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Abstract: This study is dedicated to modeling the spatial variation in COVID-19 prevalence using
the adaptive neuro-fuzzy inference system (ANFIS) when dealing with nonlinear relationships,
especially useful for small areas or small sample size problems. We compiled a broad range of
socio-demographic, environmental, and climatic factors along with potentially related urban land
uses to predict COVID-19 prevalence in rural districts of the Golestan province northeast of Iran
with a very high-case fatality ratio (9.06%) during the first year of the pandemic (2020–2021). We
also compared the ANFIS and principal component analysis (PCA)-ANFIS methods for modeling
COVID-19 prevalence in a geographical information system framework. Our results showed that
combined with the PCA, the ANFIS accuracy significantly increased. The PCA-ANFIS model showed
a superior performance (R2 (determination coefficient) = 0.615, MAE (mean absolute error) = 0.104,
MSE (mean square error) = 0.020, and RMSE (root mean square error) = 0.139) than the ANFIS
model (R2 = 0.543, MAE = 0.137, MSE = 0.034, and RMSE = 0.185). The sensitivity analysis of the
ANFIS model indicated that migration rate, employment rate, the number of days with rainfall, and
residential apartment units were the most contributing factors in predicting COVID-19 prevalence
in the Golestan province. Our findings indicated the ability of the ANFIS model in dealing with
nonlinear parameters, particularly for small sample sizes. Identifying the main factors in the spread
of COVID-19 may provide useful insights for health policymakers to effectively mitigate the high
prevalence of the disease.

Keywords: adaptive neuro-fuzzy inference system; COVID-19; geographical information systems;
principal component analysis; socio-environmental factors; urban land use

1. Introduction

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) [1], has adversely affected the daily lives of humans world-
wide and has caused an unprecedented socio-economic burden. The rapid diffusion of the
infection has resulted in high disease prevalence and mortality in over 200 countries in less
than a few months after the outbreak [2]. In mid-February 2020, the World Health Organi-
zation (WHO) announced Iran as the second epicenter of virus transmission worldwide [1].
As of 1 July 2022, Iran has reported a case fatality ratio (CFR) of 1.95%, significantly higher
than the CFR worldwide (1.15%) [3]. Although preventive public health measures, such as
vaccination and early testing, are necessary to cope with the disease [2] in a timely fashion,
they seem insufficient to control the outbreak, especially in developing or underdevel-
oped countries.

With the onset of the pandemic, several attempts have been carried out for early
diagnosis and forecasting of COVID-19 [4–8]. Although these studies have performed
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well in diagnosing and forecasting COVID-19, they did not account for the spatial com-
ponent of the disease and potential factors affecting the spatial distribution of COVID-19.
Recent studies have indicated that socio-economic [9], demographic [10], climatic [11],
and environmental [12] variables can potentially influence spatial variations in COVID-19.
Therefore, investigating the impacts of these variables on the spread of COVID-19 may
provide guidelines for health policymakers to have a better understanding of disease-prone
regions, monitor the spread, and efficiently allocate medical resources.

The geographical information system (GIS) has been leveraged frequently to examine
the spatial dynamics of infectious diseases [13–15]. To date, many GIS-related studies
on COVID-19 have been conducted from different perspectives, including spatial and
temporal analysis [16], spatial modeling using environmental determinants [12,17], data
mining [18], and predictive models using intelligent systems [19]. For instance [10], applied
geographically weighted regression (GWR) and multiscale GWR methods in a GIS frame-
work to explore the COVID-19 distribution in the United States. This study indicated that
income inequality, black females (%), nurse practitioners (%), and household income were
the most significant factors affecting COVID-19 incidence. In another GIS-based study [12],
predicted the cumulative incidence of the disease throughout the continental United States
by a multilayer perceptron (MLP) neural network. Their findings indicated that median
household income, pancreatic cancer, leukemia, age-adjusted mortality rates of ischemic
heart disease, and total precipitation are the main drivers of the spread of COVID-19.

While the spatial analysis of COVID-19 distribution has been frequently conducted in
many countries, including China [16], Italy [20], Brazil [21], the United States [10,12], and
India [22], relatively little attention has been paid to the spatial dynamics of the disease in
Iran using machine learning (ML) algorithms and GIS techniques. For instance [23], pre-
sented risk maps of COVID-19 in Iran at the provincial level using an adaptive neuro-fuzzy
inference system (ANFIS), GWR, and multiscale GWR. This study showed that older adults
and population density were the most critical indicators of COVID-19 prevalence. Another
study conducted by [9] modeled the COVID-19 distribution by three ML approaches, in-
cluding random forest (RF), logistic regression, and ANFIS according to eight land uses
(bakeries, automated teller machines (ATMs), public transport stations, supermarkets,
banks, pharmacies, hospitals, and fuel stations) in Tehran, Iran. They showed that the dis-
tribution of the disease was more concentrated in pharmacies and public transport stations.

ANFIS, a robust ML approach, maintains the benefits of artificial neural networks
(ANN) and fuzzy inference systems (FIS) [24]. In addition to the power of the ANFIS
model in exploring complex problems, principal component analysis (PCA) can reduce
the complexity of the dataset by reducing a large number of factors to a new set of fewer
parameters [25,26]. PCA can be combined with ML approaches, such as the ANFIS, to
reduce the convergence time and enhance its predictive performance [15,27].

Although there have been numerous studies for spatial modeling of COVID-19 using
ML approaches worldwide, little attention has been paid to the ANFIS or PCA-ANFIS,
mainly when dealing with small sample sizes and small areas through a fuzzy perspective.
Regarding the high flexibility and versatility of the ANFIS and the ability of the PCA to
increase the model’s predictive performance, the main contribution of this study is the
combined use of PCA and ANFIS methods to model COVID-19 prevalence. This study
aims to compare the performance of ANFIS and PCA-ANFIS models in modeling the
spatial distribution of COVID-19 prevalence in the Golestan province, where its CFR was
approximately 2.5 times more than the CFR in Iran (9.06% vs. 3.68%) [28]. The findings of
this study may provide valuable insights for health managers to identify factors affecting
COVID-19 prevalence, which may lead to developing targeted interventions in response to
COVID-19 transmission.
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2. Materials and Methods
2.1. Study Area

Golestan province geographically lies between longitudes 53◦57′ to 56◦22′ E of the
Greenwich meridian and latitudes 36◦30′ to 38◦08′ N of the equator, located on the south-
eastern shores of the Caspian Sea and south of the Republic of Turkmenistan (Figure 1). The
province has a total area of 20,367 square kilometers and a population of over 1.87 million.
The province consists of 14 counties divided into 60 rural districts (i.e., the unit of analysis
in this study) [29].
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Figure 1. Location of Golestan province and its 60 rural districts.

2.2. Data Collection and Preparation

The disease data and potentially relevant factors (n = 32) were collected based on previous
studies [9–12]. The prepared dataset includes COVID-19 prevalence per 100,000 population
(as the dependent variable) and socio-demographic, environmental, land use, and climatic
data as independent variables. Detailed information about the variables is provided in
Table 1. ArcGIS 10.2 (ESRI, Redlands, CA, USA) and Microsoft Excel 2016 were used
to prepare the dataset at the rural district scale. Continuous raster grids of the climatic
data were generated using the inverse distance weighting interpolation method [30]. The
zonal statistic function was applied to calculate average values of the digital elevation
model (DEM), normalized difference vegetation index (NDVI), and climatic variables at
the rural district level. We used the min-max normalization approach [31] for dependent
and independent variables to increase the computational performance of models based on
Equation (1):

Xn =
Xi − Xmin

Xmax − Xmin
, (1)

where Xi, Xmin, Xmax, and Xn are the initial, minimum, maximum, and normalized val-
ues, respectively.
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Table 1. Summary of the dataset used in this study.

Theme Variable Description Source

(a) Disease data (a1) COVID-19 prevalence per
100,000 people

(a1) (The ratio of COVID-19 cases in a rural district
during the study period to the population living in
that rural district during that period of time) * 100,000

(a1) Center for Disease Control
and Prevention (CDC) of
Golestan province, from 2020
to 2021 [28]

(b) Socio-demographic

(b1) Percent of male

(b1–7) Statistical Center of Iran,
2016 (the last year of the census
in Iran) [29]

(b2) Percent of female

(b3) Average household size (b3) The ratio of household population to the number
of occupied households

(b4) Percentage of people over 65 years
(b5) Employment rate (b5) The ratio of employed people to people aged 10+

(b6) Migration rate
(b6) Number of immigrants minus the number of
emigrants of an area divided by the total population of
that area

(b7) Literacy rate (b7) The ratio of literate people aged 6+ to all people
aged 6+

(c) Urban land use

(c1) Residential units < 100 m2 (c1) Percentage of residential units with an area of less
than 100 m2

(c1–10) Deputy of Statistics and
Information of Golestan
Province, from 2020 to
2021 [29]

(c2) Residential apartment units (c2) The ratio of residential apartment units to total
residential units

(c3) Educational facilities

(c3) The total number of educational centers, including
kindergartens, primary schools, middle schools,
secondary schools, special schools, colleges, and
universities

(c4) Cultural and sports facilities
(c4) The total number of cultural and sports centers,
including parks and green spaces, public libraries,
sports fields, and sports halls

(c5) Religious facilities
(c5) The total number of religious places, including
mosques, shrines, seminaries, and other religious
centers

(c6) Government offices

(c6) The total number of government offices, including
employment offices, banks, registry offices, municipal
offices, welfare centers, post offices, courthouses, and
other administrative land uses

(c7) Municipal services

(c7) The total number of facilities pertaining to
municipal services, such as water supplies, water
purification systems, sewage disposal systems, and
electricity and gas supplies

(c8) Health facilities

(c8) The total number of medical centers, including
hospitals, clinics, pharmacies, nursing homes, medical
laboratories, healthcare centers, maternity centers, and
other specialized care centers

(c9) Commercial facilities
(c9) The total number of commercial centers such as
passages, grocery stores, retail stores, bakeries,
supermarkets, hotels, and restaurants

(c10) Communication and
transportation facilities

(c10) The total number of communication and
transportation facilities such as airports, railway
stations, highways, public transportation facilities,
post offices, telecommunication offices, and
information and communication technology centers

(d) Environmental

(d1) NDVI (d1) Normalized difference vegetation index (90-m
spatial resolution)

(d1) United States Geological
Survey (USGS), from 2020 to
2021 [32]

(d2) DEM (d2) Digital elevation model (90-m spatial resolution)
(d2) United States Geological
Survey (USGS), from 2020 to
2021 [32]

(e) Climatic

(e1) Precipitation (e1) Total rainfall; Number of days with rainfall

(e1–6) Meteorological
Organization of Iran, from 2020
to 2021 [33]

(e2) Humidity (e2) Average relative humidity

(e3) Temperature
(e3) Minimum temperature; Mean temperature;
Maximum temperature; Mean dew point temperature*;
Mean soil temperature

(e4) Evaporation (e4) Maximum evaporation; Total evaporation
(e5) Wind speed (e5) Maximum wind speed; Mean wind speed
(e6) Sea pressure (e6) Mean sea-level pressure

e1: Total amount of rainfall recorded during a month at the site, mm; number of days with rainfall during a month
at the site. e2: Percentage measure of the amount of moisture in the air compared to the maximum amount of
moisture the air can hold at the same temperature and pressure. * The dew point is the temperature at which
water vapor can condense, assuming constant air pressure and water content, ◦C. e4: Evaporation is the amount
of water evaporated from a unit surface area per unit of time, mm. e6: The mean sea-level pressure (MSLP) is the
atmospheric pressure at the mean sea level (PMSL), Pa.

2.3. Statistical Analysis

Initially, the linear regression (LR) method was used to select independent and main
variables as inputs for modeling. This method also was used as the baseline to investigate
the effects of independent variables on the dependent variable. Tests of tolerance and vari-
ance inflation factor (VIF) were applied to examine the multicollinearity of all variables [34].
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To conduct the PCA, factor analysis in dimension reduction was employed [35]. In this
regard, Kaiser-Meyer-Olkin (KMO) and Bartlett’s tests were used to assess the suitability
and adequacy of the data for use in the PCA [15]. All statistical analyses were conducted in
the SPSS software version 23.

2.4. ANFIS

The fuzzy theory is an approach to making decisions when dealing with ambiguous
and inaccurate data with no explicit criteria and accurate boundaries [36,37]. Although
this method is popular among researchers in numerous fields, it does not generate high
accuracies in unforeseen circumstances [27]. Due to the learning abilities of the ANN to
optimize the fuzzy methods, ANFIS was developed [38]. ANFIS, a combination of the
ANN and Takagi-Sugeno fuzzy system, benefits from both the learning ability of ANN and
the computational ability of fuzzy methods to solve the optimization issue of nonlinear
functions [36]. Neuro-fuzzy models were found beneficial compared to classical models of
ANNs in some studies [27,39–41]. ANFIS is less dependent on the knowledge of experts,
can capture nonlinear structures, is adaptable, and can learn quickly [27].

The ANFIS generates a mapping between inputs and outputs by applying fuzzy if-
then rules [24]. Figure 2 illustrates the main architecture of the ANFIS with five layers and
two inputs x and y (i.e., variables) in the input layer (Layer 0). More information about the
structure of ANFIS is presented in [24].
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2.5. PCA

It is evident that smaller datasets are easier to visualize and explore; hence, they are
faster to be processed. The PCA was first presented by Pearson to reduce the dimensions
of a dataset, containing many correlated variables [35,42,43]. Therefore, it preserves the
diversity in the dataset to the maximum extent [44] and reduces complexity in the dataset
while controlling data loss [26]. In this method, by maximizing the correlation between the
variables, the variables are transformed into principal components (PCs). The PCs are the
eigenvectors of a covariance matrix and are mutually uncorrelated [35,42]. To apply the
PCA-ANFIS model, we decomposed the input variables into PCs and then used them for
training the ANFIS model [27]. More information about PCA is presented in [35,42,43].

2.6. Model Development and Evaluation

To implement the ANFIS model, the potentially selected variables (resulted from the
LR analysis) and the COVID-19 prevalence were set as independent (inputs) and dependent
variables, respectively. The ANFIS model was implemented using the ANFIS toolbox in
MATLAB R2015a. In the ANFIS model, three methods of Fuzzy C-means (FCM) clustering,
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subtractive clustering, and grid partitioning were used to cluster the input data and to
facilitate the training phase. However, as FCM clustering usually has shown a better
performance than subtractive clustering and grid partitioning [14,45], this method was
used in this study. The Gaussian and linear membership functions were employed in the
ANFIS model. The parameters of the maximum epoch and error goal were set to thirty and
zero, respectively.

We randomly divided the dataset into three categories: training data (52%, thirty-one
rural districts), validation data (13%, eight rural districts), and test data (35%, twenty-
one rural districts). The training data were considered to calibrate the model, and the
validation data were used to avoid overfitting in the training process. The test data were
considered to evaluate the ability of the model to predict the target variable. To estimate
the model accuracy, four evaluation metrics were used in the model development and
evaluation stages: determination coefficient (R2), mean square error (MSE), mean absolute
error (MAE), and root mean square error (RMSE) [14,15]. To deal with model uncertainty
(i.e., overestimation and underestimation), the training, validation, and test data were set
in four different modes. In each mode, we ran the model 5 times. Then, we calculated the
average of the results.

In the PCA-ANFIS model, we applied the PCA to extract the PCs. Then, the PCs were
considered as inputs for the ANFIS model. To compare the performance of the ANFIS
and PCA-ANFIS models, we used the same training, validation, and test data for the
above-mentioned models.

Finally, sensitivity analysis was performed to explore the contribution of selected
variables in predicting COVID-19 prevalence. In this regard, each factor was removed from
the ANFIS model separately for the test data, and the impact of that factor on the model’s
accuracy was assessed by the evaluation indicator of R2.

3. Results

Among 32 potential variables, only 17 independent variables were selected as the final
input candidates, including average household size, percentage of people over 65 years,
migration rate, employment rate, literacy rate, residential apartment units, educational fa-
cilities, cultural and sports facilities, religious facilities, municipal services, health facilities,
NDVI, maximum wind speed, number of days with rainfall, mean dew point temperature,
mean temperature, and mean soil temperature.

3.1. Statistical Analysis

The results of the LR model are presented in Table 2. The linear correlation between
the desired and predicted dependent variable was R = 0.697. The R2 = 0.486 shows that
48.6% of total variations in COVID-19 prevalence can be predicted by the selected variables.
The value of the Durbin–Watson test was close to two, indicating the independence of the
error assumption [14].

Table 2. The results of the LR model.

Model R R Square Adjusted R
Square

Change Statistics
Durbin–Watson

R Square Change F df1 df2 Sig. F Change

LR 0.697 0.486 0.278 0.486 2.338 17 42 0.013 2.234

Table 3 shows the results of the collinearity of the input factors. The values of tolerance
and VIF statistics (tolerance > = 0.1 and 1 < VIF < = 10) imply that multicollinearity is not a
major concern. Thus, they can be used in the ANFIS model [15].
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Table 3. Multicollinearity analysis of input variables in the LR model.

Input Variable
Collinearity Statistics

Tolerance VIF

Average household size 0.260 3.850
Percentage of people over 65 years 0.201 4.964
Migration rate 0.618 1.618
Employment rate 0.649 1.541
Literacy rate 0.375 2.667
Residential apartment units 0.458 2.185
Educational facilities 0.161 6.197
Cultural and sports facilities 0.240 4.163
Religious facilities 0.279 3.589
Municipal services 0.161 6.217
Health facilities 0.106 9.390
NDVI 0.310 3.225
Maximum wind speed 0.198 5.054
Number of days with rainfall 0.151 6.637
Mean dew point temperature 0.285 3.511
Mean temperature 0.316 3.167
Mean soil temperature 0.149 6.701

The value of the KMO test was 0.719, which indicates the data are sufficient to apply
the PCA. In addition, the value of Bartlett’s test (approx. Chi-Square = 709.571) indicates
that the data are appropriate for the factor analysis [35].

Among seventeen components, only five components (with eigenvalues > 1) were
selected as PCs (Table 4). To optimize the structure of the PCs and equalize their relative im-
portance, we rotated them using the Varma rotation [35,46]. After rotation, the eigenvalues
of the PCs were updated and included in the section of rotation sums of the squared load-
ings. Based on Table 4, the most important PCs in explaining the cumulative variance of the
PCs (76.976%) were the PC1 (variance = 29.867%), followed by PC2 (variance = 14.329%),
PC3 (variance = 12.341%), PC4 (variance = 11.458%), and PC5 (variance = 8.980%).

Table 4. Selecting the PCs according to the total variances.

Component
Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %

1 5.861 34.474 34.474 5.861 34.474 34.474 5.077 29.867 29.867

2 2.473 14.545 49.019 2.473 14.545 49.019 2.436 14.329 44.197

3 2.227 13.102 62.121 2.227 13.102 62.121 2.098 12.341 56.538

4 1.363 8.020 70.141 1.363 8.020 70.141 1.948 11.458 67.996

5 1.162 6.835 76.976 1.162 6.835 76.976 1.527 8.980 76.976

According to Table 5, the varimax rotation with Kaiser Normalization was used to
obtain the loading values of each variable for each PC [47], and only the largest absolute
value was selected. The variables associated with that value were considered as the
candidate variables for the related PCs [35]. The PC1 has a strong positive loading with the
percentage of people over 65 years (0.769), residential apartment units (0.739), educational
facilities (0.673), cultural and sports facilities (0.813), religious facilities (0.821), health
facilities (0.807), NDVI (0.632), and mean dew point temperature (0.580). The PC2 has a
negative loading with employment rate (−0.492) and the number of days with rainfall
(−0.931), while it has a strong positive loading with mean soil temperature (0.910). The
PC3 has a strong positive loading with the average household size (0.893) and municipal
services (0.676). The PC4 has a strong negative loading with maximum wind speed (−0.839),
whereas it has a strong positive loading with the mean temperature (0.835). The PC5 is
associated with migration (0.711) and literacy rates (0.799).
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Table 5. The loading of each variable on each PC using the rotated component matrix (rotation
converged in 10 iterations). The bold values are associated with the candidate variables for the
related PCs.

Variable
PC

1 2 3 4 5

Average household size 0.039 −0.079 0.893 −0.196 0.042

Percentage of people over 65 years 0.769 0.191 −0.112 0.221 −0.350

Migration rate 0.260 −0.128 −0.340 −0.095 0.711

Employment rate −0.355 −0.492 0.117 −0.149 0.155

Literacy rate 0.047 0.111 0.332 0.093 0.799

Residential apartment units 0.739 −0.130 −0.041 −0.099 0.164

Educational facilities 0.673 0.200 0.531 0.107 0.169

Cultural and sports facilities 0.813 0.103 0.083 −0.001 0.271

Religious facilities 0.821 0.088 0.153 0.077 0.021

Municipal services 0.635 −0.043 0.676 0.092 −0.048

Health facilities 0.807 0.065 0.406 0.214 0.180

NDVI 0.632 −0.367 −0.233 0.326 −0.148

Maximum wind speed −0.387 0.179 0.104 −0.839 0.113

Number of days with rainfall 0.044 −0.931 −0.076 0.106 −0.099

Mean dew point temperature 0.580 0.240 0.190 0.415 0.139

Mean temperature −0.082 0.352 −0.053 0.835 0.079

Mean soil temperature 0.063 0.910 −0.047 0.221 −0.027

3.2. Model Evaluation

According to Table 6, the PCA-ANFIS model could explain larger variations in
COVID-19 prevalence (mean R2 = 0.615) than the ANFIS model (mean R2 = 0.543) on
the test data.

Table 6. Comparison of predicted COVID-19 prevalence using the ANFIS and PCA-ANFIS models.

Statistical Criteria
Model Evaluation (Test Data)

ANFIS PCA-ANFIS

R2 (Mean: 0.543, SD: 0.045) (Mean: 0.615, SD: 0.060)
MAE (Mean: 0.137, SD: 0.020) (Mean: 0.104, SD: 0.010)
MSE (Mean: 0.034, SD: 0.007) (Mean: 0.020, SD: 0.004)
RMSE (Mean: 0.185, SD: 0.020) (Mean: 0.139, SD: 0.016)

3.3. Sensitivity Analysis

The largest reduction in the R2 occurred when the migration rate (15.16%), the employ-
ment rate (13.62%), the number of days with rainfall (13.61%), and residential apartment
units (11.05%) were excluded from the ANFIS model. Therefore, these factors are considered
the most contributing variables in predicting the geographical distribution of COVID-19
prevalence. Figure 3 depicts the importance of each variable on COVID-19 prevalence.
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4. Discussion

In this study, we assumed that the heterogeneous spatial distribution of COVID-
19 prevalence could be explained by socio-demographic, environmental, climatic, and
urban land uses factors. We compiled a broad range (n = 32) of these factors to predict
COVID-19 prevalence at the rural district level. However, due to the relatively small
sample size, traditional modeling techniques could result in overfitting. To address this
problem, we used the hybrid neural network and fuzzy logic called ANFIS in a GIS
framework. The ANFIS has a robust predictive capability in modeling complex and
nonlinear relationships [38]. We further improved the model’s performance [15,27] using
PCA. The results of this study will enable policymakers to predict the spatial distribution of
COVID-19 and make decisions on designing preventive policies to control future epidemics.
In addition, identifying the most contributing factors in COVID-19 prevalence provides
valuable insights into the disease transmission, thereby helping more targeted interventions
to weaken the spread of the disease.

Among 32 variables, only 17 variables were selected as the inputs for modeling after
variable selection. The baseline LR model showed that the selected variables could explain
48.6% of the total variations in COVID-19 prevalence. We improved the performance of
the model by at least 13% when using the ANFIS (R2 = 0.543) and PCA-ANFIS (R2 = 0.615)
models. This might be due to the ability of ANFIS in capturing nonlinear and linear re-
lationships [14]. The previous literature has implied that nonlinear models had superior
performance compared to linear models. For example, [12] indicated that an MLP neural
network with one hidden layer (as a nonlinear model) could predict COVID-19 incidence
better than an LR model. Reference [11] showed that a combination of the virus optimiza-
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tion algorithm (VOA) with the ANFIS model improves the performance of the ANFIS
model in predicting the infection rate of COVID-19. They also indicated that both ANFIS
(R2 = 0.691) and ANFIS-VOA models (R2 = 0.834) performed better than LR (R2 = 0.392).
Another study stated that RF and ANFIS, as nonlinear models, had higher accuracy in
predicting the spatial variation in COVID-19 cases than the logistic regression model (i.e., a
generalized linear model) [9]. In line with our results, previous studies also have indicated
that the PCA can improve the performance of ML approaches [15,25–27,35].

The sensitivity analysis of the ANFIS model showed that four variables of migration
rate, employment rate, number of rainfall days, and residential apartment units were among
the most contributing factors in predicting COVID-19 prevalence in the Golestan province.
The results are consistent with previous studies. For instance, [48–50] proposed that the
high risk of the spread of COVID-19 was associated with areas with a higher migrant
population. Areas with high rates of migrant population can catalyze disease transmission.
With the increase in population movements in these areas, the number of people entering
and leaving those areas increases. In turn, migrant populations have to travel a greater
distance between their residence and workplace, which increases the chance of their contact
with other people. It makes the migrant population more likely to contract the virus and
causes long-distance transmission of COVID-19. On the other hand, areas with higher
populations and higher socio-economic conditions usually attract more migrant people [51].
In this study, according to our census data [29], the rural districts with high migration rates
usually had high populations, which can facilitate the COVID-19 transmission in those
areas. This suggests the importance of formulating lockdown measures in the early stages
of the pandemic to prevent large-scale disease transmission.

Moreover, the previous literature has suggested that a higher employment rate can
increase the likelihood of COVID-19 exposure [52,53], particularly when using public
transportation to commute to and from the workplace. The proximity of employed people
in workplaces, such as offices, can provide a suitable environment for virus transmission.
In addition, employed people are usually more exposed to touching infected work surfaces,
including keyboards, public toilets, doors, and window handles, as the virus can survive
for up to 72 h on high-touch surfaces [54].

Reference [55] assessed the impact of climate factors on COVID-19 transmission. They
showed that precipitation, low temperature, dew/frost point, and wind speed escalate the
disease incidence. Climate factors, such as low humidity and temperature, may allow the
virus to retain its viability longer and subsequently prolong its infectivity [55]. On the other
hand, cold and dry weather conditions may also disrupt the human immune response,
thereby increasing the risk of disease [55]. In terms of health policy implications, health
authorities can adjust their intervention based on different weather conditions. Contrary
to the results of this study, some previous research indicated that climatic variables (e.g.,
temperature and humidity) were not effective in COVID-19 occurrence [10,12,23]. The
differences in findings may be attributed to different geographic areas, various methods,
and different spatial scales of analysis.

In our study area, the residential apartment units were more concentrated in densely
populated urban areas; thus, they were more likely to be exposed to the virus. In agreement
with our results, [56] concluded that residential areas are among the most significant urban
land uses in the spread of COVID-19. This implies that health authorities should allo-
cate more health resources to the residents of these populated areas to control COVID-19
transmission. To the best of our knowledge, this research is the first attempt to use a compre-
hensive set of urban land uses for modeling the spatial variations in COVID-19 prevalence,
particularly using the ANFIS and PCA-ANFIS. Previous studies have recommended using
land use variables in future works [9,11,12].

This study has some limitations that may impede the reliable prediction of the disease
distribution. First, although our findings align with some previous studies, interpreting
the results at the individual level may not be reliable due to ecological fallacy. Thus, the
conclusions can only be drawn at the rural district scale. The lack of some main socio-
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economic variables (e.g., poverty, race, and insurance status) at the rural district level
is another limitation. Moreover, errors and irregularity in the data collection phase can
compromise the model’s accuracy. For instance, some cases may be misdiagnosed, or the
asymptomatic patients not being reported may lead to unreliable estimations of disease
prevalence. Examining data uncertainty should be addressed in future works.

5. Conclusions

Despite the low number of training samples, both the ANFIS and PCA-ANFIS models
predicted COVID-19 prevalence in the Golestan province with decent accuracy. Regarding
public health implications, the results showed how migration rate, employment rate,
and the number of rainfall days could predict COVID-19 prevalence. Moreover, high
contributions of residential apartment land use in predicting COVID-19 distribution imply
that health authorities should allocate more medical resources to the residents of areas with
a higher density of apartment units. To improve the predictability of the ANFIS model,
other optimization algorithms, such as equilibrium optimizer algorithm [57], crow search
algorithm [58], and Harris Hawks Optimizer [59], can be used in future works. With the
increase in the amount of training data, deep learning models can be used, which can
lead to higher accuracy of the model. However, the low number of training samples in
this study impedes us from using the deeper networks. For future works, by considering
a longer time period (if available) or finer spatial scales (which was not possible in this
study), we can increase the amount of data and, in turn, adjust the deep learning models [6].
Further studies, such as agent-based models [60–62], can be helpful to better understand
the complex spatial dynamics of COVID-19 in communities. Nonetheless, this study can be
served as a helpful guideline for health policymakers to determine potential risk factors
pertaining to COVID-19, particularly for areas with small sample sizes.
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