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Abstract: Amazonas is a mountain region in Peru with high cloud cover, so using optical data in the
analysis of surface changes of water bodies (such as the Burlan and Pomacochas lakes in Peru) is
difficult, on the other hand, SAR images are suitable for the extraction of water bodies and delineation
of contours. Therefore, in this research, to determine the surface changes of Burlan and Pomacochas
lakes, we used Sentinel-1 A/B products to analyse the dynamics from 2014 to 2020, in addition to
evaluating the procedure we performed a photogrammetric flight and compared the shapes and
geometric attributes from each lake. For this, in Google Earth Engine (GEE), we processed 517 SAR
images for each lake using the following algorithms: a classification and regression tree (CART),
Random Forest (RF) and support vector machine (SVM).) 2021-02-10, then; the same value was
validated by comparing the area and perimeter values obtained from a photogrammetric flight, and
the classification of a SAR image of the same date. During the first months of the year, there were
slight increases in the area and perimeter of each lake, influenced by the increase in rainfall in the
area. CART and Random Forest obtained better results for image classification, and for regression
analysis, Support Vector Regression (SVR) and Random Forest Regression (RFR) were a better fit to
the data (higher R2), for Burlan and Pomacochas lakes, respectively. The shape of the lakes obtained
by classification was similar to that of the photogrammetric flight. For 2021-02-10, for Burlan Lake,
all 3 classifiers had area values between 42.48 and 43.53, RFR 44.47 and RPAS 45.63 hectares. For
Pomacohas Lake, the 3 classifiers had area values between 414.23 and 434.89, SVR 411.89 and RPAS
429.09 hectares. Ultimately, we seek to provide a rapid methodology to classify SAR images into two
categories and thus obtain the shape of water bodies and analyze their changes over short periods. A
methodological scheme is also provided to perform a regression analysis in GC using five methods
that can be replicated in different thematic areas.

Keywords: changes; Google Earth Engine; sentinel; random forest; SVM; CART; Colaboratory;
Amazonas region

1. Introduction

Only 2.5% of the planet’s water is fresh, of which only 1.2% is surface water, and
much of the latter is found in glaciers and 20.9% is found in lakes [1]. There are more than
1.43 million lakes and reservoirs [2,3]. This type of coastal and continental ecosystem is
important, being a source of nutritional resources for animals and humans, in addition to
providing various ecosystem services [4].

Surface water resources also play important roles in economic development, the bal-
ance of terrestrial and aquatic ecosystems, agriculture, and the environment [5]. Therefore,
it is crucial to monitor the dynamics of the area and water storage of a lake to evaluate
the impacts of climate change and to predict future scenarios [6]. In addition, monitoring
the extension of surface water supports the management of water resources and climate
modelling, among other functions [7].
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Detecting bodies of water near urban centres is also necessary for the delimitation of
flood zones and therefore water accumulation, which become possible sources of outbreaks
of water-borne diseases [8].

In recent years, with the increasing availability of free synthetic aperture radar (SAR)
data, research on water resources has increased, for example, for the monitoring of the
flooded surfaces of lakes in wet and dry seasons, especially small lakes [9], surface water
quality monitoring [10], humidity mapping [11], river mapping [12], and the analysis of
the spatiotemporal variation in the water surface of lakes [13].

In Jiangxi (China), the changes in the area of the water surface of Poyan Lake were
analysed during 2014–2016 using 33 SAR images of Sentinel-1 and were processed in the
Sentinel Application Platform (SNAP) [14]. In turn, Dongting Lake in China was monitored
using SAR images from Environmental Satellite (Envisat) during 2002–2009 [15]. In Latin
America, RADARSAT level 1 and 7 images, Japanese Earth Resources Satellite (JERS)-1
images, and aquatic vegetation were combined to calculate the area of the swamps of
southern Brazil [16]. The lakes of northern Alaska were also mapped in the winter season
of 2009 using European Remote Sensing satellite (ERS)-2 images to quantify the availability
of water in winter and summer [17].

The classification of satellite images through classification and regression trees (CART),
random forests (RF), and support vector machines (SVM) has achieved efficient and ac-
curate results [18]. The image classification process mainly involves the assignment of
pixels to a class based on spectral signatures, indices, contextual information, etc. [19]. For
this, two known methods of joint learning are boosting and bagging [20]. In boosting,
successive trees give extra weight to the points incorrectly predicted by previous predictors,
and then a weighted vote is taken for the prediction [20,21]. In bagging, successive trees do
not depend on previous trees, and each tree is constructed independently using an initial
sample of the dataset. Then, a simple majority vote is carried out for the prediction [20,22].
These processes were optimized with the launch of Google Earth Engine (GEE), allowing
the parallel processing of geospatial data at a global scale using the Google cloud [23,24].

Statistical models are a simplification of reality expressed in a mathematical language,
so to achieve such simplification assumptions must be made, such is the case of this research
that we simplify the behaviour model of the lakes based on different dates from 2014 to
2020. The regression tries to predict a quantity or an expected value, unlike classification
which tries to predict a category or class [25]. The main regression algorithms include
simple linear regression (SLR), polynomial regression (PR), random forest regression (RFR),
support vector regression (SVR), and decision tree regression (DTR), which can be quickly
executed in Google Colaboratory (GC).

We analysed the dynamics of the water surface of two lakes in the Amazonas region
of Peru. For this, (i) we processed 517 Sentinel-1 images for the period 2014–2020, using
the GEE platform, (ii) with the area and perimeter values of each lake we applied five
regression methods executed in Google Collaboratory, (iii) we calculated area and perimeter
by classifying a SAR image from 2021-02-10 and compared with the value predicted
by the best regressor and (iv) finally we compared the values calculated in iii with a
photogrammetric flight performed on the same date (2021-02-10). In effect, this research
sought to show the dynamics of the water surfaces of two lakes approximately 50 km apart,
with different climatic conditions, geographic, and socioeconomic conditions, relying on
the continuity of SAR image data from Sentinel-1.

In contrast to other studies, we calculated the water mask by classifying SAR images
in Google Earth Engine using Classification and Regression Trees, Random Forest and
Support Vector Machine, and compared them with a high-resolution orthomosaic obtained
by a Remote Pilot Aircraft System. We also show the flexibility of performing a regression
analysis in Google Colaboratory using Simple Linear Regression, Polynomial Regression,
Support Vector Regression, Decision Trees Regression and Random Forest Regression
methods, and the same regression methods can be applied to different thematic areas.
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2. Materials and Methods
2.1. Study Area

Burlan and Pomacochas are two of the main lakes in the Amazonas region (NW
Peru). Next, Figure 1 shows the geographic location of Burlan and Pomacochas Lake, in
Utcubamba and Bongará provinces, respectively, in Amazonas region, Peru.

At Burlan Lake, the climate is warm, with an average temperature of 24.9 ◦C and an
altitude of 450 m.a.s.l. [26]. Pomacochas Lake is in a warm and temperate climate, with an
average annual temperature of 15 ◦C and an altitude of 2220 m.a.s.l. [27].

Both lakes have socioeconomic and environmental importance in terms of tourism,
fishing and landscape services, water for agricultural activities, water resource regulation,
and biodiversity.
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Figure 1. Geographic location of the study lakes in NW Peru.

2.2. Methodological Scheme

Figure 2 summarizes the procedure for analyzing the water surface dynamics of the
Burlan and Pomacochas lakes during 2014–2020 using images from the Sentinel-1 mission
in GEE and five regression methods: SLR, PR, SVR, DTR and RFR. For this, initially, the
speckle of the SAR images was reduced, for a subsequent classification using the CART, RF
and SVM algorithms, the classified images were processed in QGIS 3.10. Subsequently, in
Google Collaboratory through five regression methods and the area and perimeter values
calculated in QGis, the area and perimeter were predicted for 2021-02-10, calculating the R2

of each regression method. Finally, to validate the calculations performed in GEE and GC,
the area and perimeter of each lake were measured in the field using a remotely piloted
aircraft system (RPAS) for comparison to the area and perimeter obtained by the extraction
in GEE and regression estimation of the method of greater R2.
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Figure 2. Methodological design for analysing the dynamics of the water surface of Burlan and
Pomacochas Lakes during 2014–2020 using SAR images. * This procedure was performed internally
by GEE.

2.3. SAR Dataset and Training Points

Sentinel-1 A/B images (COPERNICUS/S1_GRD) available in GEE were used [28] with
a temporal resolution of 6 days. The data used were level 1 in the ground range detection
(GRD), interferometric wideband (IW) format (Beam Mode), with a 10 m resolution, using
the ascending and descending Flight Direction, in addition, VH and VV cross-polarized
scenes [29].

In the supervised classification of all SAR images, 23 and 12 training points were used
for Pomacochas and Burlan Lakes, respectively. The points were categorized as water (1)
and land (0), those labelled 1 were distributed in the center of the lake because the previous
inspection of images is an area where water is always present, on the other hand, the
points labelled 0 were distributed to the edges of the lakes, generally higher parts where
there is no water concurrence. For more details on the training points, check file 09 of the
web repository Available online: https://github.com/dargofer/SAR_image_classification
(accessed on 15 October 2022).

2.4. SAR Image Processing

The processing of the SAR images was carried out in the GEE platform [23]. For this,
a code was developed (check file 01 of the web repository), that included the import of
Sentinel-1 images speckle reduction, classification, and export of SAR images. In addition,
according to the availability of data and the objective of the research, water masks were
generated in four combinations. For this, Flight Direction and the polarization of the images
were combined. These combinations were Descending-VH (DVH), Ascending-VH (AVH),
Descending-VV (DVV), and Ascending-VV (AVV) from 2014 to 2020.

For a correct analysis of the SAR images, they must be corrected radiometrically and
geometrically, in addition, depending on the objective of the study, the speckle of the
images is reduced [30]. In our case, we use the Sentinel-1 images available in the GEE data
catalogue, as mentioned in the GEE processing guide for Sentinel-1 images. (Available
online: https://developers.google.com/earth-engine/guides/sentinel1 (accessed on 15
January 2021)) these images were already radiometrically and geometrically corrected [29],
so we only reduced the speckle of the images using ee.Image.focal_median [31].

A variable was created that contained the filtered collection and a band with the details
of each of the four combinations. Then, we performed supervised classification with three
machine learning algorithms [32], RF [33], CART [34], and SVM [35,36] algorithms, and
23 and 12 training points for Pomacochas and Burlan Lakes, respectively. Additionally, to
evaluate the accuracy of the classification, we calculated the confusion matrix and kappa in-
dex [37]. Finally, the images classified in GeoTIFF format and the EPSG coordinate reference
system were exported: 32,717 and 32,718 for Burlan and Pomacochas Lakes, respectively.

2.5. Calculation of the Geometric Attributes

The geometric attributes were calculated in the QGIS 3.10 LTR software, where the
classified images were vectorized using the raster polygonize tool executed in batches. The

https://github.com/dargofer/SAR_image_classification
https://developers.google.com/earth-engine/guides/sentinel1
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classified images were dissolved according to their coding to avoid calculation errors
because, in some images, separate polygons were generated with the same coding. Finally,
the geometric values of the area and perimeter were added for each group of images.

2.6. Regression Analysis

With the values obtained for the area and perimeter of each lake and each combination
and classifier, five regression methods were applied to estimate the area value of a lake at a
specific subsequent time. Simple Linear Regression, Polynomial Regression, Support Vector
Regression, Decisions Trees Regression and Random Forest Regression were executed in
scripts with Python coding language in Google Colaboratory.

Figure 3 shows the methodological flow chart used in the five regression methods,
initially, the Python libraries were imported to input the database, in all 5 methods the
database was split into training and evaluation, finally, a feature scaling and execution of
the regression method script was performed.
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The dependent variables were the area and perimeter (separately), and as an inde-
pendent variable, the date of acquisition of the SAR image was transformed to an ordinal
integer because, in the regressions, chains generate problems in the prediction. The main
library used was Scikit-learn [38], which contains all the regression methods used in this
research. Next, the procedure followed in each regression method is described.

For Simple Linear Regression, the Numpy, Pandas, Matplotlib, and Scikit-learn li-
braries were used. The fundamental equation of SLR was determined by the intercept (b0),
the slope (b1), the independent variable (X) and the Random error term (ei) (Equation (1));
since the goal of linear regression is to fit a straight line through the data that predicts Y
based on X, the calculation of b0 and b1 is usually estimated by the ordinary least squares
method (Equation (2)) [39,40]. The LinearRegression function was used as a regressor [41],
imported from the linear models module of the Scikit-learn library.

Yi = b0 + b1Xi + ei (1)

Σ (yi − ŷi)2 (2)

To build the polynomial regression we mainly used the “PolynomialFeatures” func-
tion [42], which belongs to the scikit-learn library, for which, we used a simple linear regression
equation, which was transformed to a second degree using the above-mentioned function.

For Support Vector Regression, the imported data were standardized using the Stan-
dard Scaler [43]. Then, to apply the principles of the theory of Vapnik Chervonenkis [44],
in which at least the epsilon insensitive tube width and kernel function are required, the
SVR function [45], from the Sklearn.svm module was imported. In addition, to complete
the regressor, we used the Gaussian Radial Basis Function (RBF) as a kernel function for
the Support Vector Regression [46], and 0.1 as the epsilon value.

To build the Random Forest Regression, we imported RandomForestRegressor [47], from
the Sklearn.ensemble module and we considered the default number of trees (n_estimator = 10)
and 0 as the state of randomness (random_state). Finally, to apply Decision Tree Regression
to the data, DecisionTreeRegressor was imported [48] as a regressor from the Sklearn.tree
module and the state of randomness was given the value of 0.
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2.7. Field Data and Validation

The validation of the area and perimeter of each lake was carried out using images
from photogrammetric flights performed on 2021-02-10 with a Phantom 4 RTK in post-
processed kinematic mode (PPK) and ground control points (GCPs) collected with a Trimble
R10 GNSS. For Pomacochas Lake, 2065 images with 4.57 cm average Ground Sampling
Distance (GSD) were obtained, and for Burlan Lake, 729 images with 4.01 cm average
GSD were obtained. All images were processed in PIX4D Mapper v 4.6.4 using 9 GCPs for
each lake, then to uniformize the images, the orthomosaics were exported at resolutions of
50 cm/pixel.

The measurement of the tie point errors was performed by calculating the root mean
square (RMS) error, because the RMS considers the mean error and the variance. Therefore,
for a given direction (X, Y, or Z) the RMS is defined as:

RMS =

√
Σ

ei
2

N
(3)

where, ei is the error of each point for the given direction, and N is the number of GCPs.
Finally, for each lake, a SAR image from 2021-02-10 was classified and overlaid with

the orthomosaics obtained by the RPAS.
On the other hand, the five regression methods were applied to each group with

the area and perimeter data according to each classifier, from which the coefficient of
determination (R2) available in Scikit-learn was calculated [49] to indicate the fit of the data.
The R2 values range from −∞ to 1, the best possible score is 1, and negative values refer to
the model can be arbitrarily worse. Therefore, if ŷi is the predicted value of the i-th sample,
and yi is the corresponding true value for the total of n samples, the R2 is defined as:

R2 (y, ŷ) = 1 − ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi −

−
y i)

2 and
−
y =

1
n ∑n

i=1 yi, ∑n
i=1 (yi − ŷi)

2 = ∑n
i=1 ε2

i (4)

3. Results
3.1. Distribution and Availability of SAR Data

Figure 4 shows the distribution and monthly availability of the SAR images used for
the analysis of the dynamics of Burlan and Pomacochas Lakes from 2014–2021.
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Figure 4. Distribution and monthly availability of the Sentinel-1 images used for the analysis of the
dynamics of Burlan and Pomacochas Lakes from 2014 to 2021. The geometric figures represent the
number of images available in a month, where circles, triangles, and parallelograms represent 1, 2,
and 3 images, respectively. In addition, the colour of each represents the combination of the direction
of passage and polarization, where orange, green, blue, and black represent the combinations of DVV,
AVV, DVH, and AVH, respectively.
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A total of 517 Sentinel-1 images were analysed for each study lake from 2014/10/06
to 2021/01/29 (Table 1). In addition, due to the classification using CART, RF, and SVM,
3 products were obtained per image, generating a total of 3102 water masks for both lakes.

Table 1. Number of SAR images used to generate the water masks of Burlan and Pomacochas Lakes
using CART, RF, and SVM.

Lake

SAR Images Available Water Masks Analysed
DVV

2014/10/15–
2021/01/29

AVV
2014/10/06–
2021/01/20

DVH
2016/02/07–
2021/01/29

AVH
2017/05/17–
2021/01/20

Total CART RF SVM Total

Burlan 153 137 123 104 517 517 517 517 1551
Pomacochas 153 137 123 104 517 517 517 517 1551

Total 1034 3102

Table S1 shows the attributes of all the images used to obtain the water masks of
Burlan and Pomacochas Lakes from 2014–2021. We worked with the same scene because
we used IW products (250 km for each sweep), and the distance between the lakes was
approximately 50 km.

3.2. Obtaining the Geometric Attributes

Figure 5 shows the variation of area and perimeter for Burlan Lake (left) and Poma-
cochas (right). For Burlan Lake, the maximum values differ according to the flight direction
and polarization, for example, 2018 and 2019 show maximum values for VH, while for VV,
the maximum values are shown in 2016, 2017 and 2018. On the other hand, Pomacochas
Lake presents a homogenous trend, for example, VH presents maximum values in 2018
and 2019, while VV presents a homogeneous trend with maximum values in 2019.
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Figure 5. Variation in the area and perimeter of the Burlan and Pomacochas lakes using CART, RF,
and SVM as classifiers of the SAR images. The thick lines represent the area (ha), and the thin lines
represent the perimeter (km). In addition, the purple, green and blue lines represent the values
obtained by SVM, CART and RF, respectively. In addition, AVH, AVV, DVH and DVV, represents the
dataset obtained by: flight directions Ascending (A) and Descending (D), polarizations transmitted
and received vertically (VV) and transmitted vertically and received horizontally (VH).
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Table 2 shows the minimum, maximum and average values obtained for the area (A)
and perimeter (P) of Burlan and Pomacochas Lakes calculated according to the classification
of SAR images using CART, RF, and SVM. The behaviour of the values obtained by CART
and RF was similar for both lakes, while the SVM values were much higher, due to the
algorithm used in the classification.

Table 2. Minimum, maximum, and average values of the area and perimeter of the Burlan and
Pomacochas lakes obtained by classification of SAR images in the 2014–2020 period.

Classifier Geometric Attribute
Burlan Lake Pomacochas Lake

AVH AVV DVH DVV AVH AVV DVH DVV

Classification and
regression
tree(CART)

Area (ha)
Minimum 38.6 39 39.2 40.9 414 417.8 408.3 415.6
Maximum 45 48 48.1 50.2 441.4 455.8 430.1 452.2
Average 42.1 43.3 43 44.9 426.8 434.8 419.3 431.4

Perimeter (km)
Minimum 3.31 3.34 3.36 3.42 11.06 10.94 10.9 10.89
Maximum 3.72 4.8 4.46 4.72 17.59 20.06 13.54 17.26
Average 3.46 3.67 3.55 3.93 14.16 16.52 11.36 13.03

Random Forest(RF)

Area (ha)
Minimum 39.3 40 40.3 41.1 416 416.2 414.8 415.6
Maximum 45.6 48 47.6 49.3 441.4 455.8 426.5 456.5
Average 42.2 43.3 43 44.8 427.2 435.1 419.7 431.3

Perimeter (km)
Minimum 3.33 3.37 3.36 3.43 11.06 10.92 10.92 10.89
Maximum 3.67 4.8 4.12 4.72 17.79 19.79 13.2 18.52
Average 3.46 3.68 3.54 3.91 14.2 16.59 11.38 13.02

Support Vector
Machine(SVM)

Area (ha)
Minimum 38.9 39 39.2 39.8 409.2 405.4 405.5 405.4
Maximum 47.7 49.2 48.3 53 466.8 470.8 450.6 458
Average 42.1 42.8 43 44.9 430.5 433.5 420.1 434.3

Perimeter (km)
Minimum 3.33 3.34 3.36 3.37 11.14 10.87 10.88 10.8
Maximum 4.81 5.73 4.72 5.05 20.52 20.58 19.17 19.92
Average 3.55 3.66 3.57 3.95 14.72 16.43 11.65 13.86

Figure 6 compares the averaged values of the area (ha) and perimeter (km) of the
Pomacochas and Burlan lakes for the combinations AVH, AVV, DVH, and DVV resulting
from the classification of SAR images using CART, RF and SVM.
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3.3. Data Analysis and Prediction
3.3.1. Data Normalization

For each combination, graphs of letter values (Boxenplots) were created in Google
Colaboratory [50] because each batch of data was less than 200 elements [51].

Figure 7 shows the data distribution for each combination (AVV, AVH, DVV, and
DVH), where the subfigures of a—l, m—x of each lake represent the data distributions of
the area and perimeter, respectively.
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As shown in Figure 7, there are outliers for each lake dataset. For example, in sub-
figure (o) DVH of Burlan Lake, which represents the distribution of perimeter data obtained
in Sentinel-1 descending pass and VH polarization, the majority of data are grouped from
3.4 to 3.6 km, but there are outliers that exceed 4 km (4.2 and 4.4). For its part, the data
for Pomacochas Lake was also dispersed, for example, in sub-figure (i) AVH, most of the
area data were grouped from 420 to 440 ha, but there are also values that exceed 460 ha
and there are also values smaller than 415 ha. Therefore, to perform a correct regression
analysis without the inclusion of outliers that can negatively impact the regression models,
we proceeded to delete those values.
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3.3.2. Regression Methods

Table 3 shows the values of the area, perimeter, and coefficients of determination (R2)
that had the highest degree of fit estimated according to SLR, PR, SVR, DTR, and RFR
for 2021-02-10. Table S2 of the supplementary material shows all the R2 calculated in the
present investigation.

Table 3. Area (ha) and perimeter (km) estimated with SLR, PR, SVR, DTR and RFR of greater R2.

SLR PR SVR DTR RFR

Burlan Lake

Area 42.46 42.3 42.43 45.2 44.47
R2 0.12 0.15 0.22 0.37 0.46

Combination DVH DVH DVH AVV AVV
Perimeter 3.43 3.41 3.41 3.43 3.82

R2 0.15 0.2 0.29 0.23 0.43
Combination AVH AVH DVH DVV DVV

Pomacochas
Lake

Area 417.8 408 411.42 414 413.1
R2 -0.004 0.38 0.41 0.13 0.15

Combination DVH DVH DVH DVH DVH
Perimeter 13.28 16.5 15.14 17.1 17.46

R2 0.095 0.24 0.42 0.16 0.26
Combination DVV AVV AVH AVV AVV

To complement Table 3, Figures 8 and 9 show the best fit of the model to the area
and perimeter data. For Burlan Lake, SLR, PR, and SVR were better fit to the area data of
the DVH combination classified by SVM, while DTR and RFR were better fit to the AVV
combination classified by CART. For the perimeter, SLR and PR was a better fit to the AVH
combination classified by SVM, and SVR was a better fit to the DVH combination classified
by SVM. Finally, DTR and RFR were a better fit for the DVV combination classified by
CART. For Pomacochas Lake, all regression models were better fit to the area data of the
DVH combination classified by SVM; for the perimeter, SLR was better fit to the DVV
combination classified by CART, PR to AVV classified by SVM, SVR to AVH classified by
RF, and finally, DTR and RFR to DVV classified by CART.
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Figure 9. Regression models with higher R2 for the area and perimeter data of Pomacochas Lake.

For Burlan Lake, with the AVV and DVV combinations classified by CART, RFR
obtained the best R2 for the area (0.46) and perimeter (0.43), respectively. In turn, for
Pomacochas Lake, the combination DVH classified by SVM and AVH classified by RF
obtained the best R2 for the area (0.41) and perimeter (0.42), respectively, according to SVR.

Next, Figure 10 compares the R2 of each regression method. It can be seen that for
Burlan Lake, RFR showed higher R2 in the area and perimeter data, thus showing an
average adaptation of the model to the data, while for Pomacochas Lake the model that
best fits the area and perimeter was the regression model by support vectors.
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3.3.3. Validation

Figure 11 shows the polygons obtained from the classification of a SAR image of 2021-
02-10, using CART (green), RF (blue) and SVM (purple) and overlaid with the orthomosaic
of Burlan and Pomacochas lakes obtained by the RPAS on the same passage date.
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The continuous lines were obtained from the classification of a descending combination
SAR image in VV polarization (DVV), while the discontinuous lines are the result of the
descending combination in VH polarization (DVH).

The orthomosaics had a mean RMS error of 0.043 m for pomacochas and 0.008 m
for Burlan lake. The area (A) and perimeter (P) in hectares and kilometres, respectively,
were calculated for each polygon extracted from the SAR image of the DVH and DVV
combinations. These values were compared with the estimation by the best regression
method and the flight with RPAS performed on Burlan and Pomacochas Lakes. In addition,
the percentage of variation of the SAR image and the regression estimation were calculated
with respect to the values obtained by the RPAS, as shown in Table 4.

Table 4. Cross comparison of area and perimeter of SAR classification, the method of regression of
higher R2 with respect to photogrammetric flight.

SAR Image

Best Regres-
sionmethod ∆% RPASDVV DVH

CART ∆% RF ∆% SVM ∆% CART ∆% RF ∆% SVM ∆%

B
ur

la
n

la
ke A 43.53 −3.27 42.89 −4.69 43.42 −3.51 42.46 −5.64 42.48 −5.60 42.48 −5.60 44.47 −1.18 45.63

P 3.4 −17.68 3.3 −20.10 3.38 −18.16 2.87 −30.51 2.87 −30.51 2.87 −30.51 3.82 −7.51 4.13

Po
m

ac
oc

ha
s

la
ke A 434.89 1.35 430.77 0.39 437.18 1.89 420.57 −1.99 420.57 −1.99 414.23 −3.46 411.89 −4.01 429.09

P 12.21 23.46 11.13 12.54 13.03 31.75 9.51 −3.84 9.49 −4.04 9.14 −7.58 17.46 76.54 9.89

4. Discussion

The monitoring of lakes using SAR images is very diverse, and commercial SAR
products [6,52] or free access products such as those of the Sentinel-1 mission [28] can
be used. In 2015, the launch of GEE [23] and the incorporation of the GRD products of
Sentinel-1 facilitated the management of and access to SAR images. In this study, we used
517 Sentinel-1 A/B images for both lakes under study, having greater data availability as of
2016, we considered the period 2014–2020, as did Zijie et al. [53], but we calculated water
masks by combining the polarizations and directions flight of the satellite. This approach
was proposed because the retrospection in the images is different according to the direct
flight or polarization considered; we based it on Table 4 and Figure 5.

To calibrate the first-level data of Sentinel-1, there are four look-up tables (LUTs). In
the case of the level 1 files in Sentinel-1 GRD format, the zero sigma correction type is
the most commonly used to generate the dispersion coefficient (σ◦) [54]. To perform the
correction of Sentinel-1 images, processes such as the application of orbit files, thermal
noise removal, border noise removal, speckle filtering, and range-Doppler terrain correction
are performed, all of which are performed in SNAP. In China, Zeng et al. [14] used this data
processing approach for their research. For our part, we used the Sentinel-1 GRD products
already available in GEE. This dataset provides images in which the pixel values are directly
related to the backscatter of the radar by scene. That is, they are radiometrically calibrated,
including thermal noise removal and terrain correction using Shuttle Radar Topography
Mission (SRTM) and Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) digital elevation models (DEMs). Therefore, when using the GEE functions to
homogenize the images, we opted to eliminate the noise using reducing filtering.

There are several ways to approach the extraction of water bodies from SAR images,
for example, Otsu segmentation [55] and delineation through active contour models [56].
In this study, we used SAR images classified by three machine learning algorithms [32]
to compare the results of the classification and to take advantage of the versatility and
adaptability of GEE for the processing of SAR images, in addition to the parallel execution
of the three algorithms CART, RF, and SVM.

Because similar studies have not been reported for the study lakes, we cannot compare
the results of the classification, and we only lay the foundations for subsequent stud-
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ies framed in the sixth sustainable development goal (target 6.6, indicator 6.6.1), which
mentions that there are changes in the extent of water-related ecosystems over time [57].

Due to the geographical location of the study lakes, no marked trends were found
with respect to monthly changes in area and perimeter, with the exception of the month of
January, which is the month of greatest rainfall in the area. The area and perimeter values
obtained by CART and Random Forest were similar, but the Support Vector Machine yields
different values due to the input parameters of each algorithm, for example, the decision
trees (CART and Random Forest) and the types of kernels (SMV) used in the classification.
Several studies compare the performance of classifiers in different applications [58–60], and
obtain different accuracies by simply modifying the number of decision trees or the type
of kernel [61], so, at present, there are no defined parameters for image classification, and
it is the task of each researcher to use and modify the input parameters. In our case, the
accuracies were similar, but the values of the area and perimeter differed in some cases.

In China, Zijie et al. [53] found a slow upwards trend since 2014–2020 in Baiyangdian
Lake and that the area of the lake was greater in spring and winter; in our case, the
precipitation shows a similar behaviour with the area of Burlan lake, while for Pomacochas
lake there is no defined trend regarding precipitation. Indeed, in Figure 12, we show the
precipitation (mm/day) extracted from Climate Hazards Group InfraRed Precipitation
with Station data (CHIRPS) for the study lakes.
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Figure 12. Daily distribution of precipitation for (a) Burlan and (b) Pomacochas lakes.

We consider that in the high-resolution orthomosaic obtained by the RPAS, the contour
of the lakes is better defined than in the SAR image, these overlapping errors at the edges
of the lakes are due to the different spatial resolutions. Valdez-Lazalde et al. [62] used high
(Ikonos and QuickBird-2) and medium-resolution (SPOT-4 and Landsat-7 ETM+) images
for the estimation of the tree cover of a pine forest. In turn, Hernán et al. [63] found better
results with aerial and satellite images of 1m and 2.44 m spatial resolution, respectively,
for the estimation of biomass in vineyards. As shown in Figure 11 and Table 4, the area
and perimeter values of the images with the VH band were lower because the waves that
were transmitted vertically and those that return to the sensor horizontally are small. This
means that the intensity of the VH band was lower than that of the VV band [64].

In Peru, especially for the Amazonas region, there is no geospatial information with
high spatial resolution [65], which is why the regression analysis was limited regarding
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including other variables such as precipitation, evapotranspiration, and temperature, the
same variables that influence the dynamics of a lake [66]. For the calculation of meteo-
rological variables, established models can be used or calibrations can be performed to
obtain greater precision in the estimation of these variables [67]. In this investigation, we
tried to relate only the area and date of acquisition of the SAR image; for this purpose, the
dates were transformed to ordinal numbers, and taking advantage of the robustness of the
nonlinear regressors (RFR, SVR, and DTR), a correlation and predicted area and perimeter
data with a mean R2 fit (±0.4) were obtained.

Through the type of regression analysis used in this research, the area and perimeter
values were similar to those of the validation with the RPAS, unlike the perimeter of
Pomacochas lake, which was overestimated, in addition, the shape of the polygons extracted
from the SAR images classified by our approach differs slightly with the shape of each lake,
as shown in Figure 11. The variation in the contour shapes of each lake occurs because the
spatial resolution of the RPAS used is much higher (50 cm/pixel) than that of Sentinel-1
(approximately 10 m/pixel).

The use of single polarizations can help to detect water bodies, but double polariza-
tions have better performance [68,69]. In particular, we used dual polarizations, specifically
the data obtained from VV polarization obtained better consistency according to SVR for
Burlan Lake, while the VH polarization according to RFR for Pomacochas Lake. As shown
in Figure 10, the maximum R2 of the regression methods does not exceed 0.5, so data from
different sensors can be used to correct this [70].

Generating geospatial information from optical data in areas of cloud cover is a
challenge [71]. Additionally, analyzing the dynamics of lakes in the Amazonas using data
from all the factors that influence a lake continues to be a challenge due to the temporal
resolution (different acquisition dates), absence of historical climate data, and low density
of meteorological stations, which are issues to be resolved in future research. It should be
noted that there are various products that can be obtained from SAR images (vegetation
indices, and interferograms), but our research was focused only on providing a rapid
methodology for the analysis of the dynamics of two lakes using the area and perimeter
and their correlation with the date of acquisition of the GRD-type SAR images.

5. Conclusions

Processing Sentinel-1 data in GEE is efficient, fast, and suitable for studies of lake
dynamics located in areas with high cloud cover. In addition, the good spatial and temporal
resolution of Sentinel-1 data is suitable for an analysis of changes in short periods, helping
to show the multitemporal dynamics of water bodies. In particular, this research helped to
show the variation in the area and perimeter of the Burlan and Pomacochas lakes, which
was greater in the first months of each year.

On the other hand, GC was essential for quickly and easily executing five regression
methods, showing that Random Forest Regression worked better both as a classifier and as
a predictor. Variations of −1.18% and −7.51% were achieved with respect to the area and
perimeter of Burlan Lake obtained through the Remote Pilot Aircraft System. On the other
hand, for Pomacochas Lake, RFR underestimated the area of Pomacochas Lake by −4.01%
and overestimated the value of the perimeter by 76.54%.

Finally, this research provided a general methodology for the processing of Sentinel-1
data to analyse water bodies, using Classification and Regression Trees, Random Forests
and Support Vector Machines similar to a classifier. In addition, customizable scripts were
provided for prediction using five regression methods in Google Colaboratory.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijgi11110534/s1, Table S1: Sentinel-1 imagery used for Burlan and Pomacochas Lakes, Table S2:
Area, perimeter, and R2 of each dataset for the five regression methods.
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