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Abstract: As cities continue to grow, the functions of urban areas change and problems arise from 

previously constructed urban planning schemes. Hence, the actual distribution of urban functional 

areas needs to be confirmed. POI data, as a representation of urban facilities, can be used to mine 

the spatial correlation within the city. Therefore it has been widely used for urban functional area 

extraction. Previous studies are mostly devoted to mining POI linear location relationships and do 

not comprehensively mine POI spatial information, such as spatial interaction information. This 

results in less accurate modeling of the relationship between POI-based and urban function types. 

In addition, they all use Euclidean distance for proximity assessment, which is not realistic. This 

paper proposes an urban functional area identification method that considers the nonlinear spatial 

relationship between POIs. First, POI adjacency is determined according to road network con-

straints, which forms the basis of a co-occurrence matrix. Then, a Global Vectors (GloVe) model is 

used to train POI category vectors and the feature vectors for each basic research unit are obtained 

using weighted averages. This is followed by clustering analysis, which is realized by a K-Means++ 

algorithm. Lastly, the functional areas are labeled according to the POI category ratio, enrichment 

factors, and mobile phone signal heat data. The model was tested experimentally, using core areas 

of Zhengzhou City in China as an example. When the results were compared with a Baidu map, we 

confirmed that making full use of nonlinear spatial relationships between POIs delivers high levels 

of identification accuracy for urban functional areas. 
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1. Introduction 

The city is the product of human society at a certain stage of development. It is an 

open, complex and giant system [1]. The various components of cities interact in different 

forms and ways to form various urban structures, including mainly economic, social and 

spatial structures. Spatial structure refers to the configuration and distribution of facilities 

in different areas of a city [2]. As cities continue to grow, their spatial structures are be-

coming more diverse and complex [3]. The planning schemes developed in the early days 

of the city are no longer reasonable. It has led to issues such as traffic congestion, environ-

mental degradation, housing shortages and emergency lag [4]. In order to solve the prob-

lems of urban development, optimize the layout of urban space and improve the full uti-

lization of space resources, it is necessary to formulate a reasonable urban planning 

scheme again. In the process of formulating the urban planning program, the primary 

task is to determine the functional zoning of the city. 

Originally, the identification of urban functional areas relied primarily on surveys 

and statistics. However, this is potentially subjective, limited by statistics, and inefficient 

[5]. Thus, some studies moved on to using high-resolution remote sensing images. This 
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can accurately capture physical surface characteristics, such as shape, texture, and spec-

trum [6–8]. However, this method suffers from low accuracy and poor data currency. In 

addition, functional areas are affected by human social and economic activities and only 

natural attributes can be extracted from remote sensing images. To solve these issues, the 

concepts of “social perception” [9] and “urban computing” [10] have been applied to the 

measurement of social and economic activities in urban space. 

With the development of sensors and data acquisition technology, an enormous 

quantity of data have become available to study the socio-economic environment and to 

uncover patterns of interactions in urban functions. More current methods for identifica-

tion of urban functional areas mainly utilize Points of Interest (POIs) [11–15], social media 

[16–20], and vehicle trajectories [21–24]. Thus, various types of Big Data have made it pos-

sible to discover the distribution of urban functional areas in ways that were not previ-

ously feasible. Hélder Tiago [19] used photo data from social media to confirm the corre-

lation between tourism activities and the functional distribution of cities. Xue [20] used 

Tencent Street View photos to analyze pedestrian trajectories and advance research on the 

identification of functional urban areas. Chen [21] used taxi GPS data to identify func-

tional areas of the city by analyzing their movement patterns. However, the identification 

of functional areas using social media data and vehicle track data only uses the frequency 

of their data points as a criterion for determining the type of functional area and does not 

take into account the spatial correlation within urban areas. 

Among the rich data sources above, POI data are city-wide facilities, institutions and 

geographical places closely related to people’s lives abstracted as point geographic entities 

with both location and semantic information. POI data can be used to study spatial corre-

lation and spatial interaction within cities. That is because the configuration of the POI 

varies in the different functional areas. For example, industrial areas have many compa-

nies, factories and some infrastructure such as parks, restaurants and shops. POI data are 

also characterized by their accessibility and presentability. Therefore, POI data are widely 

used in the identification of urban functional areas. We also used POI data for our re-

search.  

In the early days, POI-based urban functional area identification focuses on analysis 

of the number and density of various types of POIs in basic urban units. For instance, Hu 

et al. [11] used 250 m2 POI density information to identify the functional areas in Guang-

zhou. Yuan et al. [12] mined POI data using a probabilistic topic model to enable func-

tional area identification in Beijing. Yi et al. [13] analyzed POI data quantitatively and 

used Fisher’s exact test method to identify urban functional areas. Gao et al. [14] used 

Latent Dirichlet Allocation (LDA) topic modeling technology to mine POI and social me-

dia data to achieve the same objective. They are limited by the fact that the functions were 

only determined according to POI frequency. This results in much of the spatial infor-

mation of the POI being wasted. This method fails to explain that points within a space 

are defined by their surroundings, violating the first law of geography [25]. Thus, their 

accuracy therefore needs to be improved further. 

To solve the above problems, Yao et al. [26] proposed a method that combines the 

language model, Word2vec, and POI data. The shortest distance sequence between all 

POIs in each independent, basic research unit was used to construct a training data set. 

Regional feature vectors were then obtained that made it possible to identify the urban 

functional areas. Wu et al. [27] applied a Global Vectors (GloVe) deep learning model that 

considered the global co-occurrence of information when undertaking functional area 

identification. Here, the POI spatial distribution was described by natural language se-

quences and language models were used to quantify the relationship between the POIs 

and different categories of urban functional area. These methods can mine latent semantic 

information and geographical information related to the spatial distribution of POIs. 

However, linearly distributed [28] natural language sequences were used to organize the 

POI data in the Parcels (Figure 1a). This method of POI organization does not fully exploit 

the spatial information of POIs. For example, POI information that is far apart in a natural 
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language sequence but spatially close to each other will be ignored. Additionally, in urban 

spaces, POIs have a scattered distribution and a strong correlation with surrounding 

roads. There are also interactive connections between adjacent parcels that are notably 

different to natural language sequences. This makes using the linear relationship between 

POIs in parcels potentially problematic and can result in nonsensical outcomes such as 

the splitting of adjacent POIs across two sides of a street. The mining of spatial interaction 

features between parcels can therefore be undermined by proceeding in this way. There 

is another very important point: this type of approach measures the proximity of POIs in 

terms of Euclidean distances. However, in reality, there are buildings that can be an ob-

stacle. Therefore this measurement is not realistic. 

In this paper, we propose an urban functional area identification method that takes 

into account the nonlinear spatial relationship between POIs. This method considers not 

only geographical adjacency, but also urban structural integrity. It can comprehensively 

mine POIs proximity information and spatial interaction information in line with realistic 

scenarios. The spatial adjacency of POIs is first established on the basis of road networks 

(Figure 1b). Take any POI as the center and count the information of all the neighboring 

points within the neighborhood threshold of its road network. An improved co-occur-

rence matrix can then be constructed and the global POI co-occurrence information can 

be mined. After this, a GloVe model is used for training so as to obtain POI category vec-

tors, which form the basis of feature vectors. K-Means++ is then used to cluster the feature 

vectors, and the regional clusters are evaluated by three indicators to determine the cate-

gory of the urban functional area. 

 

Figure 1. Comparison of organizational relationships between POIs: (a) Existing studies use the lin-

ear relationship between POIs; (b) In this study, we make use of the non-linear relationship between 

POIs. 

2. Study Area and Data 

The study area includes the main urban areas of Zhengzhou City in China (namely, 

the following districts: Zhongyuan; Jinshui; Erqi; and Guancheng Huizu (Figure 2). These 

cover a total area of 801.1 km2. With its excellent economic development, large residential 

population and dense road network, Zhengzhou is a city of great dynamism. It is the po-

litical, economic, and cultural center of Henan Province. In recent years, rapid urban de-

velopment has rendered the functional structure of its main urban areas highly heteroge-

neous. Thus, the study area incorporates a variety of different urban functional types, such 

as residential areas, science, educational and cultural facilities, business and entertain-

ment zones. 
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Figure 2. Core areas of Zhengzhou City. 

The data used in the study came from the 2020 urban administrative division map of 

Zhengzhou, POI data for Zhengzhou on 28 December 2021, the road network data from 

2020, and the mobile phone signal heat data for Zhengzhou residents on 3 June and 5 June  

2020. The POI data were obtained through an application programming interface (API) 

provided by the AutoNavi open platform. There was a total of 216,413 data points in the 

study area. The road network data were downloaded from the OpenStreetMap website. 

The mobile phone signal data were provided by China Unicom. Specific data descriptions 

are given in Table 1. 

Table 1. Data used in this study. 

Data Type Quantity Description 

Urban administrative divi-

sion map of Zhengzhou 
1 

The core areas of Zhengzhou were se-

lected for this study 

Road network data 12,149 

Highways, primary roads, secondary 

roads, and tertiary roads were selected 

to construct Parcels 

POI data 216,413 
13 large categories, 128 medium catego-

ries, and 434 small categories 

Mobile phone signaling heat 

data 
8,922,272 

Population heat data in the 500 m grid 

area in 24 time periods on a workday 

and a weekend day 

3. Methodology 

As considering the spatial distribution of urban POIs as a whole can assist with min-

ing urban functional areas, we used a GloVe model to train POI category vectors. The POI 

co-occurrence relationships needed to be based on the actual urban structure, so the road 

network was used to construct a co-occurrence matrix. An overall flowchart for the pro-

posed method is shown in Figure 3. It covers five steps: (1) construct the parcels (basic 

research unit) according to the urban road network; (2) from a city-wide perspective, es-

tablish POI adjacency relationships on the basis of the road network and constructing a 

co-occurrence matrix; (3) use a GloVe model to train POI category vectors; (4) construct 
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feature vectors for each parcel and perform clustering; and (5) identify and label the func-

tional areas. The rest of this section describes this process in detail. 

 

Figure 3. Flowchart of urban functional area identification. 

3.1. Constructing the Parcels (Basic Research Units) 

In existing studies, the research areas are mainly divided according to grids [11], ca-

dastral data [26], and road networks [29]. In grid-based methods, irregular urban blocks 

are converted into uniform shapes, which does not represent the macro-morphology of 

the urban structure. Division on the basis of cadastral data risks breaking the connectivity 

between regions. Division according to urban road networks, however, more naturally 

reflects how cities are actually organized. The proposed method therefore uses highways, 

primary roads, and secondary roads as basic urban division units. The areas formed by 

these divisions are known as Parcels.  

A morphological approach [30] was used to construct the Parcels. As shown in Figure 

4a, road networks are usually represented by multiline roads, which affect the organiza-

tion of the POIs. It is therefore better to generate single-line road networks. This involves 

first of all rasterizing the original road network and thickening the roads using a morpho-

logical expansion function, which fills in the gaps and voids between roads (Figure 4b). 

The expanded roads were then refined and, in order to maintain the overall topology of 

the original road network, the central axis of each road was extracted. This was used to 

represent the road (Figure 4c). Finally, meshes were constructed for the single-line road 

network to form Parcels (Figure 4d). 

 

Figure 4. Construction steps of Parcels: (a) original road network; (b) roads after expansion opera-

tion; (c) roads by refined operation; (d) Parcel schematic diagram. 

3.2. Co-Occurrence Matrix Construction 

The distribution of POI types in terms of number is a power–law distribution, as is 

the distribution of words, so that deep learning natural language models can be used. The 

only one of these is GloVe, a word embedding model that makes use of city-wide 
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statistical information. It can embed a high-dimensional vector space with the total num-

ber of words into a continuous vector space of a much lower dimension. The words can 

then be mapped to vectors represented by numbers [31]. The statistical information it uti-

lizes–co-occurrence frequency–is very important information about the spatial character-

istics of urban areas and helps in modelling the relationship between POI types and urban 

area functions. The GloVe model was therefore chosen for the identification of urban func-

tional areas. 

The GloVe model stores statistical information in a co-occurrence matrix [32]. A co-

occurrence matrix is a matrix consisting of the frequency of two simultaneous occurrences 

of two words in all different words. It can be used to measure semantic similarity between 

words based on the principle that words in a language are semantically closer to their 

neighbors. In geography, a similar law suggests that the shorter the distance between two 

objects, the closer their relationship (the first law of geography) [25]. This renders co-oc-

currence matrices also suitable for mining POI semantic information in urban space. 

Constructing a co-occurrence matrix is at the heart of the GloVe model. The original 

GloVe model constructed the co-occurrence matrix by sliding over each sentence in the 

corpus (i.e., a set of texts in a certain format [33]) using a fixed window and counting the 

number of times that different words appeared in the window at the same time. When 

applying them to geographical studies, Euclidean distances have been commonly used in 

the past to calculate the proximity between objects. They first use a greedy algorithm to 

arrange all POIs in the basic research units into a sequence of POIs that satisfy the shortest 

distance. The frequency of co-occurrence with neighboring objects is then obtained by 

sliding over each POI sequence through a fixed window. The final co-occurrence matrix 

is formed. This rationale for transforming POI into sequential documents is not theoreti-

cally convincing or rigorous. The transformation of spatial data into sequential document 

data has limitations in terms of mining the spatial characteristics of POIs. This is because 

natural sequences are inherently sequential in structure (linear in structure), whereas POIs 

are distributed in a two-dimensional geographic space (non-linear in structure). This al-

lows co-occurrence information to be ignored for POI pairs that are far apart in terms of 

POI sequence location, but close in terms of spatial location. As an example, let us take the 

POI sequence: scientific research institutions, fitness centers, parking lots, colleges and 

universities, Chinese restaurants, dormitories, entrances and exits. Let the size of the win-

dow be 5. The central term is colleges and universities, and the terms within a step length 

of 2 are fitness centers, parking lots, Chinese restaurants and dormitories. In reality, how-

ever, colleges and universities are most strongly correlated with scientific research insti-

tutes. This makes it clear that adjacency relationships obtained in this way are incomplete 

and unrealistic. Increasing the size of the window only results in additional redundant 

adjacency relationships. In addition, this approach is quite sensitive to the construction of 

Parcels (basic research units). This approach assumes that POIs are only relevant within 

the same area, ignoring the fact that POIs that exist within different Parcels are also po-

tentially relevant. For example, the presence of a public security bureau and a fire station 

on either side of a road, which are geographically close to each other but belong to two 

adjacent Parcels, would not be statistically relevant if this method was used. 

In this paper, considering that POIs are geographically distributed, unlike the se-

quential distribution of words in documents, the original method of constructing a co-

occurrence matrix is no longer used. In addition, in order to explore the non-linear loca-

tion relationship and spatial interaction information of POIs in geographic space, we no 

longer rely on Parcels, but take a city-wide perspective. We find that urban facilities are 

usually arranged along the sides of roads in the real world and that physical movement 

in the urban space is typically constrained by the road network (Figure 5). For example, 

walking from point A to point B in Figure 5, because there are buildings on both sides of 

the road that create barriers, we cannot walk along the red line (a straight line formed by 

two points), we can only walk along the blue line (the road). The road network can there-

fore be used to mine the neighborhood relationships between POIs and construct a co-
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occurrence matrix. The proximity relationships mined by this method are not only closer 

to reality, but are also more comprehensive. This method does not result in any of the 

following three situations: (1) Information from POI pairs that are far apart in the real 

world are incorrectly counted, because they are in the same parcel and the POI points on 

the parcel are sparse; (2) Due to parcel limitations, the information about POI pairs that 

are actually close is ignored; (3) POI pairs are in the same parcel and are close to each 

other in the real world. However, due to the number of windows set, their proximity in-

formation is not counted.  

 

Figure 5. Distribution of POIs in the road network. 

To obtain sufficient information, small POI categories are best used to construct a 

training dataset. The co-occurrence matrix can be achieved as follows: 

1. Abstract the road network into a graph, G = (N, E), where E is the set of all roads 

(edge set), and N represents their intersections (node set); 

2. Use a nearest neighbor search method to map geographic entities to the edges of the 

road network and represent these entities in the form of a tuple, 〈𝑒, (𝑝𝑜𝑠1,  𝑝𝑜𝑠2)〉, 

where: e is the nearest neighbor of each geographic entity, working from the start 

point and end point of each edge;  𝑝𝑜𝑠1 denotes the distance between the projected 

point of the geographic entity and the starting point of e; and 𝑝𝑜𝑠2 represents the 

distance between the projected point of the geographic entity and the end point of e. 

So, the geographic entity 𝐷1 in Figure 6 can be represented as 〈(𝑛1, 𝑛2), 4.2, 2.1〉; 

3. Perform a nearest neighbor search according to the road network constraints for each 

geographic entity to obtain a neighboring point set, having set a distance threshold. 

For the geographic entity 𝐷1 in Figure 6, the neighboring point set is ( 𝐵1, 𝐶1, 𝐶2, 

𝐴1 ); 

4. Build an n × n co-occurrence matrix, 𝑋, where n is the total number of POI categories. 

The value of each element, 𝑋𝑖𝑗 (i and j are the categories), in the matrix is updated 

according to the neighboring point set. So, on the basis of the neighboring point set 

of 𝐷1, it is necessary to add 1, 1, 2 at  𝑋𝐷𝐴, 𝑋𝐷𝐵 and 𝑋𝐷𝐶 , respectively. The results 

are shown in Table 2. 
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The neighboring point distance threshold can be obtained by calculating the average 

value of the network distance between each geographic entity and the nearest neighboring 

geographic entity [34,35]. The calculated value was 150 m in this study. 

 

Figure 6. Graph representation of the road network. 

Table 2. The co-occurrence matrix of Figure 6. 

Quantity A B C D 

A 0 3 4 3 

B 3 0 3 2 

C 4 3 0 3 

D 3 2 3  

3.3. Construction of the POI Category Vector  

The representation of the regional features depends upon the training of the POI cat-

egory vectors using the co-occurrence matrix. The POI co-occurrence matrix is X, with the 

element Xij being the frequency of co-occurrence of the POIs in category i and category j 

in their spatial context. 𝑋𝑖 = ∑ 𝑋𝑖𝑘𝑘  is the frequency of the co-occurrence of any POI cate-

gory and category i. 𝑃𝑖,𝑗 = 𝑃(𝑗|𝑖) = 𝑋𝑖𝑗 𝑋𝑖⁄  is the probability that category j will appear in 

the spatial context of category i. When training the POI category vectors, the co-occurrence 

probability ratio is better able to measure the correlation between the POI categories than 

the co-occurrence probability itself. This helps to distinguish the different POI categories 

and accurately express the semantic characteristics of the various POIs. Taking an exam-

ple, let the small POI categories include colleges and universities, libraries, supermarkets, 

Chinese restaurants, metallurgical chemical units, industrial parks, etc., and let i = colleges 

and universities, j = metallurgical chemical units, and k = the other POI categories. Librar-

ies in urban spaces are usually close to colleges and universities, while the adjacency re-

lationship between libraries and metallurgical chemical units is weak. When k = libraries, 

the value of 𝑃𝑖,𝑘 𝑃𝑗,𝑘⁄  will be large. Industrial parks and universities possess a weaker 

proximity relationship, while industrial parks have a stronger proximity relationship with 

metallurgical chemical units. When k = industrial parks, the value of 𝑃𝑖,𝑘 𝑃𝑗,𝑘⁄  will be 

small. In addition, there are supermarkets distributed near both metallurgical chemical 

units and universities. So, when k = supermarkets, the value of 𝑃𝑖,𝑘 𝑃𝑗,𝑘⁄  will be close to 1.  

If the POIs were organized using the linear approach described in Section 3.2, the co-

occurrence probability ratios would misrepresent the correlation of real-world urban fa-

cilities. For example, the following two situations can occur: (1) Since metallurgical chem-

ical units and industrial park areas belong to different parcels. Their co-occurrences are 
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not counted, resulting in a low probability of co-occurrence; (2) In suburban areas with 

larger parcels, the colleges and universities may be in the same parcel as the industrial 

park. This would erroneously make them co-occur more frequently, leading to a higher 

co-occurrence probability. These two cases make the value of 𝑃𝑖,𝑘 𝑃𝑗,𝑘⁄   instead larger 

when k = industrial park. This ratio reflects the larger correlation between industrial park 

and higher education institutions, contrary to reality. 

Using the non-linear organization of POIs in this paper, these two situations do not 

occur. Although metallurgical chemical units and industrial parks are in different parcels, 

their co-occurrence counts will be counted because the road network distance is less than 

the threshold. Universities and industrial parks are in the same parcel, but their road net-

work distances are larger. Their co-occurrence counts will not be counted. The non-linear 

organization of POIs in this paper enables the co-occurrence probability ratios to correctly 

reflect the correlation between POI types.  

From the example situation above, a generalized model of the loss function for the 

GloVe model can be expressed as follows: 

𝑔((𝑣𝑖 − 𝑣𝑗)𝑇𝑣𝑘) =
𝑃𝑖,𝑘

𝑃𝑗,𝑘
=

𝑔(𝑣𝑖
𝑇𝑣𝑘)

𝑔(𝑣𝑗
𝑇𝑣𝑘)

 (1) 

where, 𝑣𝑖 , 𝑣𝑗 , 𝑎𝑛𝑑 𝑣𝑘 represent the feature vectors for the POI categories i, j, and k, respec-

tively. If an exponential operation is performed for (𝑣𝑖 − 𝑣𝑗)𝑇𝑣𝑘 , the loss function be-

comes: 

𝑃𝑖,𝑘

𝑃𝑗,𝑘
=

exp(𝑣𝑖
𝑇𝑣𝑘)

exp(𝑣𝑗
𝑇𝑣𝑘)

 (2) 

To keep the loss function model as simple as possible, this equation needs to be sim-

plified. Doing this involves keeping the numerator and denominator on both sides of the 

equation equal to each other and maintaining the symmetry on the right-hand side. So, 

the deviation terms 𝑏𝑖 and 𝑏𝑗 need to be added in the left side of the equation: 

𝑣𝑖
𝑇𝑣𝑗 + 𝑏𝑖 + 𝑏𝑗 = log(𝑋𝑖,𝑗) (3) 

Based on the principle that the higher the co-occurrence frequency of the POI catego-

ries, the greater the weight, a weight term should be added to the cost function: 

𝐽 = ∑ 𝑓(𝑋𝑖,𝑗)(𝑣𝑖
𝑇𝑣𝑗 + 𝑏𝑖 + 𝑏𝑗 − log (𝑋𝑖,𝑗)2

𝑁

𝑖,𝑗

 (4) 

Since the co-occurrence matrix is a sparse matrix, it is necessary to limit the value of 

the loss function when 𝑋𝑖,𝑗 = 0, to ensure that the weight does not increase or decrease 

significantly when the co-occurrence frequency is too large or too small. The weight func-

tion therefore needs to be: 

𝑓(𝑥) = {
(

𝑥

𝑥𝑚𝑎𝑥
)0.75, 𝑥 < 𝑥𝑚𝑎𝑥

1, 𝑥 ≥ 𝑥𝑚𝑎𝑥

 (5) 

This is because the number of POI types is less than the number of words in the se-

mantic space and the co-occurrence frequency is greater than the number of co-occurrence 

of words in the semantic space. The 𝑥𝑚𝑎𝑥 value in this paper needs to be set higher than 

the 100 set in the original model, which was finally set to 400 after multiple experiments. 

The dimensions of the POI category vectors are key parameters in the GloVe model. 

As the number of POI categories is not as high as the number of words in a semantic space, 

the dimensions for the POI category vectors can be set to 70 (Table 3). To analyze the spa-

tial distribution of the 70-dimensional POI category vectors, a data dimensionality reduc-

tion technology, t-SNE, was used to mine the information from the higher-dimensional 

data. t-SNE maps all the POI category vectors into a 3D semantic space, as shown in Figure 
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7. After dimensionality reduction, the POI categories with similar or related spatial se-

mantic information will be closer to one another. Looking at the example in Figure 7a, 

there are various POI categories, including government agencies, medical and healthcare 

facilities, and sports and leisure facilities. These kinds of resources are usually located in 

the public service and management areas of a city. In particular, as China Telecom and 

China Mobile are telecommunications companies with the same role in an urban space, 

their branches almost overlap in the 3D semantic space. The large POI categories in Figure 

7b include catering services, shopping services, and public facilities. At the level of the 

smaller categories, restrooms, casual dining places, Suning stores, and Gome stores all 

appear together in shopping malls, where they play a similar role in meeting peoples’ 

needs for leisure and entertainment. It is these kinds of precise and nuanced concerns that 

justify the use of smaller POI categories. 

Table 3. Partial POI category vectors. 

POI Category POI Category Vectors (Dimension = 70) 

Outdoor fitness center (−0.00319916, 0.00888043, −0.02442472, ……, −0.02165624) 

Parks (0.02811326, 0.02575135, −0.0115155, ……, −0.0042832) 

Middle Schools (0.04371936, 0.03249595, −0.02067991, ……, −0.05321765) 

Factories (0.01310952, −0.03528632, 0.01673809, ……, 0.08923801) 

 

Figure 7. The POI type vectors is visualized in the three-dimensional coordinate system, and its part 

is taken for enlarged display, as shown in (a,b). Note: Because the training is carried out with Chi-

nese labels, it is displayed in Chinese. And a English definition below each label. 

3.4. Regional Feature Expression and Clustering 

To accurately measure the similarity of different urban regions, it is necessary to con-

struct regional feature vectors. The regional features in this study were constructed at a 

Parcel scale, so all of the POIs in each Parcel needed to be obtained. Then, different func-

tional clusters were obtained through clustering. 

Previous studies have used the weighted average of all the word vectors in a text to 

measure similarity [36,37]. Here, the POI category vectors obtained via the GloVe model 

were initially treated as word vectors, with the POI categories in each Parcel being treated 
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as the text. The weighted average of the word vectors was then calculated to obtain the 

feature vector for each Parcel: 

𝑃𝑎𝑟𝑐𝑒𝑙𝑣𝑒𝑐𝑖
=

∑ 𝑡𝑦𝑝𝑒(𝑝𝑖,𝑗)𝑁
𝑗=1

𝑁
 (6) 

where 𝑃𝑎𝑟𝑐𝑒𝑙𝑣𝑒𝑐𝑖
 represents the feature vector of the i-th Parcel; N is the total number of 

POIs in the Parcel; and 𝑝𝑖,𝑗 is the POI vector of category j in the i-th Parcel. 

Having obtained the Parcel feature vectors, they were clustered using the modified 

K-means algorithm, K-means++. When initializing the cluster centers, they were placed as 

far away from one another as possible to achieve a globally optimal solution. The prior 

parameter, K, in a K-means++ algorithm, determines the clustering effect. Elbow and sil-

houette coefficient methods were used to objectively select the value of K. The key index 

in the elbow method is the Sum of Squared Errors (SSE). As K increased, the SSE first 

decreased sharply, then flattened out (Figure 8a). The relationship between the K and SSE 

values takes the form of an elbow, with the elbow being at K = 5. In the silhouette coeffi-

cient method, the larger the value, the better the clustering effect. As shown in Figure 8b, 

the value was at its largest at K = 5. So, in this study, K = 5 was chosen as the optimal 

number of clusters. 

 

Figure 8. Determination of K value in clustering: (a) elbow method; (b) silhouette coefficient 

method. 

3.5. Identification of the Urban Functional Areas 

After obtaining the regional clusters with similar functions by clustering, an actual 

spatial meaning needs to be assigned to each of them so as to identify the functional areas. 

There are many ways of classifying urban functional areas. Here, we took the perspective 

of peoples’ everyday lives and social activities. The functional areas therefore incorpo-

rated things such as business areas, residential areas, public service areas, industrial areas 

and scenic spots [38,39]. Existing data were used to label each regional cluster according 

to the following three indicators: 

(1) The category ratio. The frequency density (FD) and category ratio (CR) of each 

large POI category in each regional cluster was calculated to obtain the distribution of 

each POI within the different regional clusters. This was executed using the following: 

𝐹𝐷𝑖 =
𝑛𝑖

𝑁𝑖
 (7) 
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𝐶𝑅𝑖 =
𝐹𝐷𝑖

∑ 𝐹𝐷𝑖
𝑛
𝑖=1

× 100% (8) 

where i is the POI category; 𝑛𝑖 is the number of POI category i in the regional cluster; 𝑁𝑖 

is the total number of POI category i; 𝐹𝐷𝑖 is the frequency density of POI category i in the 

regional cluster; and 𝐶𝑅𝑖 represents the ratio of the frequency density of POI category i 

in the regional cluster to that of all the POIs; 

(2) Enrichment factor. As certain POI categories occur very frequently in urban 

spaces, the FD and CR of the POIs cannot fully reflect the attributes of the regional clus-

ters. It is therefore necessary to add in an enrichment factor (EF) for each category of POI. 

This can be calculated as follows: 

𝐸𝐹𝑖
𝑗

= (𝑁𝑖
𝑗

𝑁𝑖⁄ ) (𝑁𝑗 𝑁⁄ )⁄  (9) 

where 𝐸𝐹𝑖
𝑗
 represents the EF of the category j POIs in the i-th the regional cluster; 𝑁𝑖

𝑗
rep-

resents the number of category j POIs in the i-th the regional cluster; 𝑁𝑖 represents the 

number of all POIs in the i-th the regional cluster; 𝑁𝑗 is the number of category j POIs in 

the whole study area; and N denotes the total number of POIs in the study area; 

(3) Population heat value. Human activities are closely related to the spatial structure 

of cities. The changing characteristics of individual activity in the city can reflect the urban 

functions undertaken by the study area. The population heat value represents the number 

of individuals active in an area, which is the basis for the analysis of human behavior.The 

study of its changes over time can help to label the clusters of areas obtained after cluster-

ing. It can compensate for the errors arising from the labelling of functional areas using 

only the EF and CR values of the POI, and increase  the scientific and rational nature. 

Within the area covered by each regional cluster, the heat values of the population are 

statistically analyzed for 24 time periods on weekdays and rest days. The results can re-

flect the aggregation and distribution characteristics of the population under different 

time periods. The higher the value, the higher the aggregation of the local population in 

that period, and vice versa. For instance, during the morning and evening peak hours on 

workdays, the aggregation was very high in residential areas. The value was higher than 

it was during other time periods.  

4. Results 

4.1. Functional Area Identification 

The proposed method was used to obtain functional clustering results for 1017 par-

cels in Zhengzhou City (Figure 9). The CR and EF values for each POI category in each 

regional cluster were also acquired (Table 4), together with the population heat values for 

a workday and a weekend (Figures 10 and 11). The regional clusters were then labeled 

and the identification results analyzed: 
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Figure 9. Identification results of urban functional areas in the main areas of Zhengzhou. Note: Pub-

lic Service in the legend is Science, Education and Public Service areas. 

Table 4. CR and EF values of POIs. 

Category 
𝑪𝟎 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 

EF 1 CR 2 EF CR EF CR EF CR EF CR 

Accommodation 1.033  8.529  0.284  6.115  0.719  7.098  1.100  7.000  1.149  7.734  

Government agency 0.893  7.374  1.911  7.990  0.463  4.572  1.021  2.461  1.355  9.120  

Medical and 

healthcare 
1.042  8.596  1.902  7.735  0.664  6.560  1.030  2.900  1.035  6.967  

Sports and leisure 0.935  7.719  2.056  8.069  0.586  5.783  2.736  11.263  1.153  7.763  

Commercial resi-

dence 
1.014  8.371  0.815  6.376  0.667  6.591  0.429  0.624  1.051  7.073  

Public utilities 0.963  7.946  1.578  7.269  0.144  2.169  1.850  8.946  0.783  5.270  

Science, education 

and culture 
1.005  8.294  2.225  9.731  0.782  7.724  1.015  1.641  0.928  6.250  

Financial and insur-

ance 
0.882  7.279  1.021  7.005  0.362  3.572  1.014  1.651  1.483  9.988  

Transportation Fa-

cilities 
0.909  7.503  2.202  8.953  0.763  7.533  1.068  4.758  1.181  7.952  

Shopping service 0.997  8.232  1.935  8.100  1.963  19.513  5.076  15.111  1.055  7.103  

Restaurants 1.092  9.014  1.927  8.068  2.143  20.289  2.320  9.099  0.769  5.175  

Tourist sites 0.650  5.367  1.033  7.597  0.439  4.339  10.547  33.029  1.387  9.338  

Corporations 0.700  5.775  0.410  6.991  0.431  4.255  1.012  1.517  1.525  10.267  
1 The EF value is the enrichment factor of the POI, the higher the value the higher the enrichment of 

this type of POI. 2 The CR value is the proportion of POIs in the category, the higher the value the 

higher the proportion of the density of this type of POI in the sum of all types of POIs in the region. 

(1) 𝐶0：Residential areas 

From the analysis of CR and EF values of POI, comparing with other regions hori-

zontally, it can be found that the CR value of the business residential POI in this regional 

cluster is the highest. A longitudinal comparison shows that different types of POIs are 

evenly distributed. This is in line with the spatial distribution characteristics of residential 

areas which are surrounded by medical, sports and leisure, accommodation, restaurants, 
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shopping, schools and other infrastructures that provide services to residents. Looking at 

the population heat values, as residential areas form the principal areas in which people 

live, their overall heat value was higher than in other areas. During commuting hours 

between 7:00 and 9:00 and 17:00 and 19:00 on weekdays, the heat value was especially 

high. At weekends, the heat value was stable during the day, with a peak at around 19:00 

in the evening; 

(2) 𝐶1：Science, Education and Public Service areas 

The CR value of the POI shows that there are numerous science, education, and cul-

ture-related venues in this regional cluster, such as Zhengzhou University, Henan Uni-

versity of Technology, Henan University of Traditional Chinese Medicine, etc. Mean-

while, transportation facilities, sports and leisure, restaurants and shopping POIs also 

have high values. It is consistent with the spatial distribution of infrastructure around the 

school that meets the shopping, dining, sports and traffic needs of the school’s students 

and faculty. The heat value in this area remained high during the daytime from 8:00 to 

18:00 on weekdays, with a peak at 12:00, which agrees with what is known about students’ 

daily behavior. At weekends, the heat value was significantly lower; 

(3) 𝐶2：Commercial areas 

The CR and EF values for the shopping service and restaurants POI in this regional 

cluster were high. These areas are mainly dominated by shopping malls and business 

buildings (office buildings), such as Zhenghong City, Xidi Port, Wanda Plaza, and 

Zhongke Building. On weekdays, the heat value for this area was especially high from 

17:00 to 20:00, which is in agreement with what is known about people using these facili-

ties after work for dining, shopping, entertainment, etc. The overall higher heat values on 

rest days than weekdays confirms the concentration of the flow of people to commercial 

areas on weekends; 

(4) 𝐶3：Natural scenic spots 

Tourist sites’ POI in the regional cluster had the highest EF and CR values compared 

both horizontally and longitudinally. These areas included numerous tourist attractions 

and parks, such as Longhu Park, Xiliu Lake Park, Zhengzhou Forest, People’s Park, etc. 

These areas also contained a range of public facilities (e.g., public restrooms), restaurants, 

convenience stores, hotels and other basic service facilities. The distribution of the popu-

lation heat value for different time periods was relatively uniform on working days, but 

the value at weekends was generally higher. The peak value was between 10:00 and 16:00 

on weekends, which agrees with people’s known travelling behavior at weekends; 

(5) 𝐶4：Industrial areas 

In terms of EF and CR values, the corporation-type POIs have the highest value in 

this regional cluster, while POIs such as scenic-type and government-type also hold not 

particularly low values. This is because, in addition to corporations, factories, agricultural, 

forestry, animal husbandry and fishery areas, industrial areas also include some basic ser-

vice facilities, such as parks, restaurants, and convenience stores. At the same time, there 

were some government agencies nearby to regulate and control the industries, so the 

number of government agencies was also relatively large. From geographical location, 

this regional cluster is mainly distributed in the periphery of the city, which is in line with 

the actual distribution of industrial zones. In terms of the population heat value, the value 

was at its highest on the workday from 9:00 to 18:00, but lower at the weekend, matching 

the daily working behavior of residents; 

(6) 𝐶5：Unidentified areas 

These areas were not analyzed in this paper because of the insufficient POI data, the 

overall low thermal values, and the small overall area with no specific functions. 
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Figure 10. Population heat value of different areas in different time periods on weekdays. 

 

Figure 11. Population heat value of different areas in different time periods on weekends. 

4.2. Validation 

To assess the accuracy of the results we acquired, the functional area identification 

results were compared with Baidu online maps and Baidu Street View. Table 5 shows a 

comparison of some typical areas. 

Area A in the Table 5 gives the map and street view of Longhu Wetland Park, which 

is a scenic spot. The identification result also categorized this as a natural scenic spot 

(𝐶3).Area B is Zhengzhou University, which belongs to the science, education, and culture-

related category. Again, this is consistent with the identification result (C1). Area C is 

Grand View International Trade, World trade shopping center and Silverbase Plaza, 

which is business service-related areas. As the identification result is a business area (C2), 

this, too, is accurate. Area D has multiple residential areas, such as Zhengshang Goldfield 

Family, and Wu Jian Xin Neighborhood. The identification result was also residential area 
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(C0). Area E incorporates many different companies and even has an Enterprise Park. 

Here, the identification result is industrial area (C4), which is consistent with the reality. 

Together these results suggest that the proposed method was able to accurately clas-

sify the urban functional areas of Zhengzhou City. 

Table 5. Verification of functional area identification results. 

Function Baidu Map Baidu Street View Identification Results 

Natural  

Scenic 

(brown) 

 

(Longhu Wetland Park) 

Public  

Service * 

(yellow)  

 

(Zhengzhou University) 

Commercial 

(blue) 

 

(Grand View International Trade, World trade shopping center, Silverbase Plaza) 

Residential 

(pink) 

 

(Zhengshang Goldfield Family, Wu Jian Xin Neighborhood) 

Industry 

(purple) 

 



ISPRS Int. J. Geo-Inf. 2022, 11, 498 17 of 23 
 

 

(Xingda Medical Equipment Co., Enterprise Park) 

* Public Service is Science, Education and Public Service areas. 

4.3. Comparative Analysis 

To assess the relative merits of our proposed approach in relation to other possibili-

ties, the outcomes of using the popular LDA model (Figure 12a), Word2Vec model (Figure 

12b) and a traditional GloVe model (Figure 12c) were compared with the results of using 

the proposed method. Experts with a geographical background were invited to label each 

parcel in terms of different function. The functional area types included residential areas, 

scientific research, education, and public service areas, scenic spots, business areas, and 

industrial areas. The results of the four methods were then compared to the manual clas-

sifications (Figure 12e). The confusion matrix (Figure 13), overall accuracy and kappa co-

efficient (Table 6) are calculated using the population classification results as criteria. 

 

Figure 12. Identification results of different methods. Note: Public Service in the legend is Science, 

Education and Public Service areas. 
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Figure 13. Confusion matrix of identification result based on different methods: (a) LDA; (b) 

Word2Vec; (c) GloVe; (d) proposed method. 

Table 6. Kappa coefficient and overall accuracy. 

Method Kappa Coefficient Overall Accuracy 

LDA 0.330029 0.499472 

Word2Vec 0.389353 0.543822 

GloVe 0.635169 0.721987 

This study 0.740416 0.801268 

(1) The identification results of the LDA model have much deviation in both urban 

center and suburban areas (Figure 14). In the urban center area, multiple Science, Educa-

tion and Public Service areas are classified as residential land uses. Meanwhile, multiple 

industrial sites in suburban areas are not correctly classified. From the confusion matrix, 

the probability of being correctly classified is low for either functional area (Figure 13a). 

This is because LDA is an unsupervised learning-topic probability generation model that 

uses a bag-of-words method to generate topics, which is independent of the order of word 

distribution in the document. Hence, the model essentially judges the type of functional 

area by the frequency of POI, and this judgment criterion has limitations. Specifically, 

there is only one school in the public service area, while there are multiple dormitories 

and family homes. The probability of the occurrence of residential areas is greater than 

that of scientific and educational places. So, scientific and educational places will be 

wrongly classified as a residential area. There are many services and infrastructures near 

factories in industrial land, and the number of these facilities is greater than that of facto-

ries, so industrial land is not classified correctly; 
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Figure 14. Comparison of LDA model recognition results (a,c) and actual functional areas (b,d) in 

the urban center area and suburban area. Note: The urban centers are (a,b), while suburbs are (c,d). 

(2) Based on the LDA model which only considers POI frequency, the Word2Vec 

model takes into account the spatial correlation of POI. From the correct rate of each func-

tional area identification in the confusion matrix (Figure 13b), it is seen that this method 

enhances the functional area identification to some extent. However, since the model is 

trained only on separate local contexts and not on global co-occurrence counts, important 

co-occurrence statistics of POI are ignored, resulting in the inaccurate identification of 

some regions. For instance, area A (Figure 15a) in the Word2Vec model identification re-

sults is the location of commercial shopping centers such as Zhenghong City and Jianye 

Kaixuan Plaza, while area B (Figure 15b) is the Xidi Port shopping center. They are both 

commercial areas but are not classified as such. Looking at areas C (Figure 15c) and D 

(Figure 15d), where there are multiple steel-casting and auto parts industrial businesses, 

these have been assigned to different categories. Area D is correct, but area C is not; 

 

Figure 15. Comparison of partial identification results of Word2Vec with the actual function types 

and Baidu map: (a) area A of Figure 12a; (b) area B of Figure 12a; (c) area C of Figure 12a; (d) area 

D of Figure 12a. 

(3) The traditional GloVe model utilizes the global co-occurrence information for the 

training of POI-type vectors, as well as the overall accuracy and Kappa coefficient (Table 

6) being higher than the first two methods. However, when organizing POI relationships, 

only POI linear location relationships are considered, resulting in errors in the statistics of 

global co-occurrence information. The effect of functional area recognition is limited. Ar-

eas A (Figure 16a) and B (Figure 16b) in the traditional GloVe model identification results 

are the locations of North China University of Water Conservancy and Hydropower and 

Henan University of Finance and Economics and Government, respectively, both of which 

are scientific research, education, and public service areas. However, they have been given 

different categories. Area C (Figure 16c) is Zhengzhou Xiliu Lake Park and area D (Figure 

16d) is Longhu Wetland Park. Both of these areas are typical scenic spots, yet they have 

not been assigned to the same category. 
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Figure 16. Comparison of partial identification results of GloVe with the actual function types and 

Baidu map: (a) area A of Figure 12b; (b) area B of Figure 12b; (c) area C of Figure 12b; (d) area D of 

Figure 12b. 

The identification results for the proposed method are shown in Figure 12d. As can 

be seen, the incorrectly classified areas in the above two methods were all correctly clas-

sified, and the results are much more consistent with the actual functional areas. From the 

confusion matrix (Figure 13d), it can be seen that the accuracy of the proposed method 

was higher across all categories than that of a traditional GloVe model based on the POI’s 

linear spatial relationships. The identification accuracy for the science, education, culture 

and public service areas, industrial areas, and scenic spots was especially high, though the 

accuracy for business areas is slightly lower. From Table 6, it can be seen that the Kappa 

coefficients and overall accuracy of the proposed method were 0.74 and 0.80, respectively, 

which is better in both cases than the results produced by the other methods. This shows 

that we can model the relationship between POI types and functional areas more accu-

rately by taking road network restrictions to mine POI proximity information. This func-

tional area identification method, which takes into account the nonlinear location relation-

ship of POIs, can improve the functional area identification effect. 

4.4. Discussion 

The proposed GloVe model identification method, which takes into account the non-

linear location relationship of POI, can effectively identify urban functional areas. Our 

method not only mines POI co-occurrence information from the city as a whole, but also 

takes into account the interaction information of POIs between different parcels. It can 

take into account the geographical proximity and structural continuity. In addition, the 

method in this paper differs from previous studies using Euclidean distance to mine the 

proximity relationship, but uses road network distance, which makes the POI proximity 

information more relevant to reality. In summary, it is able to mine more comprehensive 

POI semantic information and provides a more effective functional area identification re-

sult. 

Nonetheless, the proposed method is not without limitations. As central urban cen-

tral areas tend to have a rich mixture of multiple different functions, there is some devia-

tion between the identification results for the central area (Figure 17a) and the actual func-

tional categories (Figure 17b). The identification accuracy for business districts is particu-

larly low (Figure 13d). This is mainly due to the fact that business areas are heavily con-

centrated in central areas, where they are often mixed with other functional areas such as 

residential areas and government agencies. 
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Figure 17. Comparison of the identification result of the central area between the proposed method 

(a) and the actual function categories (b). 

Another limitation of the approach in this paper is that both the Big Data and the 

model are only a simplification of the city. The identification of urban functional areas is 

a very complex process involving many factors, such as population growth, economic ac-

tivities, etc. This paper only uses the population heat value of cell phone signaling data to 

reflect the aggregation and travel characteristics of the crowd, which can reflect the be-

havior pattern of residents to a certain extent, but is not comprehensive enough, meaning 

the results may have some bias. Further research can be conducted by fusing spatiotem-

poral data such as floating vehicle trajectory data, subway data, and social media data. 

5. Conclusions 

This paper proposed a GloVe-based model for urban functional area identification 

that considers the nonlinear spatial relationship between POIs. POI proximity information 

based on the road network was mined to construct a co-occurrence matrix and a GloVe 

model was used to train small POI category vectors. Parcel feature vectors were then con-

structed to measure the similarity between the different areas. After this, a clustering al-

gorithm was used to split the parcels into six categories. CR, EF, and population heat val-

ues were used to assign different functions to the six region clusters. The method was 

applied to urban areas in Zhengzhou City and the city’s different functional areas were 

obtained. The identification results were then compared with Baidu maps to verify the 

accuracy of the proposed method. The performance of the proposed method was also 

compared with LDA, Word2Vec and a traditional GloVe model. It was found that the 

proposed method had a higher identification accuracy for urban functional areas. This 

reflects that the global co-occurrence information based on road network mining is closer 

to the real POI, which can obtain a more accurate modeling of the relationship between 

POI types and urban functions and improve the functional area identification. 

This study can be a useful tool for assessing changes in the function of built-up areas, 

as a result of human economic activities. At the same time, this study can be a good sup-

plement when it is relatively difficult to obtain conventional cadastral data in some areas. 

The findings of this study offer a source of reference for identifying and understanding 

complex urban spatial structures and their functional configuration. The proposed 

method can also assist in the selection of urban sites for different functions, urban master 

planning, and the construction of smart cities.  

In the future, we will fuse multiple spatial and temporal data with traditional data as 

a means of identifying functional changes in regions. On the other hand, we only consid-

ered a single function of the region in this study, without taking into account that city 

center areas often have different functional attributes. In the subsequent work, the differ-

ent functional intensity of regions is also a research direction.  
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