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Abstract: Crime prediction is crucial for sustainable urban development and protecting citizens’
quality of life. However, there exist some challenges in this regard. First, the spatio-temporal
correlations in crime data are relatively complex and are heterogenous in time and space, hence
it is difficult to model the spatio-temporal correlation in crime data adequately. Second, crime
prediction at fine spatial temporal scales can be applied to micro patrol command; however, crime
data are sparse in both time and space, making crime prediction very challenging. To overcome
these challenges, based on the deep spatio-temporal 3D convolutional neural networks (ST-3DNet),
we devise an improved ST-3DNet framework for crime prediction at fine spatial temporal scales
(ST3DNetCrime). The framework utilizes diurnal periodic integral mapping to solve the problem
of sparse and irregular crime data at fine spatial temporal scales. ST3DNetCrime can, respectively,
capture the spatio-temporal correlations of recent crime data, near historical crime data and distant
historical crime data as well as describe the difference in the correlations’ contributions in space.
Extensive experiments on real-world datasets from Los Angeles demonstrated that the proposed
ST3DNetCrime framework has better prediction performance and enhanced robustness compared
with baseline methods. In additon, we verify that each component of ST3DNetCrime is helpful in
improving prediction performance.

Keywords: crime prediction; fine spatial temporal scales; deep learning; spatio-temporal features

1. Introduction

Crime prediction assists police departments and government authorities to formulate
crime prevention strategies, and bears an important impact on urban sustainable devel-
opment and citizens’ quality of life [1]. Thus, researchers in industry and academia are
actively studying this problem from various perspectives. In this paper, our goal is to infer
the crime density of each spatial unit in the next time period based on historical crime
records, which can provide guidance in terms of optimizing the arrangement of police
patrols. This topic continues to increasingly attract the attention of researchers.

According to classical criminal theories such as routine activity theory [2], Near Repeat
theory [3] and rational choice theory [4], the occurrence of crime is closely related to time
and space. In the earlier stage, the crime prediction techniques primarily focused on either
the temporal dimension of crime [5–7] or the spatial dimension of crime [8–10]. If both the
temporal and spatial correlations in crime are considered simultaneously, it is expected
that crime analysis and prediction research will be advanced in meaningful ways [11].
Therefore, with the development of spatiotemporal analysis technology, researchers are
actively studying crime prediction using spatio-temporal methods in recent years [12].
However, some challenges abound:
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Challenge 1 (Modeling the spatio-temporal correlation in crime data adequately).
On one hand, the crime within a region is influenced by the recent and distant historical

crime of itself as well as its nearby or distant regions. In other words, the spatio-temporal
correlations in crime data are relatively complex and difficult to extract effectively. On the
other hand, the contributions of the correlations in crime data are different in time and
space. Hence, it is necessary to consider the heterogeneity of the correlations’ contribution
in the crime prediction model, which is often ignored in most existing spatio-temporal
crime prediction models.

Challenge 2 (Achieving crime prediction at fine spatial temporal scales).
In practice, predicting crime at fine spatial temporal scales can not only provide real-

time basic intelligence for the daily patrol and investigation of police, but also provide
quantitative basis for the optimal allocation of urban police resources, providing strong
support for risk prevention and crime control. Hence, crime prediction at fine spatial
temporal scales represents a significant scientific and practical issue [13]. However, crime
data at fine spatial temporal scales are sparse in both time and space, making crime
prediction a very challenging task, and there are not many research results so far.

To address the challenges, based on the deep spatio-temporal 3D convolutional neural
networks (ST-3DNet) initially developed in [14] for traffic raster data prediction, we propose
an improved ST-3DNet framework for crime prediction at fine spatial temporal scales
(ST3DNetCrime). The following summarizes our main contributions.

• To the best of our knowledge, we are the first to introduce and improve the ST-3DNet
model to make it suitable for crime prediction domain.

• Diurnal periodic integral mapping is used to solve the problem of sparse and irregular
crime data at fine spatial temporal scales.

• We consider three categories of temporal properties of crime, i.e., closeness, period,
and trend. Furthermore, we modify the ST-3DNet structure to, respectively, extract the
three spatio-temporal correlations and describe the difference between the correlations’
contributions in space.

• We conduct comprehensive experiments using real-world datasets gathered from Los
Angeles to assess the performance of ST3DNetCrime model and examine the role of
each component in the ST3DNetCrime model for crime prediction.

The remainder of this paper is organized as follows. Related works are summarized in
Section 2. The Preliminaries, i.e., the definitions of crime prediction and ST-3DNet structure,
are described in Section 3. Our proposed ST3DNetCrime model is expounded in Section 4.
Section 5 discusses the experimental results. Finally, Section 6 provides conclusions and
suggestions for future work.

2. Related Work

In this section, we mainly discuss related work on spatio-temporal crime prediction.
The spatio-temporal crime prediction models simultaneously consider both the tem-

poral and spatial correlations in crime, and could provide great potential for the in-depth
study on crime analysis. This topic has attracted increasing attention in recent years. For ex-
ample, recent studies [15,16] presented a spatio-temporal Cokriging model to integrate
historical crime data and environmental variables related to criminal patterns, such as
urban transitional zones identified from nightlight imagery, and movement data of past
offenders collected in routine police stop-and-question operations, for more accurate crime
prediction. Zhao et al. validated the existence of temporal-spatial correlations in crime
and developed a crime prediction method named TCP which models these correlations
into a coherent framework [17]. Since the temporal dimension of crime is not consid-
ered in the popular kernel density estimation (KDE), a spatio-temporal kernel density
estimation (STKDE) framework was proposed for predictive crime hotspot mapping and
evaluation [18]. Considering that criminal behavior shares similarity with earthquakes,
whereby the risk of subsequent earthquakes, or aftershocks, increases near the location of
an initial event, self-exciting point process models in seismology were adapted to model the
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crime [19]. Recently, Farjami and Abdi developed a genetic-fuzzy-based system which is a
suitable tool to find spatio-temporal crime patterns and predict future crimes for environ-
ments with clustered crimes in space and time [20]. Deep learning has also recently been
applied to the forecasting and modeling of crime. In [21], the problem of crime forecasting
was expressed as a space-time series prediction problem, and an appropriate deep recurrent
neural network with spatial influence embedding was implemented to predict criminal
activity in the near future. By jointly embedding all spatial, temporal, and categorical
signals into hidden representation vectors and capturing crime dynamics via an attentive
hierarchical recurrent network, Huang et al. created a crime prediction model based on
deep neural network architecture (DeepCrime) that can predict the occurrence of various
crimes in each area of the city [22]. A Multi-View and Multi-Modal Spatial-Temporal
learning framework (MiST) for the prediction of abnormal events in the city is studied
in [23]. MiST can explicitly model the dynamic patterns of citywide abnormal events from
spatial-temporal–categorical views, with the integration of a multi-modal pattern fusion
module and a hierarchical recurrent framework. In addition, the authors of [24] proposed a
deep temporal multi-graph convolutional network (DT-MGCN) model for crime prediction,
which combines the spatial-temporal component and graph generation component to cap-
ture the relationships between crime and many external elements. However, the complex
spatio-temporal correlations in crime data have not been adequately described. For in-
stance, crime is not only highly correlated in adjacent time intervals, but also affected by
other temporal properties, such as period patterns and trend patterns which are not effi-
ciently captured in most existing spatio-temporal crime prediction models. Moreover, often
neglected is that the spatio-temporal correlations in crime data are heterogenous in time
and space. In addition, most of these techniques model the coarse-scale spatial-temporal
patterns in the crime data.

Fortunately, new developments in deep learning techniques enable efficient modeling
of the complex correlations in spatio-temporal data. Furthermore, there are research results
in the field of traffic data prediction. For example, Zhang et al. [25,26] proposed a spatio-
temporal residual network (ST-ResNet), which comprises an ensemble of deep residual
networks [27] and convolution layers, to collectively predict hourly inflow and outflow
of crowds in every region of a city. Subsequently, the ST-ResNet model is applied to
crime prediction at fine spatial temporal scales. Wang et al. [13] adapted the ST-ResNet
structure to predict the hourly crime distribution of Los Angeles in neighborhood-sized
parcels. In addition, an adaptive spatial resolution method was proposed to select the best
spatial resolution for hourly crime prediction based on the ST-ResNet model [28]. However,
ST-ResNet only considers the information over neighboring time intervals as multiple
channels, hence the input’s temporal information is lost after the first convolution layer [14].
To overcome this limitation, Guo et al. [14] presented a spatio-temporal traffic forecasting
network called ST-3DNet based on deep learning. ST-3DNet uses 3D convolutions and
residual units to capture features from both spatial and temporal dimensions, and proposed
a “Recalibration” (Rc) module to clearly state the contribution difference of the spatio-
temporal correlations in space. However, ST-3DNet could not be applied to crime prediction
at fine spatial temporal scales, because crime data are very sparse and bear more complex
spatiotemporal dynamic relationships than traffic data. Hence, we draw upon the existing
results on crime prediction at fine spatial temporal scales, and improve ST-3DNet to obtain
better crime prediction performance.

3. Preliminaries
3.1. Problem Definition

The aim of this study is to predict crime at small spatial and hourly temporal scales.
Here, the researched area is divided into 16 by 16 grid regions based on longitude and
latitude. Let Xt ∈ R16×16 denote the crime matrix at the t-th time slot, where the element
(Xt)i,j is the number of crime in grid (i, j) at time slot t. The time interval between two time
slots is one hour. Then the problem of crime prediction is described as follows.
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Definition 1. (Crime prediction). Given the historical observed crime matrices {Xt|t = 0, 1, · · · , n},
the goal is to learn a crime predictor that can predict Xn+1, i.e., crime distribution at time slot n + 1.

3.2. ST-3DNet Model

ST-3DNet is a novel deep learning model initially developed in [14] for traffic raster
data prediction. Figure 1 shows the ST-3DNet structure. It primarily consists of two
components, i.e., a closeness component that aims at capturing spatio-temporal features of
the most recent historical data, and a weekly period component that aims to describe the
periodic and trend features of traffic data.

Figure 1. ST-3DNet structure. 3D Conv, Resunit and Rc denote 3D Convolutional, residual unit and
Recalibration block, respectively.

Specifically, a studied city is partitioned into an I × J grids map by the longitude and
latitude, and a grid denotes a region. For the closeness component on the right side of
Figure 1, a subsequence of spatiotemporal raster data from most recent time slots serves
as its input. In order to extract spatio-temporal features from traffic data, the closeness
component firstly employs 3D convolution layers and 2D residual units. An Rc module
is then used to distinguish and quantify the features’ contribution of each region. For the
weekly period component on the left side of Figure 1, the input is a subsequence of spatio-
temporal data from the last few weeks. This component employs 3D convolutions to extract
spatio-temporal patterns and an Rc module that selects useful features and suppresses
unhelpful ones for each region. Next, the two outputs are integrated into X f according to
parameter matrices that can be learned to express the contribution difference between the
two temporal properties in space, shown as on the top of Figure 1. Finally, an activation
function follows after X f .

4. Methodology
4.1. Framework Overview

Figure 2 illustrates the framework of our proposed crime prediction model. The model
inputs are the raw historical crime records, and the outputs are the hourly predicted
number of crimes for all regions of a city. The proposed ST3DNetCrime includes three main
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modules, namely data preprocessing, temporal features extraction, and spatiotemporal
feature modeling. The three modules are described in detail in the following.

Data
preprocessing

Temporal features extraction

Temporal closeness property

Temporal period property

Temporal trend property

Spatiotemporal feature modeling

Closeness component

Period component

Trend component

Raw Crime
records

Feature
fusion

Hourly
predicted
number
of crime
in each
area

Figure 2. Framework.

4.2. Data Preprocessing

Figures 3a and 4a present crime distribution at a randomly selected time slot and
the hourly crime time series over the previous two weeks in a randomly chosen grid,
respectively. It shows that crime data are sparse and irregular at fine spatial temporal scales.
In order to better adopt deep learning models, we use diurnal periodic integral mapping
proposed in [13] to enhance the regularity of the time-series data:

Yt =
∫ t

k
Xt (1)

where Yt ∈ R16×16 is the integrated crime matrix at the t-th time slot, and k = t− (t mod 24).
Figures 3b and 4b show the integrated crime distribution and the integrated hourly crime
time series corresponding to Figures 3a and 4a, respectively. The integrated crime data
become denser and show daily periodicity. Moreover, in order to prevent the deep learning
model from abnormal training and ensure good convergence effect, the integrated crime
matrix Yt is normalized through min-max normalization.The normalized integrated crime
matrix is denoted by Yt

∗.

Figure 3. Crime distribution at a randomly selected time slot: (a) crime distribution at 23:00 on 8 July
2015; (b) integrated crime distribution corresponding to (a).
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Figure 4. The hourly crime time series over the last two weeks in a randomly chosen grid: (a) hourly
crime time series on the grid [34.2000◦, 34.025◦]× [−118.325◦,−118.3◦]; (b) integrated hourly crime
time series corresponding to (a).

4.3. Temporal Features Extraction

Three categories of temporal properties of crime are considered in the proposed
ST3DNetCrime model, i.e., closeness, period, and trend. The three temporal properties
denote the influence of recent crime data, near historical data and distant historical data on
future crime, respectively. And they are formulated as follows.

Yh =
{

Y∗t−lh
, Y∗t−(lh−1), · · · , Y∗t−1

}
Yd =

{
Y∗t−T×ld

, Y∗t−T×(ld−1), · · · , Y∗t−T

}
Yw =

{
Y∗t−W×lp

, Y∗t−W×(lp−1), · · · , Y∗t−W

} (2)

where Yh, Yd and Yw are termed closeness-dependent sequence, period-dependent sequence,
and trend-dependent sequence. Furthermore, lh, ld and lw are the lengths of the three
dependent sequences, respectively. The parameter T is set to 24 because of the clear daily
periodicity from Figure 4. In addition, the trend span is empirically fixed to one-week,
i.e., W = 24× 7 = 168. The three dependent sequences serves as the inputs of the closeness
component, the period component and the trend component, respectively.

4.4. Spatiotemporal Feature Modeling

Compared to the traffic data, crime data bear more complex spatiotemporal dynamic
relationships, which cannot be well handled by the original ST-3DNet structure. This is
mainly reflected in the following two points. Firstly, in the original ST-3DNet structure, both
the periodic and trend patterns in traffic data are captured by the weekly period component.
However, the periodic feature and the trend feature in crime data have different effects on
crime. Therefore, it is best to design two different components to capture periodic pattern
and trend pattern, respectively. Secondly, the crime within a region is not only affected by
the recent crime of its nearby or distant regions, but also by the crime of its nearby or distant
regions in the past. Hence, we need to consider that period and trend components can also
capture spatio-temporal features. Meanwhile, the weekly period component of original
ST-3DNet model only uses 3D convolutions to mainly extract periodic and trend features,
and the spatial features have not been fully explored. Motivated by the above two factors,
we modified the ST-3DNet structure to make it suitable for modeling spatio-temporal
features in crime data, as shown in Figure 5.
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Figure 5. Improved ST-3DNet structure for crime prediction. 3D Conv, Resunit and Rc denote 3D
Convolutional, residual unit and Recalibration block, respectively.

In the improved ST-3DNet structure, both the period component and the trend compo-
nent adopt the same network structure as the closeness component of the original ST-3DNet
structure. Specifically, in order to, respectively, extract spatio-temporal features from recent
crime data, near historical crime data and distant historical crime data, the inputs of the
three components firstly are separately fed into 3D convolution layers and 2D residual
units. Next, the features’ contribution of each region is distinguished and measured using
an Rc module. Ŷh, Ŷd and Ŷw denote the outputs of the three components, respectively.
Then, the three outputs are fused as follows.

Yf = Wh ◦ Ŷh + Wd ◦ Ŷd + Ww ◦ Ŷw (3)

where ◦ is element-wise multiplication. Wh, Wd and Ww are the learnable parameters
which adjust the degrees influenced by the three categories of temporal properties of crime.
Finally, the predicted value denoted by Ŷt, is defined as

Ŷt = f (Yf ) (4)

where f is a nonactivation function.

5. Evaluation

Here, extensive experiments with real-world datasets from Los Angeles are conducted
to evaluate the crime prediction performance of the ST3DNetCrime model. We mainly aim
at answering the following questions:

(1) How robust is our ST3DNetCrime model? In other words, how do the different
configurations of model parameters (e.g., the number of 2D residual units) affect the
performance of ST3DNetCrime?

(2) How does the ST3DNetCrime perform as compared to baseline methods?
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(3) How well do the ST3DNetCrime variants perform with different combinations of
the three components as well as whether the data preprocessing module is used?

5.1. Settings
5.1.1. Datasets

We focus on crime prediction in Los Angeles, since it is one of the cities with the most
extensive online data disclosure. This study’s model for predicting crime is transferable
to different urban settings. We collected crime data from 00:00, 1 July 2015 to 00:00, 1
January 2016. In total, there were 110,662 valid crime records. Each record has detailed
information about the time and location (i.e., latitude and longitude). The total spatial
distribution of crime is depicted in Figure 6. Geographically, these crimes occurred in
the latitude and longitude ranges of [33.7058◦, 34.3343◦] and [−118.7668◦,−118.1574◦],
respectively. From Figure 6, it is found that there are few or no crimes in a large portion
of the area. Therefore, the crimes that happened within the area [33.9000◦, 34.3000◦] ×
[−118.6000◦,−118.2000◦] are considered in this study, shown as area Z in Figure 6. There
are 98,731 crime records in the studied area, accounting for 89.2% of all crimes.

Figure 6. The overall spatial crime distribution.

5.1.2. Experimental Setup

Based on Keras, which employs Tensorflow as its backend engine, the ST3DNetCrime
is implemented. The basic experimental setup is given as follows.

(1) In the crime datasets, we choose all data prior to the last two weeks as the training
set, and data of the last two weeks as test set.

(2) The crime prediction performance is evaluated by the most commonly used evalu-
ation metrics for regression problems [29], namely root mean square error (RMSE).

(3) Several hyperparameters should be preset prior to building the ST3DNetCrime
model. By extensive contrast experiments, the basic structure of the ST3DNetCrime model
is obtained. For each component, there are three 3D convolution layers. Filters of size
l × 3× 3 are used in the first 3D convolution layer, where l is the magnitude of the input
data’s temporal dimension. Filters of size 3× 3× 3 are used in the remaining two 3D
convolution layers, and the 2D convolution layers in residual units employ filters of size
3× 3. The model’s activation functions are all ReLU. In addition, Adam with default
parameters is used as the optimizer and L2-norm is used as the loss function when training
the model.

5.2. Parameter Sensitivity Studies

To discuss the robustness of the ST3DNetCrime model, we examine how the different
configurations of model parameters (i.e., the number of 2D residual units, the number of
filters used in convolution layers, and the lengths of the three dependent sequences) affect
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the performance of the ST3DNetCrime. In this study, the number of filters in convolution
layers and the number of 2D residual units are selected from the candidate sets {8, 16, 32, 64}
and {2, 4, 6, 8}, respectively. For the lengths of the three dependent sequences (i.e., closeness-
dependent sequence, period-dependent sequence, and trend-dependent sequence), we set
them as lc ∈ {2, 4, 6}, lp ∈ {1, 2, 3}, and lq ∈ {1, 2, 3}. Hence, there are 27 combinations of
three independent sequence lengths. Figure 7 shows the evaluation results. We obtain two
key observations from Figure 7.

Figure 7. Parameter sensitivity study on the performance of ST3DNetCrime: (a) the number of filters
in the convolution layers is 8; (b) the number of filters in the convolution layers is 16; (c) the number
of filters in the convolution layers is 32; (d) the number of filters in the convolution layers is 64. Units:
x-axis: number of combinations of three independent sequence lengths; y-axis: RMSE value.

(a) When the number of filters in convolution layers is 8 and 16, respectively, the num-
ber of 2D residual units and the lengths of the three dependent sequences have a relatively
low impact on the performance of ST3DNetCrime. Furthermore, in the two scenarios,
the ST3DNetCrime achieves relatively similar performance. When the number of filters
in convolution layers is increased to 32, the fluctuation of RMSE is relatively large under
different lengths of the three dependent sequences when the number of residual units is
set to 8 and 16. If the number of filters in convolution layers is further increased to 64,
the fluctuation of RMSE becomes conspicuous irrespective of what the number of residual
units is set to, and the RMSE is also significantly higher than that when the number of
filters in convolution layers is set to 8, 16 and 32.

(b) Overall, when the number of residual units is set to 2 and 4, the RMSE is lower than
that when the number of residual units is set to 8 and 16 under most different combinations
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of three independent sequence lengths. Even if the number of filters in convolution layers is
set to 8 and 16, this phenomenon also exists if we look closely at Figure 7a,b.

The observations show that the proposed ST3DNetCrime has good prediction perfor-
mance and strong robustness when the number of 2D residual units is small (i.e., the model
structure is relatively simple) and the number of filters in the convolution layers is small
(i.e., the model training time is reduced).

5.3. Performance Comparison for Crime Prediction
5.3.1. Baselines

We compared the performance of ST3DNetCrime with the following baseline methods.

• Support vector regression (SVR) [30]: SVR is a representative machine learning method
for handling regression problems. Here, a linear kernel function is used, and the time
lag is chosen from a candidate sets {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} to find the best RMSE
value.

• Long short-term memory neural network (LSTM) [31]: LSTM is a type of recurrent
neural network and can learn long time-series data. A single LSTM layer is used in
this case, and the number of nodes in the LSTM layer is 200. In addition, the time lag
is also chosen from a candidate set {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

• Convolutional LSTM (ConvLSTM) [32,33]: ConvLSTM is a variant of the LSTM model,
which changes the fully connected layer of the traditional LSTM to the convolutional
layer. It is good at capturing spatio-temporal features. Two ConvLSTM layers are
used here. Each ConvLSTM layer uses 8 filters with size 3× 3. The time lag is also
chosen from a candidate set {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

• ST-ResNet [25,26]: ST-ResNet is a deep residual-network-based prediction model for
spatio-temporal data. Here, the convolutions in all residual units and Conv1 use filters
with size 3× 3, and Conv2 uses a convolution with one filter of size 3× 3. In addition,
the number of 2D residual units, the number of filters used in convolutions, and the
lengths of the three dependent sequences are set the same as those of ST3DNetCrime.

• Original ST-3DNet: The weekly period component has three 3D convolution layers
and its input is the same as that of the trend component in ST3DNetCrime. The other
parameters are set the same as those of ST3DNetCrime.

• ST-3DNet-s: We also consider a special scenario of the original ST-3DNet, in which
the weekly period component only uses one 3D convolution layer with filter of size
l × 1× 1, where l is the magnitude of the input data’s temporal dimension. In this
case, the 3D convolution layer is used to only extract periodic and trend features along
the temporal dimension.

5.3.2. Comparison and Analysis of Results

Table 1 presents the RMSE of all compared methods. Overall, our ST3DNetCrime
outperforms all the baseline methods. Specifically, we make the following observations.

Table 1. Comparison between different models in terms of RMSE.

Model Name RMSE

SVR 1.323777
LSTM 0.406879

ConvLSTM 0.397032
ST-ResNet 0.312312

Original ST-3DNet 0.312203
ST-3DNet-s 0.307865

ST3DNetCrime 0.307223

(a) The RMSE of SVR is significantly higher than that of the deep learning methods.
The reason may be that it is difficult for SVR, a traditional machine learning model, to
capture the complex features from the spatial-temporal crime data.
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(b) Compared with LSTM and ConvLSTM, the RMSE of our ST3DNetCrime model
is reduced by 24.5% and 22.6%, respectively. As can be seen, ConvLSTM performs better
than LSTM because ConvLSTM can simultaneously capture spatial and temporal features
in crime data. However, ConvLSTM can only stack a few layers due to its complicated
structure, thus ConvLSTM can only capture the nearby spatial feature and recent temporal
feature, i.e., ConvLSTM cannot capture the spatio-temporal correlation in crime data
adequately. As a result, the performance advantage of ConvLSTM is not as great as
expected when compared with LSTM, while the performance of ConvLSTM is significantly
worse than that of the deep residual-network-based prediction models (i.e., ST-ResNet and
ST-3DNet) which can effectively model the complex correlations of spatio-temporal data.

(c) Although ST-ResNet and ST-3DNet can effectively model the complex correlations
of spatio-temporal data, the RMSE of ST3DNetCrime is still reduced about by 1.63%.
This illustrates that our ST3DNetCrime is more suitable for capturing spatio-temporal
features in crime data and crime prediction at fine spatial temporal scales. In addition, we
found an interesting special scenario of original ST-3DNet (i.e., ST-3DNet-s whose weekly
period component is set to be used only for extracting periodic and trend features along
the temporal dimension). In this case, although the RMSE of our ST3DNetCrime model
is only slightly lower than that of ST-3DNet-s, the RMSE fluctuation of ST3DNetCrime
under different parameters is much lower than that of ST-3DNet-s, as shown in Figure 8.
The observations demonstrate that the proposed ST3DNetCrime framework not only
reduces the RMSE of crime prediction, but also bears good robustness.

Figure 8. RMSE comparison under different values of lc, lp and lq in four randomly selected com-
binations of the number of filters in the convolution layers (N f ilters) and the number of residual
units (Nres): (a) N f ilters = 64, Nres = 6; (b) N f ilters = 32, Nres = 6; (c) N f ilters = 16, Nres = 2;
(d) N f ilters = 8, Nres = 2. Units: x-axis: number of combinations of the independent sequence lengths;
y-axis: RMSE value.
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5.4. Evaluations on Variants of ST3DNetCrime

In order to better understand the proposed ST3DNetCrime model and evaluate
whether each component plays a crucial role in crime prediction, we consider four vari-
ants of the proposed model according to different combinations of the three categories of
temporal properties and whether the data preprocessing module is used. The full version
of ST3DNetCrime introduced in Section 4 is defined as ST3DNetCrime-f. Table 2 gives
specific combination settings and corresponding model name definitions. In the evaluation,
the number of 2D residual units and the number of filters in the convolution layers are
fixed to 2 and 16, respectively. The evaluation results are shown in Figure 2. From the
results, four key observations are summarized as follows.

(a) Compared with ST3DNetCrime-nopre, not only is the RMSE of ST3DNetCrime sig-
nificantly reduced, but the RMSE fluctuation of ST3DNetCrime under different parameters
is also much lower. The observation verifies that diurnal periodic integral mapping used to
solve the problem of sparse and irregular in crime data not only helps to reduce the RMSE
of ST3DNetCrime but also improve robustness.

(b) ST3DNetCrime-f outperforms ST3DNetCrime-cp, ST3DNetCrime-ct as well as
ST3DNetCrime-pt. The RMSE value of ST3DNetCrime-f is reduced by at least 1.07%
compared with the three variants. This observation suggests that spatio-temporal features,
respectively, captured by closeness component, period component and trend component
are all helpful to improve the prediction accuracy.

(c) Overall, ST3DNetCrime-cp performs slightly better than ST3DNetCrime-ct, and
ST3DNetCrime-ct performs slightly better than that of ST3DNetCrime-pt. This indicates
that the closeness component has the greatest effect on helping ST3DNetCrime make the
correct prediction, while the trend component has the least impact. In other words, the more
recent the crime data, the greater the impact on future crimes.

(d) The difference in prediction performance among ST3DNetCrime-cp, ST3DNetCrime-
ct and ST3DNetCrime-pt is small, while the prediction performance of ST3DNetCrime-f
is conspicuously better than the three variants of ST3DNetCrime. This indicates that only
when the spatio-temporal features in recent crime data, near historical data and distance
historical data are fully captured simultaneously, can ST3DNetCrime achieve the best crime
prediction performance.

Figure 9. The evaluation results of variants of ST3DNetCrime.Units: x-axis: number of combinations
of the independent sequence lengths; y-axis: RMSE value.
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Table 2. Combination settings of temporal properties and corresponding model name definitions.

Model Name Closeness Component Period Component Trend Component Data Preprocessing

ST3DNetCrime-f
√ √ √ √

ST3DNetCrime-nopre
√ √ √

ST3DNetCrime-cp
√ √ √

ST3DNetCrime-ct
√ √ √

ST3DNetCrime-pt
√ √ √

6. Conclusions

In this paper, we proposed the ST3DNetCrime model for crime prediction at small
spatial and hourly temporal scales, which mainly comprise a closeness component, period
component and trend component, respectively, designed to capture spatio-temporal fea-
tures of recent crime data, near historical crime data and distant historical crime data. We
evaluate the designed model through extensive experiments with real-world datasets from
Los Angeles. The results showed that ST3DNetCrime has good prediction performance
and strong robustness especially when the number of 2D residual units is small (i.e., the
model structure is relatively simple) and the number of filters in the convolution layers
is small (i.e., the model training time is reduced). Compared with the baseline methods,
ST3DNetCrime not only reduces the RMSE, but also has good robustness. In addition, we
discovered that only when the spatio-temporal features in recent crime data, near histor-
ical crime data and distance historical crime data are fully captured simultaneously, can
ST3DNetCrime achieve the best crime prediction performance.

In the future, there are some research areas worth exploring. First, we would like
to improve the proposed ST3DNetCrime model by using crime-related auxiliary data,
such as weather data, holiday data, points-of-interest (POI), and public service complaints.
Second, we believe that it is interesting but challenging to study crime prediction at fine
spatial temporal scales in the context of regular anti-COVID-19 management. Third, we
did not distinguish between crime types. In fact, the spatial-temporal patterns behind
different types of crime are vary widely, and the crime data are more sparse. Hence,
although a challenging feat there is value in considering models for different crime types
separately. Finally, we need to consider adding a trigger [34,35] to the model to determine
in what intervals the deep learning model should be rebuilt to maintain the accuracy of
crime prediction.
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