving
the accuracy of semantic segmentation based on limited label data is of great significance
for feature extraction from historical map images [14].
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Figure 2. Comparison of object contexts. Rider on a horse in a natural image (left) and a building
in a cropped historical map (right). The building block image represents only a small part of this
theoretical map image compared to the natural image (area surrounded by red boxes as a proportion
of the total image area).

To fully utilize the advantages of deep learning in feature extraction from historical
maps, the object context features were incorporated with the attention mechanism in this
study. Specifically, based on HRNet [15] and OCRNet [16], a Deep Object Attention Net-
work (DOANet) was developed to extract fine-grained geographic features from historical
maps under the condition of limited training samples. DOANet makes full use of the deep
features in the limited training samples, and the attention mechanism accurately captures
the global contextual information, thereby improving the ability of the model to learn the
features of building blocks and suppress its responsiveness to other categories of features.
Moreover, the transfer learning method was integrated into training to extract building
blocks from the established few-shot historical map dataset. The results show that the
proposed model can effectively reduce the cost of manual annotation under the condition
of limited map samples and has good accuracy in historical map building block extraction.

The paper is organized as follows: in order to understand the value of this research,
the paper describes the work related to this paper (Section 2), describes the idea of the
algorithm (Section 3), and carries out the algorithm implementation and compares the
experimental results with the analysis (Section 4). Finally, Section 5 concludes the paper
with remarks on future work.

2. Related Works

As a critical task of digital map processing, information extraction from historical
maps has received much attention from researchers in various fields [17–21]. Early studies
mainly used color segmentation, template matching, shape descriptors, mathematical
morphological operators, and other methods to extract geographic features, such as roads,
contour lines, and buildings [22–28]. However, these methods often use customized
processes and parameter configurations for specific map types or geographic elements,
and thus, they suffer from low automation. As the scale of digital map data has increased,
the cost of data processing has increased significantly. In recent years, CNN-based object
detection, scene classification, and semantic segmentation methods have been applied to
extract geospatial data from remote sensing images, and these approaches have shown
better results than traditional methods [5,29,30]. As both remote sensing images and
historical map images are pixel-based and both are objective representations of geographical
elements, they have similarities at the semantic level. Hence, many studies have been
carried out to apply deep learning methods to the extraction of information from historical
maps [31–34].
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To reduce the impact of scale on the feature extraction results of deep learning net-
works, Duan et al. [35] proposed a georeferencing method based on reinforcement learning.
Through the automatic alignment of contemporary vector data and georeferenced historical
maps, the precise locations of geographic features on scanned maps were annotated. In
addition, Generative Adversarial Networks (GANs) have been used to generate data for
historical maps. For example, Li [36] proposed an automatic method to generate a dataset
from Open Street Map to train text detection systems to be able to work with historical
maps. Andrade et al. [4] synthesized satellite-like urban images based on historical maps.
Although these methods can increase the scale of datasets to a certain extent and improve
the feature learning ability of deep learning networks, they still require a large amount of
historical map data, and deviations between vector data and historical maps remain.

Saeedimoghaddam et al. [33] used Faster RCNN to extract the intersection points
of single-lane and double-lane roads from the United States Geological Survey (USGS)
historical map series; they also used the pre-trained Inception-Resnet-V2 on the Microsoft
Common Objects in Context (COCO) dataset to improve the accuracy of the network.
Because the target objects in the COCO dataset are quite different from geospatial elements
in terms of the scale, direction, and shape of the data [37], the use of geospatial data (e.g.,
remote sensing images) for pre-training and transfer learning has been proposed.

Heitzler et al. [38] segmented single buildings from the Swiss Siegried map using
U-Net and used methods based on contour tracing and orientation-based clustering to
vectorize the segmentation results. Uhl et al. [3,7,39] studied the effects of different network
structures to extract the footprint of human settlements from historical USGS topographic
map series and used the weakly supervised CNN to solve the problem of the high costs
related to manual annotation. They found that for the semantic segmentation of historical
maps, the accuracy of the feature extraction network had a significant influence on the
segmentation performance. It is worth noting that the above studies only focused on
buildings in small-scale topographic maps that were represented by small rectangles with
a regular shape and simple texture (most of them filled with a single color). However, in
large-scale maps, building blocks have complex contours and different types of textures,
even texture-free blanks, posing a great challenge to the algorithm’s feature extraction
capabilities.

3. Methods
3.1. Network Model

When training samples are limited, the number of target features (i.e., building blocks)
in a map is small. Hence, improving the feature extraction ability of a network is necessary,
and the problem of missing details during down sampling must be addressed. In this study,
the encoding and decoding structures of HRNet were optimized to capture multi-scale
deep features, and OCRNet was introduced to obtain contextual information in the samples.
Then, the deep features were incorporated with the contextual information to increase the
ability of the network to learn the building block features in few-shot datasets.

3.1.1. Architecture of DOANet

The architecture of the proposed DOANet for building block extraction from historical
maps based on the attention mechanism is shown in Figure 3. Based on OCRNet, DOANet
is composed of a feature extraction module and an object attention module. In particular,
the object attention module is further divided into the criss-cross attention module and the
object context module. Specifically, the criss-cross attention module uses a large receptive
field to obtain spatial distribution information and learns important features while ignoring
irrelevant features. The object context module is designed to fuse receptive fields of
different sizes to capture detailed contextual information. Then, the object attention module
aggregates the spatial distribution information and object contextual information to enhance
feature representation. The deep features extracted by the feature extraction module are
further optimized by the criss-cross attention module, and the optimized deep features and
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the coarse classification results of the intermediate layers are taken as the input of the object
context module to obtain the object region features. Then, the optimized deep features and
object region features are combined by the criss-cross attention module to obtain the object
context features. Finally, the optimized deep features are spliced with the object context
features to obtain the final feature representation with enhanced contextual information.
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3.1.2. Feature Extraction Module

Unlike most feature extraction networks, HRNet is composed of parallel high-resolution
and low-resolution sub-networks and uses repeated multi-scale feature fusion. Low-
resolution feature maps of the same depth and similar levels are used to improve high-
resolution features, enabling the network to capture local information with a strong robust-
ness. Based on HRNet, DOANet consists of six encoders and six decoders (Figure 4), which
reduces the connections of the same-scale layers in the original network and strengthens
the connections between layers of different scales. Moreover, due to the small number
of encoders, fewer decoders are needed, thereby reducing the size of the network. Each
encoder uses leaky-ReLU as the activation function, supplemented by batch normalization
operations to improve the stability of the model parameters. Because the extraction of
building information from historical maps is a binary classification problem, i.e., the labels
only include the background and buildings, cross entropy is used as the loss function L:

L =
1
N ∑

i
−[yi· log(pi) + (1− yi)· log(1− pi)] (1)

where yi is the label of sample i, which is one for positive classification and zero for negative
classification, and pi is the probability that sample i will be positively predicted.
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3.1.3. Attention Module

The criss-cross attention module [40] in Figure 5 was used in this study. The module
can capture the dependence of each pixel on the rest of the pixels in the image, thereby
effectively improving the ability of the network to extract contextual information. First, the
dimension of the feature map H of size C ×W × H is reduced by two 1 × 1 convolutions,
and two feature maps, Q and K, are obtained. Then, for any pixel u on the feature map Q, a
channel vector Qu with a size of 1 × 1 × C′ is obtained, and all pixels in the same row and
column as pixel u are used to construct a feature vector Ωu with a size of (H + W − 1) ×
C′. Next, the affinity di,u of each pixel u on the feature map Q to the feature vector Ωu is
calculated through the affinity operation:

di,u = QuΩT
i,u (2)

where Qi,u denotes the i-th channel vector of Ωu. The attention map A of size (H + W − 1)
×W × H is obtained after the SoftMax layer. In addition, the feature map V of size C ×W
× H is obtained through another 1× 1 convolution of the feature map H. The feature vector
Ψi,u in the same row and column as each pixel u in V is dot multiplied with the feature
vector Ai,u in the corresponding position, and the dot products for all pixels are added to
obtain the residual aggregation feature at the position, which is then added to the original
feature vector Hu to obtain the feature vector Hu

′ with a stronger feature representation
ability. The equation is outlined as follows:

H′u =
H+W−1

∑
i=0

Ai,u·Ψi,u + Hu (3)

Because a single criss-cross attention module only considers elements on the same
row and column as a pixel, two criss-cross attention modules are connected to obtain the
contextual information at all positions.
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3.2. Transfer Learning

Transfer learning is a technique that converts the learning processes in the source
domain, including the training data, model parameters, and tasks, into knowledge and
then transfers them to the target domain to facilitate the learning of the prediction function
in the target domain [41]. The transfer learning method used in this study is shown in
Figure 6. A public dataset was used as the training dataset in the source domain; that is,
the sample dataset in the source domain was imported into DOANet for learning, and the
parameters and features of the source domain network were shared with the target domain
through network replication. The target domain network was initialized with the network
parameters in the source domain, while freezing the batch normalization layer in the target
domain. The dataset in the target domain was used for training to fine-tune the network
parameters in the target domain, thereby realizing the knowledge transfer.
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4. Experiments

To evaluate the efficiency of DOANet and compare the results with those of the existing
semantic segmentation algorithms, the dataset for task 1 (building block detection) in the
ICDAR2021 Competition on Historical Map Segmentation [42] was used to train, validate,
and test the algorithms. The dataset consists of large-scale urban maps of Paris dating
from 1860 to 1940 collected by the French National Library, which includes one training
image, one validation image, and three test images. The resolution of each image is at least
8000 × 6000. The building blocks in the training and validation images were manually
annotated. A 512× 512 sliding window with a step size of 200 was used to crop the training
image and the validation image (including the corresponding annotated images), and the
cropped image blocks were then used as the dataset in the experiment. The dataset was
then divided into a training set and a validation set at a ratio of 8:2. In total, 2237 training
samples and 559 validation samples were obtained. Prior to training, each training sample
is flipped up and down and left and right in a mirror image, and then randomly rotated
once at 45◦. ICDAR2021 provides a standard indicator to evaluate the test results, which is
calculated as follows:

PQ = SQ× RQ =
∑(p,g)∈TP IoU(p, g)

TP
× TP

TP + 1
2 FP + 1

2 FN
(4)

where PQ is the aggregated score, SQ is the mean Intersection Over Union (mIoU), RQ is
the F-score, and TP, FP, and FN represent true positive, false positive, and false negative,
respectively.

The test platform was a 64-bit Ubuntu 18.04 operating system equipped with eight
GeForce RTX™ 2080 Ti GPUs (11 GB VRAM). The PaddlePaddle v2.1 framework was
used to build the algorithm. The batch size was set to 8 according to the characteristics of
the GPUs, the initial learning rate of the network was 0.0125, and the Stochastic Gradient
Descent (SGD) was used as the optimizer. The momentum was 0.9, the weight decay rate
was 4 × 10−5, and the training epoch was set to 10,000 times. The open source WHU
building dataset [43] was used as the source domain dataset, and the divided dataset was
used as the target domain dataset to train DOANet. Building block extraction was carried
out on the three test images after training, and the results were evaluated using the above
indicators in Equation (4).

4.1. Results

The scores of DOANet were compared with the official results of ICDAR2021 (Table 1).
The PQ of DOANet was higher than that of the other methods for all three test images.
The visualization result of the method is shown in Figure 7. Compared with that of the
other methods, the PQ of DOANet was increased by at least 7.2% suggesting that the
feature extraction method based on the attention mechanism effectively aggregated the
local features that did not pass through the receptive field and that the impact of blurred
boundaries was reduced due to the scale change. Thus, the proposed algorithm showed
a high level of detection accuracy. However, the method’s ability to solve the problem
of overlapping nesting within building blocks leaves much to be desired, as shown by
the second result in Figure 7, where DOANet incorrectly judges several single buildings
(shaded sections) as a whole.
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Table 1. Comparison of the evaluation results.

Team MapI PQ (%) MapII PQ (%) MapIII PQ (%) Mean PQ (%)

L3IRIS 74.4 69.8 78.2 74.1
CMM (1) 59.8 61.4 66.7 62.6
CMM (2) 52.6 47.9 58.1 44.0
WUU (1) 7.7 5.9 5.7 6.4
WUU (2) 4.7 4.0 3.9 4.2
DOANet 83.5 79.2 81.2 81.3ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 9 of 13 
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4.2. Ablation Analysis

To further analyze the role of the object attention module and transfer learning in the
extraction of geographic features from historical maps, five algorithms were designed to
investigate the modular performance of DOANet:
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ANet: the feature extraction module was unchanged, and only the criss-cross attention
module was retained.

ONet: the feature extraction module was unchanged, and only the object context
module was retained.

OOANet: the object attention module was unchanged, the number of encoders and
decoders in the feature extraction module was changed, and the original HRNet structure
(Figure 8, left) was used [15].
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ROANet: the object attention module was unchanged, and the feature extraction
network ResNet (Figure 8, right), which has a series structure, was used [8].

DOANet-: the network structure was unchanged, and the transfer learning module
was removed.

The quantitative evaluation indicators of each experiment are shown in Table 2. Due to
the absence of part of the core modules, both ANet and ONet yielded poor building block
extraction results. OOANet has a deeper network structure and should theoretically yield
better extraction results, yet the results showed that OOANet failed to enhance the features.
Moreover, the results of ROANet were also inferior to those of DOANet due to the loss of
local information, which indirectly demonstrates the advantages of parallel networks in
the extraction of geographical features from historical maps. In addition, in the absence
of external knowledge transfer, the performance of DOANet- was affected to a certain
extent due to the limited number of samples. As shown in Figure 9, when the number of
training samples was small, the scores of DOANet- without transfer learning decreased.
As the training dataset increased, the difference between DOANet and DOANet- gradually
decreased. To achieve a score of >75%, DOANet- required 1200 training samples, whereas
DOANet only needed 600 image samples. Hence, the method proposed in this study can
effectively deal with the problem of limited training samples and thereby reduce the cost of
annotation.

Table 2. Evaluation results of DOANet with varying network configurations.

Team MapI PQ (%) MapII PQ (%) MapIII PQ (%) Mean PQ (%)

ANet 69.4 72.1 73.0 71.5
ONet 75.5 72.8 72.8 73.7

OOANet 80.1 76.8 80.7 79.2
ROANet 68.5 71.2 70.9 70.2
DOANet- 79.4 78.1 81.3 79.6
DOANet 83.5 79.2 81.2 81.3
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5. Conclusions

To address the problems associated with information extraction from historical maps,
a building block extraction network for historical maps, DOANet, was developed based
on the attention mechanism. Built upon the HRNet and OCRNet structures, DOANet
uses parallel subnetworks to fuse multi-scale features and includes a criss-cross attention
module. Moreover, the transfer learning method is integrated with DOANet to improve the
detection accuracy of the model in the case of limited training samples. The experimental
results show that the PQ of the proposed method increased by at least 7.2% compared with
that of existing algorithms. The proposed method effectively solves the problem of poor
network performance caused by insufficient training samples in the task of building block
extraction from historical maps and provides a reference for extracting other features from
historical maps. However, the ability of the method to solve the problem of overlapping
nesting within building blocks leaves much to be desired, and we will focus on solving this
problem in our next work. In addition, applying the method to different styles of maps
(e.g., different languages, different time periods) will also be part of our future work in
order to improve the generalizability of the method in this paper.
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