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Abstract: Terrain viewshed analysis based on the digital elevation model (DEM) is of significant
application value. A lot of viewshed analysis algorithms have been proposed, including R3 as the
accurate one and others as efficient ones. The R3 algorithm is accurate because of its comprehensive
but time-consuming computation, while the others are efficient due to proper approximation. How-
ever, no algorithm is capable of taking advantage of both until one algorithm is proposed, which
is based on a ‘proximity-direction-elevation’ (PDE) coordinate system and named the PDE spatial
reference line (PDERL) algorithm. The original research proves the PDERL algorithm is perfectly
accurate by theory and experimental results, in comparison with R3 as standard, and even more
efficient than R3. However, the original research does not mention the cases where the observer is
placed on grid points, and the original implementation does not produce very accurate results in
practice. It is important to find out and correct the errors. In this paper, a checking algorithm for
PDERL is proposed to allow further investigation of errors. With the fundamental ideas of PDERL
unchallenged, an improved implementation of the PDERL algorithm is proposed, named HiPDERL.
By experimental results, this paper proves HiPDERL utilizes the potential of PDERL on accuracy at
the cost of a little efficiency when the observer is placed on grid points.

Keywords: terrain viewshed analysis; viewshed computation; PDERL algorithm; digital elevation
model

1. Introduction

Terrain visibility analysis is an important part of digital terrain analysis. The viewshed
in a terrain refers to a distinct region of the terrain that can be seen at one or more specific
positions within a certain range on the terrain, and viewshed analysis is the process
to compute such viewshed, with the elevation value of a given location based on the
digital elevation model (DEM) data [1]. Terrain viewshed analysis based on the digital
elevation model is widely used in archaeological research [2], path planning [3], siting
optimization [4], landscape analysis [5], military analysis [6], security monitoring [7], or
combination with other grids for terrain description [8,9].

Terrain viewshed analysis computes the viewshed of a viewpoint at a certain position
on the terrain. This position is taken as the viewpoint with an observer on it, and all
positions within a certain range around the viewpoint are taken as the target points. By
doing so, the viewshed analysis of the viewpoint is thus transformed into the intervis-
ibility computation between the viewpoint and each target point. The general method
for computing intervisibility is to connect the viewpoint and the target point to create a
line-of-sight (LOS) and determine whether the target point is visible to the viewpoint, by
studying whether the line-of-sight is blocked by the terrain [10], which is the fundamental
basis of most viewshed computation algorithms. Commonly, considering the height of the
observer, the actual elevation of the viewpoint may be slightly higher than the elevation of
the position itself on the DEM.

A lot of algorithms have been proposed for viewshed analysis, including R3 as the
accurate one and others as efficient ones. The R3 algorithm [6] is known for its accuracy.
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According to the R3 algorithm, the intersection point of the line-of-sight and the grid
line indicates the terrain traversed by the line-of-sight and the elevation value of which
is obtained by the interpolation of the two adjacent grid points. The accuracy of the
R3 algorithm is secured by independent interpolation on each intersection point of each
line-of-sight, resulting in time-consuming computation. In order to solve the efficiency
problem of the R3 algorithm, a lot of algorithms have been proposed, including the R2
algorithm, the XDraw algorithm [6] and the reference plane algorithm [11]. By multiplexing
and approximating, the time complexity of computation is reduced at the cost of some
accuracy. Many improved methods are proposed based on these algorithms as well. To
take the XDraw algorithm as an example, it takes only two points near the target point as
the reference points to compute the viewshed of the viewpoint. Compared with the R3
algorithm, the XDraw algorithm greatly simplifies the computation process and improves
the computational efficiency at the cost of certain accuracy. In order to improve the
accuracy of the XDraw algorithm, Izraelevitz et al. traced back along the line-of-sight and
included more points in computation [12]. Zhi et al. introduced the historical minimum
visual elevation of each target point into computation as additional data [13]. Zhu et al.
proposed the HiXDraw algorithm, using contribution points instead of reference points
in XDraw as the basis for computing the visibility of the target points, thus avoiding the
interference of irrelevant visible points (referred to as ‘chunk distortion’ in their work)
on computational results [10]. To further improve the efficiency of the algorithms, many
parallel computing methods have been proposed and applied to viewshed analysis as well,
showing great potential [14]. Apart from these traditional algorithms or their enhanced
versions, Tabik et al. [15] employ horizon calculation methods [16] in viewshed analysis.
By dividing terrain into angle-based sectors, the viewshed result is turned into visible areas
rather than visible points. This method opens a door for the following work [17,18] that
focuses on efficiency.

This paper deeply studies another algorithm proposed by Wu et al. [19], based on
a ‘proximity-direction-elevation’ (PDE) coordinate system and named the PDE spatial
reference line (PDERL) algorithm. The PDERL algorithm stores some computational results
in a data structure named the reference line, in order to present the exact elevation values of
different positions with the greatest capability to block the LOS in all directions by accurate
interpolation computation rather than an approximation to near grid point. Compared
with the R3 algorithm, the efficiency of the PDERL algorithm is improved by data reuse.
Compared with other algorithms, the accuracy of the PDERL algorithm is not compromised.
In a word, the PDERL algorithm is able to take advantage of both and solve the problem of
the inevitable trade-off between accuracy and efficiency. The original research proves the
PDERL algorithm is perfectly accurate by theory and experimental results, in comparison
with R3 as standard, and even more efficient than R3. However, the original research
does not mention the cases where the observer is placed on grid points, and the original
implementation does not produce very accurate results in practice. It is important to find
out and correct the errors. In this paper, a checking algorithm for PDERL is proposed to
find out problems that impair accuracy. The problems prove to be some implementation
flaws and the float number accuracy problem. With the fundamental ideas of PDERL
unchallenged, an improved implementation of the PDERL algorithm is proposed to solve
or alleviate these problems, named as HiPDERL. In Section 2, the related work is introduced,
namely the viewshed algorithms involved in this paper. In Section 3, the improvement
work is introduced, including the process and problems of the PDERL algorithm, as well as
the checking algorithm for PDERL and the improved PDERL implementation proposed in
this paper. In Section 4, experiments are carried out to show the problems above through
specific examples, then the accuracy and efficiency of the improved PDERL implementation
are compared with other viewshed algorithms on various terrains. A summary is given in
Section 5.
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2. Related Works
2.1. Viewshed Algorithms

Existing viewshed algorithms mainly include the accurate algorithm R3 and other
more efficient algorithms. The R3 algorithm ensures high accuracy through complex
interpolation computation without approximation methods, while other algorithms achieve
better efficiency through multiplexing with approximation to near grid point around the
LOS, at the cost of certain accuracy.

The R3 algorithm is an accurate algorithm based on-line-of sight. The R3 algorithm
takes the viewpoint as the start point and each target point as the end point to create a
straight line as the line-of-sight between them. Each line-of-sight intersects several grid
lines on the DEM and produces intersection points. For convenience, these points are
termed LOS-intersection ones, because there are other kinds of intersection points in this
paper. The R3 algorithm obtains the elevation value of the LOS-intersection points through
linear interpolation of the elevation value of two adjacent grid points and then determines
whether the LOS-intersection points block the line-of-sight from the target point. For each
target point, the R3 algorithm performs the processes mentioned above on LOS-intersection
points on the line-of-sight, until the line-of-sight is determined to be blocked or not.

Other efficient algorithms record the computational results of each target point and
reuse them through approximate methods to process other target points. Traditional algo-
rithms include the R2 algorithm, the XDraw algorithm and the reference plane algorithm.
To take the XDraw algorithm as an example, the XDraw algorithm determines the visibility
of the target point only by the LOS-intersection point closest to the target point. The eleva-
tion value of the LOS-intersection point depends on the two adjacent grid points, which are
the only points that the XDraw algorithm needs to process. With procedures simplified, the
efficiency of the XDraw algorithm is therefore greatly improved in computational efficiency
compared with the R3 algorithm. The XDraw algorithm records the reference height of the
target point, which of the visible target point is recorded as the elevation value of the target
point itself, and which of the invisible target point is recorded as the lowest elevation value
that the target point needs to reach to be visible.

HiXDraw, an improved algorithm of XDraw, believes that the reference height of
invisible target points only transmits the elevation value of other visible target points, and
possibly involves some visible target points irrelevant to the LOS in the computation. Such
a phenomenon is referred to as ‘chunk distortion’. The HiXDraw algorithm introduces
the concept of the contribution point. Each invisible target point has one or two visible
contribution points that contribute to its visibility computation, and each visible target
point has one contribution point itself. In the actual process, the HiXDraw selects two
reference points according to the XDraw procedure and obtains two to four contribution
points of both reference points, two of which are selected to apply the reference plane
algorithm. Compared with the XDraw algorithm, the HiXDraw algorithm eliminates chunk
distortion through the steps mentioned above and reaches higher accuracy at the cost of
some efficiency.

To measure the time complexity of these algorithms, let n be the radius of the area
for target points, and the number of target points that a viewshed algorithm needs to
process is at the scale of n2on the area. The time complexity of the R3 algorithm for
processing one target point depends on the distance between the viewpoint and the target
point, reaching the scale of O(n), so the overall time complexity of the R3 algorithm is
O(n3). The other efficient algorithms simplify the computation at the cost of some accuracy.
The time complexity of processing one target point is usually O(1), so the overall time
complexity is O(n2). The PDERL algorithm introduced below is able to achieve the overall
time complexity of O(n2) as well, without compromising the computational accuracy.
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2.2. PDERL Algorithm
2.2.1. Fundamental Ideas

The PDERL algorithm is similar to the R3 algorithm in that they both use interpolation
to determine whether the LOS is blocked by the LOS-intersection points, so the result is
accurately figured out as well. Rather than using approximation methods, the PDERL
algorithm reorganizes the computation procedures within R3 and realizes data reuse. The
actual work to be performed for R3 and PDERL is the same. With these fundamental ideas,
the PDERL algorithm is able to greatly improve efficiency without loss of accuracy.

According to the original ideas of the PDERL algorithm, the viewpoint can be placed
everywhere on the DEM. In order to compare the PDERL algorithm with other viewshed
algorithms that place the viewpoint on grid points, in this paper the viewpoints of the
PDERL algorithm are placed on grid points as well, which allows the computational results
to be checked by the checking algorithm for PDERL proposed in this paper. Please view
Section 3.1 for details.

For the LOS-intersection points on the LOS in the R3 algorithm, the PDERL algorithm
divides them into two types: LOS-intersection points generated by the LOS and horizontal
or vertical grid line, for convenience referred to as horizontal-LOS intersections and vertical-
LOS intersections, respectively, in this paper. The PDERL algorithm then divides the DEM
into four overlapping regions. The target points on the right, left, upper and lower sides of
the viewpoint are defined to be in Region I, Region II, Region III and Region IV, respectively,
as shown in Figure 1. Each target point belongs to one or two regions if the viewpoint is on
a grid point.
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Figure 1. All target points are divided into four overlapping regions. Points are processed line by
line, and lines closer to the ovserver are processed before the ones farther to the observer: (a) Region
I and Region II; (b) Region III and Region IV.

The PDERL algorithm takes two steps to compute the viewshed of a viewpoint. For
the first step, the algorithm processes Region I and Region II, and unilaterally computes the
visibility of each target point only by determining whether the LOS is blocked by vertical-
LOS intersections. Target points are considered visible if they prove to be visible in the first
step. For the second step, the algorithm processes Region III and Region IV and does the
same work with horizontal-LOS intersections only. Target points are considered invisible if
they prove to be invisible in the second step, so the possible wrong visibility conclusions
obtained in the first step are corrected in the second step. The visibility computation
through the two steps above is generally comprehensive because the PDERL algorithm
takes all LOS-intersection points into account. However, when the observer is on a grid
point, for the target points in the same column of the viewpoint, the algorithm simply skips
these target points. Please view Section 3.2.1 for details.

The algorithm constructs the corresponding PDE coordinate system for the visibility
computation of each region. The algorithm takes the viewpoint as the origin, sets the
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X-axis on the DEM plane according to the direction corresponding to the region (right,
left, up and down), then sets the Y-axis by rotating the X-axis anti-clockwise to 90◦, and
finally sets the Z-axis in the direction where elevation value increases. Then, the XYZ
coordinate system is converted into the PDE coordinate system according to the following
method, as shown in Figure 2. The letters PDE, respectively, represent the proximity-
direction-elevation coordinate system of the target point relative to the viewpoint. Their
transformation relationships with XYZ coordinate system are shown in Equations (1)–(3),
adapted from Ref. [19]. The algorithm computes the viewshed based on the PDE coordinate
system.

p = 1/x (1)

d = tan(α) = yp = y/x (2)

e = tan(γ) = zp = z/x (3)
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The PDE coordinates are vital parts of the PDERL algorithm. The letter p stands for
proximity. In the same region, the algorithm always processes target points with the same
and larger p value in batches, that is, one row or one column of target points closer to
the viewpoint. The letter D stands for direction. When processing a row or a column of
target points with the same p value, the algorithm always follows the order of increasing
the d value. The letter E stands for elevation and is of most significance in this algorithm.
Though the e value serves the same purpose as the elevation measurement used in the R3
algorithm, according to Equation (2), they are actually not the same, as the e value in the
calculation is irrelevant to the distance between the viewpoint and the target point. The e
value quantifies the ability of the LOS-intersection points in the same direction D to block
the LOS, in another word, the ability of target points not to be blocked. By quantitative
computation and numerical comparison, the e value is used to compute the visibility of
one target point and is stored for subsequent computation.

The PDERL algorithm computes the visibility of all target points in one region by
constructing and updating reference polylines, as shown in Figure 3. To take Region I with
the corresponding direction of right as an example, the algorithm firstly considers the target
points on the C1 column as visible, because there are no vertical-LOS intersections that
may block the LOS between the viewpoint and the target points on the C1 column. Then, a
reference polyline reflecting the elevation of each target point on column C1 is produced in
a plane rectangular coordinate system with a horizontal axis D and a vertical axis E. The
reference polyline reflects the maximum e value among all LOS-intersection points in any
specified direction D. For the next step, the algorithm puts the next column (i.e., C2 column)
into the D-E coordinate system and computes the visibility of each target point on the C2
column with the help of the reference polyline. In any given direction D, if the point on
the C2 column is higher than the point on the reference polyline (i.e., the corresponding
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e value is larger), it means the corresponding terrain on column C2 is not blocked and
therefore visible. Otherwise, it means the terrain corresponding to column C2 is blocked
and invisible. After completing the computation of each target point corresponding to the
C2 column polyline, the algorithm combines the two polylines by the, respectively, higher
parts as a new reference polyline to show the occlusion caused by the C1 column and the
C2 column together in each direction D (as shown in Figure 4). The steps mentioned above
are repeated to compute the visibility of each target point on the C3 column and so on until
the visibility computation of all target points in the first region is completed.
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Figure 4. In the D-E coordinate system, the higher parts of C1 and C2 are combined as the new
reference line for further computation.

The PDERL algorithm completes the visibility computation of each target point in
each region according to the steps above. Each target point is considered visible only if it is
considered visible in all the regions it belongs to.

Although the horizontal coordinate D corresponds to uneven actual distance, the
original literature on the PDERL algorithm has proved that in the D-E coordinate system,
the e value between every two points on each polyline still changes linearly as the horizontal
coordinate D changes [19].

2.2.2. Implementation Details

The actual computation is demonstrated in Figure 5, where LR is the reference polyline
and LC is the currently processing row or column polyline. For convenience, the LC polyline
is referred to as the current polyline. The D and E coordinates of each inflection point on
the current polyline LC (i.e., the target points) are directly calculated from DEM data, while
that of the reference polyline LR are stored in a linked list. In the implementation of PDERL,
only the head node of the linked list stores the D and E coordinate of the first point on the
reference polyline LR, while the other nodes store the D coordinate of the inflection point,
and the slope value a of the segment between the point itself and the previous point. Let
the slope value a stored for one point be aj and assume the D and E coordinate of the point
be dj and ej, coordinates of the previous point be dj−1 and ej−1, then the value of aj is shown
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in Equation (4), which may be distinguished from the slope value in Figure 5. The vertical
coordinate E of each inflection point on the reference polyline stored in this way needs to
be calculated by traversing the linked list.

aj =
ej − ej−1

dj − dj−1
(4)
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In the D-E coordinate system, for any given direction D, if there are corresponding
points on LR and LC, whose e values are assumed to be eR and eC, respectively, the difference
value ∆E is calculated as shown in Equation (5), adapted from Ref. [19]. Let the visibility of
the terrain corresponding to the point on current polyline LC be rC, the value of rC is shown
in Equation (6), where zero means invisible and one means visible in the corresponding
region. Please notice that in this paper, the criteria are set that the ∆E value must be above
zero for the corresponding terrain to be visible. When the terrain on LC happens to be the
target point, the visibility of the target point is computed.

∆E = eC − eR (5)

rC =

{
0 , ∆EC ≤ 0
1 , ∆EC > 0

(6)

The actual calculation is based on subsections. As shown in Figure 5, for LR and LC in
the D-E coordinate system, the algorithm divides the two polylines into many subsections
according to the horizontal coordinate D of all inflection points on the two polylines. This
ensures that in each subsection, there are only one or zero intersection points, which means
that when moving positively along the D axis, there are only one or zero changes in the
visibility of the terrain corresponding to the current polyline within a subsection. For each
subsection, the algorithm does two parts of work. The first part is to calculate the ∆E value
at the end of the subsection, in order to determine the visibility of the corresponding terrain
on LC at the end of the subsection. The second part is to compare the ∆E value at the end
of the subsection with that of the last subsection, in order to determine whether the two
polylines have an intersection within this subsection and figure out the coordinates of the
intersection if it exists, for preparation to update the reference polyline.

In the implementation of the PDERL algorithm, let the horizontal coordinate D at the
end of the subsection be di and the ∆E value be ∆Ei, the horizontal coordinate D at the
beginning of the subsection be di−1 and the ∆E value be ∆Ei−1, the slopes of LR and LC
within the subsection be ai

R and ai
C, respectively, (obtained by referring to the reference

polyline and the DEM, respectively), then the value of ∆Ei is shown in Equation (7), adapted
from Ref. [19]. The ∆Ei value calculated in this way depends on the value of ∆Ei−1. If
there is an intersection within a subsection, i.e., ∆Ei and ∆Ei−1 have opposite positive and
negative values, the coordinates of the intersection are then calculated. Let the horizontal
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coordinate D of the intersection be d’, and the value of d’ is shown in Equation (8), adapted
from Ref. [19]. For the intersection point to be stored in the updated reference polyline,
apart from the horizontal coordinate D mentioned above, the slope value a is required as
well, which is directly obtained from the not-updated reference polyline.

∆Ei = ∆Ei−1 +
(

ai
C − ai

R
)
(di − di−1) (7)

d′ = di −
∆Ei

ai
C − ai

R (8)

In addition, the implementation of the PDERL algorithm realized an error-avoiding
mechanism to deal with ∆E with too small an absolute value. In a subsection, If the
absolute value of ∆E at the beginning of the subsection is less than a certain small value
and there exists an intersection, the algorithm will consider the horizontal coordinate D
of the intersection as equal to the coordinates at the beginning of the subsection in order
to avoid errors. After the reference line is updated, the intersection point will share the
same horizontal coordinate D with the starting point of the subsection, resulting in the
redundancy of the reference line. Please view Section 3.2.2 for relevant content.

3. HiPDERL of Improvements on PDERL Algorithm

The original research proves the PDERL algorithm is perfectly accurate by theory and
experimental results, in comparison with R3 as standard, and even more efficient than R3.
However, the original research does not mention the cases where the observer is placed
on grid points, and the original implementation does not produce very accurate results in
practice. It is important to find out and correct the errors. Since the PDERL algorithm, as
well as R3, investigates all intersection points made by the LOS and grid lines, a checking
algorithm for PDERL is proposed to find out all the problems, substantially caused by
the differences between R3 and PDERL in practical detail. All problems found are shown
in this section. To deal with all these problems, a new implementation algorithm named
HiPDERL is proposed in order to achieve better accuracy.

In another word, the checking algorithm is proposed to check the original PDERL and
find what is different from R3 in practical detail, and HiPDERL as another implementation
is proposed to minimize the differences, thus achieving better accuracy.

3.1. Checking Algorithm for PDERL

According to Equation (5), the ∆E value is obtained by subtracting the e values of the
corresponding points on LR and LC, i.e., eR and eC, where eR is the maximum e value of all
LOS-intersection points in the direction D, and eC is the e value of the target point when
the corresponding point on LC is the target point. Since the horizontal coordinate D of
the target point is exactly the direction of the LOS, the R3 algorithm could be transformed
into a checking algorithm for PDERL based on the LOS. In the R3 algorithm, assuming the
horizontal and vertical coordinate differences between the target point and the viewpoint as
m and n, respectively, there are m − 1 horizontal-LOS intersections and n − 1 vertical-LOS
intersections on the LOS. Let the elevation values of the target point and the viewpoint
(with the height of the observer) on the DEM be hT and hS, respectively, and assume each
horizontal/vertical-LOS intersection as the ith point closest to the viewpoint, with its
elevation value on DEM as hi. Let the theoretical ∆E value of the target point be ∆EA when
the PDERL algorithm is processing Region I and Region II, or ∆EB when it is processing
Region III and Region IV, then the value of ∆EA and ∆EB is shown in Equations (9) and (10).

∆EA = eC − eR =
hT − hS

m
−max

(
hi − hs

i

)
, i = 1, 2, . . . , m− 1 (9)

∆EB = eC − eR =
hT − hS

n
−max

(
hi − hs

i

)
, i = 1, 2, . . . , n− 1 (10)
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In theory, the value of ∆EA or ∆EB is supposed to be equivalent to those ∆E values
figured out by the PDERL algorithm, so the checking algorithm is able to verify the
computational result of the PDERL algorithm. Figure 6 shows how the checking algorithm
checks the value of the value ∆EB above. The checking algorithm calculates the maximum
e value of all the horizontal-LOS intersections, i.e., the value of eR of the coordinating point
on the reference polyline LR in the D-E coordinate system. The checking algorithm also
calculates the e value of the target point, i.e., the value of eL of the coordinating point on the
current polyline LC in the D-E coordinate system, while the target point is considered as
in Region IV rather than in Region I. Therefore, the value of ∆EB can be obtained by the
difference between the value of eR and eC above, and then the corresponding ∆E value in
the PDERL algorithm is checked.
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The differences in the computational results between the PDERL algorithm and the
R3 algorithm are studied by checking the value of ∆E. With the support of the checking
algorithm, the problems within the original PDERL implementation are found and shown
in this paper. The checking algorithm itself is not for viewshed computation.

3.2. Existing Problems
3.2.1. Problem 1: Unprocessed Column

The first problem lies in an unexpected flaw. According to the design of the imple-
mentation of PDERL, the viewpoint can be placed off the grid points. However, when the
viewpoint is placed on a grid point, the PDERL is not able to compute the visibility of the
target points in the column where the viewpoint is located. The reasons are as follows.
When the PDERL algorithm processes Region I and Region II, the visibility of the target
points mentioned above is not computed, because they are not on the left or right side
of the viewpoint. When the PDERL algorithm processes Region III and Region IV, the
algorithm will only consider some of the visible target points as invisible. Therefore, there
is no chance to compute the visibility of the target points that shares the same column with
the viewpoint. The original implementation initializes the visibility of all target points
as invisible before the PDERL algorithm begins, so the target points mentioned above
are considered invisible once and for all. To solve this problem, independent visibility
computation of these target points is added to the normal workflow of PDERL in this
paper. The independent visibility computation is similar to R3, while its complexity is
O(1) because the line composed of the target points allows data reuse. The solution to this
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problem is completely irrelevant to other problems since these target points are completely
out of the PDERL algorithm.

3.2.2. Problem 2: Flaws within the Error Avoidance Mechanism

The second problem lies in that there are mistakes within the error avoidance mecha-
nism in the PDERL implementation. This is another flaw as well. As shown in Figure 7,
when LR and LC have an intersection within a subsection, and if the absolute value of ∆E is
too small, the error avoidance mechanism within the original implementation considers
the horizontal coordinate D of the intersection as equivalent to dA, as shown in Figure 7.
However, in some cases, the mechanism mistakenly considers the horizontal coordinate
D of the intersection as the same as dB, resulting in an error that may be transmitted via
the fundamental data reuse of the PDERL algorithm. In order to solve this problem, this
mechanism is remade in this paper.
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3.2.3. Problem 3: Float Number Accuracy

With the checking algorithm, the implementation of PDERL proves to have some float
number errors generated by machine operation, and these errors are transmitted through
data reuse. As an example of the errors, (2.5 × 0.4–10 × 0.1) may not be calculated as
absolute zero but as a small positive value. The original error-avoiding mechanism proved
not effective against these errors.

Apart from the fundamental data reusing method within the PDERL algorithm that
simplifies the visibility computation of subsequent target points by referring to the reference
polyline, the PDERL algorithm applied data reusing methods to data structure and the
calculation of ∆E value. For the data reusing method for data structure, the PDERL uses
the linked list to store the reference polyline, whose nodes store the horizontal coordinate
D value of the corresponding inflection point, and the slope value a between the inflection
point itself and the previous one. Therefore, the e value of each inflection point needs to
be calculated on a lot of float numbers by traversing the linked list. For the data reusing
method for the calculation of ∆E value, it is shown in Equation (7) that the calculation of
each ∆E value depends on the previously calculated ∆E value.

Although these methods manage to simplify the computation, reduce the number
of variables used and achieve better efficiency, when an error occurs in calculating the e
value or the ∆E value, for example, when some absolute zero values are calculated to be a
non-zero number with very small absolute value, the data reuse may transmit the error in
the two ways as follows:

(1) The vertical coordinate E of the inflection point on the reference line needs to be
obtained by traversing the linked list. It is possible that an error caused by float number
operation occurs while traversing the linked list in order to calculate the vertical coordinate
E, and this error may become the basis for calculating subsequent e values. In this way, the
error is passed on.
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(2) The calculation of each ∆E value depends on the previous ∆E value. Therefore, any
error that occurred within the calculation of a ∆E value results in the transmission of this
error among all the following ∆E values.

The original error-avoiding mechanism may respond to the errors mentioned above,
but is not designed to eliminate them, and therefore fails to prevent some errors from inter-
fering with the computational result. This paper proposes an improved implementation
of the PDERL algorithm, named HiPDERL to better solve these problems. Please view
Section 4.2.2 for examples of the float number accuracy problems.

3.3. HiPDERL: An Improved PDERL Implementation Algorithm

HiPDERL, an improved implementation of the PDERL algorithm is proposed to solve
the problems. HiPDERL simply applies the corrections mentioned in Section 3.2.1 to solve
problem 1. It would be like processing the target points within the PDERL system and
processing the unprocessed column independently afterwards. In addition, the improved
implementation realizes a new error-avoiding mechanism to deal with the error within
the calculation of ∆E, thus solving problem 2. If the absolute value of ∆E is smaller than
a fixed small value, the ∆E value will be considered as an error of machine operation
and set to exactly zero. The improved implementation will also check and eliminate the
redundant inflection points on the reference line after the calculation on each current line
LC is completed, so as to reduce the probability for errors to occur.

For problem 3, i.e., the float number accuracy problem, HiPDERL makes changes
to the data reusing methods on data structure and the calculation of ∆E value, in order
to minimize the generation or transmission of errors. The details within HiPDERL are
introduced in this section. The fundamental ideas and procedures of the PDERL algorithm
on data reuse remain unchanged. The terrain with the highest e value in each direction of
the viewpoint is still stored by the reference polyline to simplify the visibility computation
of each following target point.

The improved implementation changes the data structure of the reference polyline,
using the nodes of the linked list to store the horizontal coordinate D and the vertical
coordinate E of the corresponding point so that the e value of the corresponding point could
be obtained without traversing the linked list, thus avoiding the possible error caused by
float number operation in the traversal process. Due to these changes, if the intersection
of the two polylines exists in any subsection, the vertical coordinate E of the intersection
must be calculated as well, as one more value to be calculated in addition to the horizontal
coordinate D of the intersection and the ∆E value at the end of the subsection. The improved
implementation changes the way ∆E value is calculated as well, so the ∆E value no longer
depends on the previous ∆E value, thus avoiding the transmission of relevant errors.

The details of the calculation are as follows. The improved implementation uses more
data from the current polyline rather than the reference line for calculation, in order to
minimize dependency on previous results that may cause accuracy problems.

The horizontal coordinate D of the intersection of the two polylines is still calculated
according to Equation (8). However, since the linked list no longer stores the slope value a,
this value needs to be calculated on relative inflection points of the reference polyline.

The vertical coordinate E of the intersection of the two polylines is calculated as follows:
let the horizontal coordinate D of the intersection obtained according to Equation (8) be d′,
and the vertical coordinate E be e′. Assume the horizontal coordinate D of the inflection
point on the current polyline (i.e., the target point) closest to the intersection point and in
the negative direction of axis D as dNC, and the vertical coordinate E as eNC. Assuming the
slope value of the current polyline at the intersection is ai

C, then the value of E’ is shown in
Equation (11). The value of ai

C is calculated with the DEM data.

e′ = eNC + ai
C ∗

(
d′ − dNC

)
(11)

The ∆E value at the end of each segment is still obtained by the difference between eR
and eC according to Equation (5). However, since the previous ∆E value is no longer de-
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pended on, the calculation of the ∆E value needs to be discussed under different conditions
that the inflection point at the subsection is on the reference line or the current line.

When the inflection point of the subsection’s end is on the reference polyline, the value
of eR can be directly obtained from the reference polyline, and the value of eC needs to
be calculated. Let the horizontal coordinate D at the end of the subsection be di, and the
∆E value there be ∆EiR. Assume the horizontal coordinate D of the inflection point on
the current polyline (i.e., the target point) closest to the end of the subsection and in the
negative direction of axis D as dNC, and the vertical coordinate E as eNC. Assuming the
slope value of the current polyline at the end of the subsection be ai

C, then the value of
∆EiR is shown in Equation (12). The value of ai

C is calculated with the DEM data.

∆EiR = eC − eR =
(

eNC + ai
C ∗ (di − dNC)

)
− eR (12)

When the inflection point of the subsection’s end is on the current polyline, the value
of eC can be directly obtained from the current polyline, and the value of eR needs to be
calculated. Let the horizontal coordinate D at the end of the subsection be di, and the ∆E
value there be ∆EiC. Assume the horizontal coordinate D of the inflection point on the
reference polyline closest to the end of the subsection and in the negative direction of axis
D as dNR, and the vertical coordinate E as eNR. Assuming the slope value of the reference
polyline at the end of the subsection be ai

R, then the value of ∆EiC is shown in Equation
(13). The value of ai

R is calculated with the reference polyline data.

∆EiC = eC − eR = eC −
(

eNR + ai
R ∗ (di − dNR)

)
(13)

These are the new ways in which the values are calculated. In a word, to solve the
float number accuracy problem caused by the traversal of the linked list, the improved
implementation limits the generation and transmission of float number error by using
the new data structure to represent the reference line and remaking a new error-avoiding
mechanism. To solve the same problem caused by the calculation of the ∆E value, the
improved implementation avoids using the previously calculated ∆E value in the calcula-
tion of the ∆E value. As mentioned in Section 3.2.3, the original implementation achieves
better efficiency with some methods. The HiPDERL applies some other methods to ensure
accuracy rather than the original efficient ones. Therefore, compared with the PDERL
algorithm, the HiPDERL algorithm is expected to trade limited efficiency cost for better
accuracy performance.

4. Experimental Results
4.1. Experimental Environments

Computational accuracy and efficiency experiments on different DEMs were con-
ducted in this section.

There are two groups of DEMs used for the experiments. The first group is used for
demonstration of problems within the PDERL, which involves one single 200 × 200 DEM
obtained by sampling the original 2000 × 2000 DEM of Malaga, Spain at the horizontal
and vertical interval of 10 points. The original DEM is adapted from the input DEM data
provided by the implementation from Ref. [16], where the upper part is mountainous
and the lower right part is a large zero-elevation area. The resolution of the original
2000 × 2000DEM is 10 m × 10 m, so the resolution of the 200 × 200 DEM used in this
paper is 100 m × 100 m. Please notice that with such size and resolution, this DEM could
hardly be meaningful for any practical application. It is used for a better demonstration
of the problems only. The second group is used for accuracy and efficiency comparison
experiments among various viewshed algorithms, which involves 3601 × 3601 DEMs of
different terrains including mountains (N28E097), hills (N41E119) and plains (N34E114)
from the ASTER GDEM. The resolution of these DEMs is 30 m × 30 m.
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The accuracy experiment in this section (Section 4.2) took the R3 algorithm as the
baseline algorithm. Problems 1, 2 (Section 4.2.1) and problem 3 (Section 4.2.2) of the PDERL
algorithm are demonstrated on the first group of DEM, i.e., the 200 × 200 DEM of Malaga,
Spain. The results by R3, PDERL, and HiPDERL are shown for comparison. The overall
accuracy was compared among PDERL, HiPDERL, R3, XDraw, and HiXDraw on the
second group of DEMs of different terrain (Section 4.2.3). XDraw and HiXDraw are used
as references, in order to show the results of a traditional multiplexing algorithm and its
enhanced version. The efficiency experiment in this section (Section 4.3) compared the time
consumed by various algorithms in the accuracy comparison experiment in Section 4.2.3,
respectively.

The hardware environment of this experiment is a computer with Windows 10 operat-
ing system, Intel (R) core (TM) i7-9750 h CPU at 2.60 GHz frequency, and 16GB of physical
memory. These experiments were carried out in a single-threaded C++ environment, and
the corresponding garbage collection mechanism was implemented for the linked list used
by the PDERL algorithm. Considering that the HiPDERLand PDERL implementations
realized the error-avoiding mechanism to eliminate float number errors, this experiment
also configured similar mechanisms for R3, XDraw, and HiXDraw.

4.2. Experiments on Accuracy
4.2.1. Analysis of Implementation Flaws

The original error-avoiding mechanism has some implementation flaws, and cannot
compute the visibility of the target points that share the same column with the viewpoint.
An example that reflects the two problems at the same time is shown as follows. Figure 8
shows the case that R3 and PDERL were used to compute the viewshed of the viewpoint
located at row 96, column 176 on the 200 × 200 DEM of Malaga, Spain mentioned above.
Around the viewpoint are hills with escalating elevation from south to north, but the
viewpoint is exactly surrounded by relatively higher grid points, so the viewshed on this
point is not very large. In Figure 8, a red pixel represents a visible target point, and a blue
pixel represents an invisible one. Figure 8a,b is the result of the R3 and HiPDERL algorithm,
and Figure 8c,d is the result of the PDERL algorithm. The position of the viewpoint is
marked with a white cross. Please notice that the problems could be on all DEMs, while
the problems on this DEM may be better demonstrated.
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Figure 8. The viewshed results of the viewpoint at row 96, column 176 on the DEM of Malaga, Spain
by different algorithms. Observer is marked with a white cross. Red area is visible and blue area is
invisible. (a) R3, while a totally same result by every cell is figured out using HiPDERL; (b) Part of
(a), row 80–200, column 150–200; (c) HiPDERL; (d) Part of (c), row 80–200, column 150–200.

From the figure, it can be found that the PDERL algorithm cannot compute the
viewshed of the target points in the column where the viewpoint is located, and they are
initialized as invisible at the beginning. In addition, the result of the PDERL algorithm has
more visible parts than the result of the R3 algorithm, which is due to the dislocation of the
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reference polyline caused by the original error avoiding mechanism and error accumulation
caused by data reuse. The HiPDERL algorithm figured out the same viewshed result as
the R3 algorithm after correcting the error-avoiding mechanism and adding independent
computation of the target points in the column where the viewpoint is located. This case
partly shows the consequence of the problems within the original implementation.

4.2.2. Analysis of Float Number Accuracy

The PDERL implementation suffers from the float number accuracy problem caused
by machine operation errors. Figure 9 shows the case that R3 and PDERL were used to
compute the viewshed of the viewpoint located at row 183, column 185 on the 200 × 200
DEM of Malaga, Spain. Around the viewpoint is a water area with an elevation of zero. In
Figure 9, the red or blue pixel represents visible or invisible corresponding target points.
Figure 9a,b is the result of the R3 and HiPDERL algorithm, and Figure 9c,d is the result of
the PDERL algorithm. The position of the viewpoint is marked with a white cross. Please
notice that the problems could be on all DEMs, while the problems on this DEM may be
better demonstrated.
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In this example, the height of the observer at the viewpoint was set to zero. Figure 9
shows that the result of the PDERL algorithm is inconsistent with the result of the R3
algorithm in the lower right corner, which is similar to noise. It is mentioned above
that the lower right part of the DEM is a zero-elevation area. The viewpoint, the target
point, the noise points and the whole LOS are all located in this zero-elevation area.
Since the height of the observer was zero as well, the R3 algorithm figured out that the
elevation of the viewpoint and all the LOS-intersection points is zero, so the target point
was determined to be invisible, as shown in Figure 10a. When the PDERL algorithm
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traversed the reference polyline, due to the error generated by float number calculation,
the e value supposed to be zero was calculated as a negative number with a very small
absolute value. Because the e value of the target point on the current polyline was zero, the
∆E value was positive and the target point was determined to be visible. At this time, the
slope value a stored in the subsequent nodes on the reference polyline was zero, so the e
value of the subsequent points of the reference polyline was calculated as this error again,
as shown in Figure 10b. Although this noise problem can be neglected by changing the
criteria of visibility determination in Equation (6), this is not recommended because in that
case, some visible points would be considered invisible and be noise points again due to
the same reason.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 15 of 19 
 

 

Figure 9. The viewshed results of the viewpoint at row 183, column 185 on the DEM of Malaga, 
Spain by different algorithms. Observer is marked with a white cross. Red area is visible and blue 
area is invisible. (a) R3, while a totally same result by every cell is figured out using HiPDERL; (b) 
Part of (a), row 140–200, column 100–200; (c) HiPDERL; (d) Part of (c), row 140–200, column 100–
200. 

In this example, the height of the observer at the viewpoint was set to zero. Figure 9 
shows that the result of the PDERL algorithm is inconsistent with the result of the R3 
algorithm in the lower right corner, which is similar to noise. It is mentioned above that 
the lower right part of the DEM is a zero-elevation area. The viewpoint, the target point, 
the noise points and the whole LOS are all located in this zero-elevation area. Since the 
height of the observer was zero as well, the R3 algorithm figured out that the elevation of 
the viewpoint and all the LOS-intersection points is zero, so the target point was deter-
mined to be invisible, as shown in Figure 10a. When the PDERL algorithm traversed the 
reference polyline, due to the error generated by float number calculation, the e value sup-
posed to be zero was calculated as a negative number with a very small absolute value. 
Because the e value of the target point on the current polyline was zero, the ΔE value was 
positive and the target point was determined to be visible. At this time, the slope value a 
stored in the subsequent nodes on the reference polyline was zero, so the e value of the 
subsequent points of the reference polyline was calculated as this error again, as shown 
in Figure 10b. Although this noise problem can be neglected by changing the criteria of 
visibility determination in Equation (6), this is not recommended because in that case, 
some visible points would be considered invisible and be noise points again due to the 
same reason. 

  

(a) (b) 

Figure 10. Reasons for the problem shown in Figure 9. (a) The DEM demonstration around the 
viewpoint at row 183, column 185; (b) The terrain profile of row 183. To calculate the visibility of 
the target point (marked with green in both figures), the PDERL algorithm must traverse almost the 
whole of row 183. 

In general, the float number accuracy problem of the PDERL algorithm came from 
two aspects: the inherent error of the floating number operation and the error transmis-
sion caused by the implementation of the PDERL algorithm. The HiPDERL algorithm pro-
posed in this paper is intended to solve the problems above. Compared with the PDERL, 
the result of the HiPDERL greatly reduced the amount of noise. 

4.2.3. Comparison Experiment on Accuracy 
This experiment takes 100 points as the horizontal and vertical interval on the 3601 × 

3601 DEM of mountains, hills, and plains, thus obtaining 1225 points as viewpoints and 
computed their viewshed within a radius of 100 points for each viewpoint with various 
algorithms. Since the radius was taken as 100 points, the side length of each viewshed 
square is 201 points, which means for each viewpoint, the visibility of a total of 40, 400 

Figure 10. Reasons for the problem shown in Figure 9. (a) The DEM demonstration around the
viewpoint at row 183, column 185; (b) The terrain profile of row 183. To calculate the visibility of
the target point (marked with green in both figures), the PDERL algorithm must traverse almost the
whole of row 183.

In general, the float number accuracy problem of the PDERL algorithm came from
two aspects: the inherent error of the floating number operation and the error transmission
caused by the implementation of the PDERL algorithm. The HiPDERL algorithm proposed
in this paper is intended to solve the problems above. Compared with the PDERL, the
result of the HiPDERL greatly reduced the amount of noise.

4.2.3. Comparison Experiment on Accuracy

This experiment takes 100 points as the horizontal and vertical interval on the 3601× 3601
DEM of mountains, hills, and plains, thus obtaining 1225 points as viewpoints and com-
puted their viewshed within a radius of 100 points for each viewpoint with various algo-
rithms. Since the radius was taken as 100 points, the side length of each viewshed square is
201 points, which means for each viewpoint, the visibility of a total of 40, 400 target points
within the viewshed square was computed. The number of all target points involved in this
experiment is therefore very large, which is believed to eliminate possible contingencies. To
use PDERL with problems unsolved as a comparison, the original version and the version
free of problem 1 are selected. Problems 2 and 3 may seem separate, but they both involve
small float absolute values and may interfere with each other, so they are regarded as one
here. With the result of the R3 algorithm as baseline, this experiment compared the result
of PDERL (original version and the version free of problem 1), HiPDERL, XDraw, and
HiXDraw. Since the R3 algorithm was used as the baseline algorithm, the viewshed result
by each algorithm inconsistent with the R3 algorithm of each viewpoint was regarded as
errors. The experiment counted the total number of errors in the viewshed results of each
viewpoint with different algorithms, and the results are shown in Table 1.
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Table 1. Total error number and error rate on different DEMs with different algorithms (Total cell
number: 49,490,000).

Algorithms\DEMs Mountains Hills Plains

PDERL (Original) 42,545 (0.860%) 108,061 (2.183%) 115,522 (2.334%)
PDERL (Problem 1 solved) 18,055 (0.365%) 112,756 (2.278%) 123,052 (2.486%)
HiPDERL 73 (0.001%) 429 (0.009%) 313 (0.006%)
XDraw 114,949 (2.323%) 129,131 (2.609%) 86,397 (1.746%)
HiXDraw 110,491 (2.233%) 102,810 (2.077%) 42,725 (0.863%)

The experimental result shows that the original PDERL implementation is not more
accurate than XDraw due to the problems mentioned above. The solution to problem 1
is helpful but not critical. For differences on different terrains, PDERL performed more
accurately in the mountain area. In hill and plain areas, PDERL is not more accurate
than the traditional XDraw algorithm. The HiPDERL algorithm shows the accuracy that
a PDERL implementation should have. Experiments in the original research of PDERL
claim that the PDERL algorithm is perfectly accurate. This may be the result of not placing
the observer on the grid point. When the observer is on the grid point, many grid points
will be in the same line, which is not critical for R3 because results on different points are
computed separately, and few random float number errors will not be harmful. Things
become very different for PDERL. Due to the fundamental idea of data reuse, errors (if any)
will be certainly passed on and impair the accuracy of further computation. The case that
the observer is on the grid point will make more coincidences that a target point is exactly
invisible, which may be computed as visible by machine operation. So, it is important to
adjust the error-avoiding mechanism and add new modifications to the original PDERL
implementation.

Further detailed results of HiXDraw and PDERL (with problem 1 solved) are shown
in Tables 2 and 3. Compared with an enhanced and more accurate version of XDraw, the
errors caused by the problems within the original PDERL may be better illustrated. For the
cases where one algorithm makes over 100,000 errors on certain terrain, the original PDERL
has more viewpoints than HiXDraw with an error rate below 0.1%. This indicates that the
original PDERL is able to be accurate for more viewpoints. However, for the viewpoints
with an error rate above 1%, those of the original PDERL (77 in hill area and 75 in plain
area) are much more than that of HiXDraw (21 in mountain area and 19 in hill area).

Table 2. Total error number and viewpoint number with different error rate with PDERL (with
problem 1 solved) (Total viewpoint number: 1225).

DEMs Mountains Hills Plains

Total error number 18,055 112,756 123,052
Viewpoint number(Perfectly accurate) 511 147 136
Viewpoint number(Error rate below 0.1%) 615 610 511
Viewpoint number(Error rate 0.1%–0.5%) 78 302 400
Viewpoint number(Error rate 0.5%–1%) 15 89 103
Viewpoint number(Error rate above 1%) 6 77 75

Table 3. Total error number and viewpoint number with different error rate with PDERL (with
problem 1 solved) (Total viewpoint number: 1225).

DEMs Mountains Hills Plains

Total error number 110,491 102,810 42,725
Viewpoint number(Perfectly accurate) 4 25 84
Viewpoint number(Error rate below 0.1%) 401 482 910
Viewpoint number(Error rate 0.1%–0.5%) 706 626 291
Viewpoint number(Error rate 0.5%–1%) 93 98 22
Viewpoint number(Error rate above 1%) 21 19 2
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Further investigation is carried out into the viewpoints with an error rate above 1%.
There are cases where error points gather or scatter for both algorithms, including the
cases with the most errors. The PDERL errors spread among lines from the first error
point. The reasons are explained above. On the other hand, as an enhanced version of
XDraw, HiXDraw suffers from accumulated errors positioned behind an error point, giving
a radical distribution in the zenithal view image. Considering the statistics shown in the
tables, HiPDERL provides a solution to the accuracy problems.

4.3. Comparison Experiment on Efficiency

In this experiment, the time consumed by each algorithm in the accuracy comparison
experiment above was counted, i.e., the time consumed by each algorithm including the R3
algorithm to compute the viewshed of 1225 viewpoints within the range of 100 points on
each DEM. The results are shown in Table 4.

Table 4. Time consumed on different DEMs with different algorithms (seconds).

Algorithms\DEMs Mountains Hills Plains

R3 126.028 92.207 62.311
PDERL 40.178 39.978 39.594
HiPDERL 45.710 45.197 44.725
XDraw 37.071 36.903 37.091
HiXDraw 45.275 44.292 44.108

The experimental result shows that XDraw achieved the highest computational effi-
ciency, while the efficiency of PDERL and HiPDERL proved not significantly inferior to
that of the XDraw family algorithms and was higher than that of the R3 algorithm. The
efficiency of the HiPDERL was slightly lower than that of the PDERL. This is because the
HiPDERL changes some data reusing methods in the PDERL are prone to generate or
transmit errors, and also makes some computations more complex, thus increasing the
computation time.

The experimental result also shows that the time consumed by the R3 algorithm in
different terrain was not constant, while the time consumed by other algorithms was
relatively constant. One possible explanation is that when the R3 algorithm is to determine
whether the LOS is blocked and once the LOS is blocked, the algorithm may determine
the target point as invisible and immediately interrupt the computation, so the actual time
complexity may be lower than the theoretical value. It is usually difficult to predict whether
and where the LOS is blocked because this varies among different maps. The steps of other
algorithms are relatively simple, so the actual workload on different terrain was relatively
fixed as well.

5. Conclusions

This paper pointed out that when the observer is not on grid points, the original
PDERL algorithm does not produce very accurate results in practice. After the analysis
of the PDERL algorithm, a checking algorithm for the PDERL algorithm was proposed in
order to find out the problems. With all problems found, a new implementation algorithm
named HiPDERL, based on the fundamental ideas of PDERL, was proposed to solve
the problems. Experiments showed that HiPDERL achieved better accuracy than the
original PDERL implementation at the cost of a little efficiency. The future work is to apply
the HiPDERL algorithm to the computation of total viewshed. There exist very efficient
total viewshed algorithms, but no baseline algorithm is used for comparison on accuracy
because the traditional accurate algorithms R3 is less efficient for total viewshed analysis
and the cost in time will be immeasurable. HiPDERL greatly reduces the cost in time and
maintains the computational accuracy in comparison with R3. Therefore, HiPDERL could
be a potential baseline algorithm to assess the accuracy of existing and upcoming total
viewshed algorithms.
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